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Motivated by recently reported magnetic-field induced topological phases in ultracold atoms and
correlated Moiré materials, we investigate topological phase transitions in a minimal model consisting
of interacting spinless fermions described by the Hofstadter model on a square lattice. For interacting
lattice Hamiltonians in the presence of a commensurate magnetic flux it has been demonstrated that
the quantized Hall conductivity is constrained by a Lieb-Schultz-Mattis (LSM)-type theorem due to
magnetic translation symmetry. In this work, we revisit the validity of the theorem for such models
and establish that a topological phase transition from a topological to a trivial insulating phase
can be realized but must be accompanied by spontaneous magnetic translation symmetry breaking
caused by charge ordering of the spinless fermions. To support our findings, the topological phase
diagram for varying interaction strength is mapped out numerically with exact diagonalization for
different flux quantum ratios and band fillings using symmetry indicators. We discuss our results in
the context of the LSM-type theorem.

I. INTRODUCTION

Chern and topological insulators in condensed matter
physics [1, 2] are closely linked to the discovery of the
integer quantum Hall effect (IQHE) [3, 4]. The problem
of free electrons in a constant external magnetic field can
be solved analytically and it leads to an understanding
of the quantization of the Hall conductivity in terms of
single-particle Landau levels [5, 6]. The characteristic
high degeneracy and Chern numbers of the Landau levels
are a result of the magnetic translation symmetry of elec-
trons subject to an external magnetic field [7–9]. Similar
symmetry constraints arising from magnetic translation
symmetry also extend to non-interacting lattice Hamilto-
nians in the presence of a commensurate magnetic flux,
such as the Hofstadter model on a square lattice [10].
Actually, it can be shown that for a gapped Hall insulator
the Chern number C of the occupied bands is constrained
by a Diophantine equation of the form [7, 11]

e2πi( p
q C−ρ) = 1, (1)

where p/q is the flux quantum ratio per unit cell and ρ
is the number of particles per unit cell. In particular,
the Chern number cannot be equal to zero if ρ is not an
integer, excluding a trivial band insulating phase.

Recent theoretical predictions [12–15] of additional
topological invariants protected by translation symme-
try in an external magnetic field have ignited a renewed
interest in the Hofstadter model. Furthermore, there
has been important experimental progress in cold atom
gases [16, 17] and twisted bilayer materials [18, 19] where
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the range of the flux quantum ratio can now go up to one
elementary flux quantum Φ0 per unit cell. In particular, a
bosonic fractional quantum Hall phase has been recently
detected in the former [20], and the formation of odd-
denominator fractional quantum Hall states in graphene
at high magnetic fields have been optically detected using
excited Rydberg excitons in an adjacent transition metal
dichalcogenide monolayer [21].

For interacting systems, the classification of topological
phases is more challenging than in the non-interacting
case since the ground state is no longer given by a product
state of single-particle Bloch wave functions. However,
even without resorting to Bloch states in the Brillouin zone
(BZ), it is possible to define a many-body Chern number
using twisted boundary conditions (TBC) which corre-
sponds to adiabatic flux insertion and is thus related to
the Hall conductivity [22]. This is now a well-established
technique in mapping out topological phase diagrams of
interacting Chern insulators [23, 24] and especially rel-
evant for fractional Chern insulators, which are beyond
a conventional mean-field description [25, 26] and hence
require a genuine many-body treatment. Due to the simi-
larity of the BZ and the set of possible TBC, both forming
a torus, it is a natural question to ask whether magnetic
translation operators impose the same constraint, Eq. (1),
on interacting systems.

An earlier and more well-known example of a filling-
enforced constraint on quantum many-body systems is the
(generalized) Lieb-Schultz-Mattis (LSM) theorem. Orig-
inally formulated for a 1D half-integer spin chain [27],
it has been generalized to higher dimensions [28] and
many-body systems with conserved particle number on a
periodic lattice [29]. Resting on the commutation relation
between the “large gauge transformation” and the trans-
lation operator [29, 30], the theorem determines whether
a translation invariant Hamiltonian at a certain filling
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is allowed to have a non-degenerate ground state or not.
Specifically, a unique ground state, separated by a gap
from excited states, is prohibited for non-integer fillings.

In the presence of an external magnetic field the al-
gebra of translation operators changes to the magnetic
translation algebra and integer fillings now correspond to
qρ ∈ Z due to an enlarged magnetic unit cell [31]. Even
more importantly is the possibility to generalize Eq. (1) to
genuine many-body systems [31–34] and to exclude trivial
band insulators at certain fillings. The proof is based on
using within Laughlin’s gauge argument the commuta-
tion relation of the large gauge transformation with the
product of the magnetic translation operator and a flux
insertion operator [31] in the thermodynamic limit. It
may therefore be viewed as a corollary or variation of the
generalized LSM theorem. This generalization can also
be proven exactly for all finite-size systems on which the
generalized LSM theorem applies [33]. We will therefore
call it the LSM-type theorem in the following.

Crucially, the LSM-type theorem for the IQHE relies on
a nondegenerate ground state such as a non-interacting
band insulating state. In the case of ground state degen-
eracy however, which commonly takes place at a phase
transition due to spontaneous symmetry breaking (SSB),
the theorem’s implications have to be reevaluated.

In this work we scrutinize the physical implications of
many-body magnetic translation invariance on the Hall
conductivity in the light of SSB. In particular, the role of
the specific choice of a given cluster, on which the validity
of the LSM-type theorem and the mechanism of SSB
depend in a subtle way, will be examined. For this purpose,
we perform exact diagonalization (ED) calculations of the
interacting Hofstadter model on a square lattice for a
wide range of different band fillings and flux quantum
ratios. Such calculations are useful since they capture
qualitative differences between different clusters. In the
context of Hofstadter physics, ED allows us to study the
effect of the discrete lattice (high flux quantum ratio)
but also the parameter regime, where the single particle
physics is approximately described by Landau levels (low
flux quantum ratio). As a particular example for SSB,
we investigate the translation symmetry breaking charge-
density-wave (CDW) state in the (long-range) Coulomb
interaction regime. For the identification of topological
phase transitions we make use of symmetry indicators [33].

This paper is organized as follows: In Sec. II we review
basic properties of lattice Hamiltonians in the presence of
a commensurate flux (in particular the Hofstadter model),
the magnetic translation algebra and the constraint im-
posed by the LSM-type theorem on the Hall conductivity.
In Sec. III we provide an intuitive explanation backed
by numerical calculations, how this constraint is circum-
vented by SSB. We use ED to discuss the possibility of
topological phase transitions from Chern insulator to a
checkerboard-pattern CDW phase for a half-integer flux
quantum ratio. We expand the ED study by investigating
all numerically feasible flux quantum ratios and integer
band fillings of the interacting Hofstadter model on a

square lattice in Sec. IV. We close our analysis by giving
a thorough and rigorous account of the role of SSB in
Sec. V that addresses the remaining formal and technical
questions of the applicability of the LSM-type theorem
in integer as well as fractional quantum Hall systems.
Finally, in Sec. VI we conclude our findings and discuss
future directions.

II. LATTICE HAMILTONIANS IN
COMMENSURATE MAGNETIC FLUX

A. Hofstadter model

To understand how a tight-binding Hamiltonian is af-
fected by an external magnetic field, one can consider
a particle of charge −e moving around a surface that
is pierced by a flux Φ. The wave function obtains an
Aharonov-Bohm phase of −2πΦ/Φ0, where Φ0 = hc/e is
the magnetic flux quantum, which can be seen by consid-
ering the change in the Lagrange function L → L−eṙA/c
upon adding a flux Φ which leads to the phase

e−i e
ℏc

∫
drA(r) (2)

due to the change in the action S[r] =
∫ t

0 dt′L[ṙ, r] in the
path weight eiS[r]/ℏ. On a single-orbital lattice model an
external magnetic field can be implemented by including
so-called Peierls phases to the hopping matrix elements for
spinless fermions [10, 35]. Such phases can be interpreted
as Aharonov-Bohm phases originating from a magnetic
flux piercing the different plaquettes of the given lattice:

c†
R′cR → c†

R′cR e−i e
ℏc

∫ R′

R
A(r′) dr′

=: c†
R′cR e−iϕR′,R .

(3)
The flux through a set of plaquettes enclosed by the
path R1,R2, . . . ,Rn,R1 is given by the sum ϕR2,R1 +
ϕR3,R2 + · · · + ϕR1,Rn

. A single-orbital nearest-neighbor
(NN) tight-binding Hamiltonian on a square lattice with
a flux quantum ratio Φ/Φ0 = φ per plaquette becomes

Ĥ = − t
∑
m,n

c†
m+1,ncm,n

− t
∑
m,n

e−2πiφm c†
m,n+1cm,n + h.c.,

(4)

which is the Hofstadter model in the Landau gauge [10].
Different choices for the phases ϕR′,R are equivalent up
to a unitary gauge transformation c†

m,n → eiλm,nc†
m,n [36]

as long as the flux piercing each of the plaquettes is the
same [37]. The Chern numbers of the band spectrum of
Eq. (4) are uniquely determined by a specific Diophantine
equation for all possible φ [4, 38].

B. Magnetic translation algebra

Since hopping amplitudes and fluxes of the Hamiltonian
in Eq. (4) are translation invariant, one can identify two
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unitary translation operators in x and y direction defined
by

T̂ M
x c†

m,n

(
T̂ M
x

)†
= e−2πiφn c†

m+1,n

T̂ M
y c†

m,n

(
T̂ M
y

)†
=c†

m,n+1. (5)

These operators, consisting of the action of a symme-
try operation in real space times a unitary and space
dependent gauge transformation are commonly denoted
magnetic translation operators [8, 9]. They generally do
not commute with each other. Acting on a Hilbert space
of Ne particles they satisfy [39]

T̂ M
x T̂ M

y = e−2πiφNe T̂ M
y T̂ M

x (6a)

T̂ M
x T̂ M

y = e−πiφNe T̂ M
x+y, (6b)

which is referred to as the magnetic translation algebra
or Girvin-MacDonald-Platzman algebra [40]. According
to Eq. (6) these operators form a higher-dimensional pro-
jective representation [41–43] for φNe /∈ Z, in contrast
to the usual one-dimensional irreducible representations
for the abelian translation group. A consequence is a
symmetry-protected degeneracy of the energy spectrum:
for example, the macroscopic degeneracy of single-particle
Landau levels stems from the magnetic translation sym-
metry of free particles [8].

For a non-interacting lattice Hamiltonian such as the
Hofstadter model and for a flux quantum ratio

φ = p

q
, (7)

where in the following p and q will always be chosen to
be coprime, the single-particle band structure obtains a
symmetry protected q-fold degeneracy. This can be seen
as follows: Since (T̂ M

x )q, T̂ M
y are commuting translation

operators according to Eq. (6a) for Ne = 1, they can
be used to define Bloch states |kx, ky⟩ with eigenvalues
e−iqkx , e−iky (where we have set the lattice constant to 1).
Then, since

T̂ M
y

(
T̂ M
x |kx, ky⟩

)
= e−i(ky−2πφ)

(
T̂ M
x |kx, ky⟩

)
(8)

we obtain that T̂ M
x |kx, ky⟩ is a new eigenstate of T̂ M

y ,
hence

T̂ M
x |kx, ky⟩ ∝ |kx, ky − 2πφ⟩. (9)

As a consequence |kx, ky⟩, . . . , |kx, ky − 2πφ(q − 1)⟩ span
a q-dimensional irreducible projective representation space
with degenerate energy eigenvalues. This also explains
why according to Eq. (1), the Chern number can only
change modulo q because the topological phase transition
of a band is accompanied with the simultaneous closure
of q band gaps. A complete derivation of Eq. (1) is given
in Appendix A.

For interacting systems ED calculations have to be
restricted to finite systems. The infinite plane becomes a

cluster with its boundaries being glued together forming
a torus. Besides piercing each plaquette with a flux, it is
now possible to insert fluxes through the non-contractible
loops of the torus [22, 37], see Fig. 1. They can be varied
by imposing twisted boundaries onto the system, which
keep the fluxes through the individual plaquettes invariant.
The Hamiltonian in Eq. (4) becomes

Ĥ(θx, θy) = − t

Nx∑
m=1

Ny∑
n=1

e−iθxδm,Nx c†
m+1,ncm,n

− t

Nx∑
m=1

Ny∑
n=1

e−2πiφm e−iθyδn,Ny c†
m,n+1cm,n

+ h.c.,
(10)

with twisted boundary θx in x-direction and θy in y-
direction. Nx/y is the number of sites in x/y-direction.
We will always consider Nx/q ∈ N, unless stated other-
wise. This choice automatically satisfies the quantization
condition that the total flux through all of the plaquettes
can only be zero modulo 2π, as sources of magnetic flux
may only emit integer multiples of Φ0 [8, 44]. Impor-

Figure 1. Toroidal lattice geometry of a finite cluster in
real space with two fluxes corresponding to twisted boundary
conditions θx and θy through the non-contractable loops of
the torus. A translation in y-direction relates the loops L1
and L2 to each other. Their Aharonov-Bohm phases differ by
the flux 2πφNx through the surface between the two loops.

tantly, a tight-binding Hamiltonian of the form of Eq. (10)
is not translation invariant for arbitrary Nx, Ny. Let the
Aharonov-Bohm phase around a non-contractable loop
L2 in x-direction for fixed n be

Nx∑
m=1

ϕ(m+1,n),(m,n) = θx. (11)
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Around a similar loop L1 for fixed n − 1 we identify

Nx∑
m=1

ϕ(m+1,n−1),(m,n−1) =
Nx∑

m=1

(
ϕ(m+1,n−1),(m,n−1)

+ ϕ(m+1,n),(m+1,n−1) + ϕ(m,n),(m+1,n) + ϕ(m,n−1),(m,n)
)

+
Nx∑

m=1
ϕ(m+1,n),(m,n) = 2πφNx + θx,

(12)
where we have used ϕR′,R = −ϕR,R′ . Note that the first
four terms in between the equal signs generate a loop
around a plaquette with flux φ. We see that generically
the magnetic field piercing the torus also contributes to
the phase, see Fig. 1. The loop defined in Eq. (12) is
only equal to θx modulo 2π, if Nx is an integer multiple
of q. For Ny an analogous condition for closed loops
with fixed m holds. Consequently, under translation the
Hamiltonian transforms as [45]

T̂ M
x Ĥ(θx, θy)

(
T̂ M
x

)†
=Ĥ(θx, θy − 2πφNy)

T̂ M
y Ĥ(θx, θy)

(
T̂ M
y

)†
=Ĥ(θx + 2πφNx, θy), (13)

so the system is only translation invariant if Nx and Ny

are integer multiples of q [8, 9].

C. Constraints imposed by the LSM-type theorem
on the Hall conductivity

It is possible to define a many-body Chern number of
the ground state |Ψ(θx, θy)⟩ with the Berry connection
A = i⟨Ψ(θx, θy)|∇θ|Ψ(θx, θy)⟩), which is related to the
Hall-conductivity by Laughlin’s gauge invariance argu-
ment [22]. This Chern number is also well defined upon
adding arbitrary interactions to the Hamiltonian as long
as an energy gap separates the ground state manifold
from excitations for all twist angles. A natural question
that arises is whether it is possible to generalize Eq. (1)
to many-body systems. In the context of the generalized
LSM theorem it can be shown that [31–33]

e2πi( p
q Cmany-body−ρ) = 1 (14)

with the many-body Chern number Cmany-body. This
holds provided that a given twist angle combination
(θx, θy) is mapped to q different twist angles under transla-
tion and the system has a unique ground state for each θ
(see Appendix A). In the following we will refer to Eq. (14)
as the LSM-type theorem. Clusters, where the LSM-type
theorem strictly holds are those where the Hamiltonian
Ĥ(θx, θy) is transformed into q different Ĥ(θ′

x, θ′
y) under

translation. We will call these clusters LSM-clusters. On
the other hand, if the Hamiltonian is left invariant under
translation, we will speak of a non-LSM cluster. Naturally,
every cluster containing cxq × cyq lattice sites (cx, cy ∈ N)
is a non-LSM cluster as a consequence of Eq. (13), but can

be made into a LSM cluster by adding one row either in
x- or y-direction. It is important to realize that Eq. (14)
cannot be proven for non-LSM clusters, even though it is
to be expected that observables such as the Hall conduc-
tivity should not change in a significant way by adding
a single row in x- or y-direction when approaching the
thermodynamic limit.

Interaction terms, such as nearest-neighbor or long-
range Coulomb interaction, do not affect the translation
invariance of the Hamiltonian. Therefore, one may not
anticipate interaction-driven topological phase transitions
from a non-trivial Chern insulating to a trivial insulating
phase because of the LSM-type theorem Eq. (14). On
the other hand, sufficiently large Coulomb interaction is
expected to induce localized charge ordered phases such
as Wigner-crystal or CDW states [23, 46, 47] that have
zero Hall conductivity. In Sec. III and IV we will provide
numerical evidence for the intuitive claim that long-range
interaction drives the system into a topologically trivial
CDW state, before rigorously discussing in Sec. V how
SSB of translation invariance leads to a breakdown of the
constraint on the Hall conductivity given by the LSM-type
theorem.

III. TOPOLOGICAL PHASE DIAGRAM OF THE
INTERACTING HOFSTADTER MODEL FOR

HALF-INTEGER FLUX QUANTA

X M  
3

2

1

0

1

2

3

E/
t kx

ky

X

M

Figure 2. Band spectrum of the t-t′–Hofstadter model for
φ = 1/2 along the high symmetry path Γ(0, 0) → X(π/q, 0) →
M(π/q, π/q) → Γ(0, 0) of the magnetic wallpaper group
p4m′m′. The choice of hopping parameters of t = 1 = 2t′ re-
sults in a relatively flat band structure, mimicking the physics
of Landau levels. The single-particle energy gap is exactly
equal to 4t.

The non-interacting nearest-neighbor (NN) Hofstadter
model with φ = 1/2 has symmetry-protected Dirac cones
due to time reversal invariance (TRI) [48, 49] because
every closed loop contains an integer multiple of π fluxes.

We include next-nearest-neighbor (NNN) hoppings to
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break TRI,

Ĥ =
Nx∑

m=1

Ny∑
n=1

{
−t e−iθxδm,Nx c†

m+1,ncm,n

− t e−iθyδn,Ny e−πmi c†
m,n+1cm,n

− t′ e−iθxδm,Nx e−iθyδn,Ny e−π(m+1/2)i c†
m+1,n+1cm,n

−t′ e−iθxδm,Nx eiθyδ1,Nx eπ(m+1/2)i c†
m+1,n−1cm,n

}
+ h.c.

(15)
where the Peierls phases are again determined with Eq. (2)
in Landau gauge. We set t = 1 = 2t′. The band structure
and Brillouin zone are shown in Fig. 2. The energetically
lower band of the single-particle band structure has a
Chern number of C = 1, in agreement with Eq. (1). We
include nearest-neighbor Coulomb interactions:

Ĥint(V ) = V

Nx∑
m=1

Ny∑
n=1

(n̂m,nn̂m+1,n + n̂m,nn̂m,n+1). (16)

that drive the Chern insulating phase into a trivial insu-
lating phase. In the limit V ≫ t we expect at half-filling a
CDW-phase. If we imagine the cluster to be in a checker-
board structure, then the two ground state wave functions
will be a product state of all particles being localized at
“black” or “white” squares, instead of the delocalized Wan-
nier functions of a Chern insulator. The charge order is
indicated by the static structure factor

S(K) = 1
(NxNy)2

∑
r,r′

e−iK(r−r′)⟨n̂rn̂r′⟩ (17)

which for a checkerboard pattern will have a peak at
K = (π, π), whereas S(K) approaches zero at other K.
In addition, quantum phase transitions of interacting
systems are indicated by the fidelity metric [50–52]

g(V, δV ) = 2
NxNy

1 − |⟨Ψ0(V )|Ψ0(V + δV )⟩|
(δV )2 , (18)

where in our case |Ψ(V )⟩ is the ground state of Ĥ +
Ĥint(V ). In the vicinity of a critical point one expects a
peak of the fidelity metric, irrespective of whether a pos-
sible order parameter is commensurable with the chosen
cluster. Instead of the fidelity metric given in Eq. (18)
we evaluate the negative second derivative of the ground
state energy with respect to V , which is closely related
to the fidelity metric [50, 51] and provides qualitatively
the same information, but is numerically less costly to
evaluate:

χE(V ) = −d2E0(V )
dV 2 . (19)

The topology of the ground state(s) can also change con-
comitantly with a CDW phase transition [23]. Whereas
the phase transition to the CDW-phase can occur due to

an avoided crossing of ground states with a different order
parameter, a topological phase transition must have a
level crossing at some twist angle θ. The Chern number is
expected to change from 1 in the Chern insulating phase
to 0 in the CDW-phase at high V . It is then possible to
focus on the rotation eigenvalues at the three high sym-
metry points (θx, θy) = (0, 0), (π, π) and (0, π) (which by
C4 symmetry is related to the point at (π, 0)), where the
level-crossing must occur [23]. This is the case because
the Chern number is given modulo 4 by the eigenvalues
of the rotation operators [33]:

e− πiC
2 = W

(0,0)
C+

4
W

(π,π)
C+

4
W

(0,π)
C2

(20)

with

W
(θx,θy)
Cn

= ⟨Ψ(θx, θy)|Cn|Ψ(θx, θy)⟩ (21)

and the rotation operators (for arbitrary flux φ) defined
by

C+
4 c†

m,n

(
C+

4
)† = ei(2πφmn−2πφ(Nx+1)m+ πφ

2 (Nx+1)2)

c†
−n+Nx+1,m

(22)
(with Nx = Ny) and

C2c†
m,nC†

2 = ei(2πφn(Nx+1)−πφ(Nx+1)(Ny+1))

c†
−m+Nx+1,−n+Ny+1.

(23)

Note that in this form (C+
4 )4 = 11 = C2

2 . A gauge transfor-
mation has to be added to the pure rotation because we do
not use a gauge with a rotation-symmetric vector poten-
tial for the Hamiltonian: it cannot be defined for certain
cluster geometries such as q ×q clusters. For the following
calculations for non-LSM clusters the Hamiltonian Ĥ(θ),
Eq. (15), will be considered, however exclusively in the
regime of twist angles θ where the change of the symmetry
eigenvalue and hence the level crossing is identified.

We first display calculations for Nx × Ny clusters of
the Hamiltonian in Eq. (15), where both Nx and Ny are
multiples of q = 2. These clusters are non-LSM clusters,
so they are technically not constrained by Eq. (14) and the
θ-dependence of an eigenstate can yield a trivial Chern
number. Note that these clusters are also compatible
with the checkerboard pattern CDW. In Fig. 3 we display
calculations of a C4-symmetric cluster with 4 × 4 sites
at θ = (0, 0) using an implicit restarted Arnoldi method
implemented in Arpackpp. The phase transition from the
Hall insulating to the CDW-state is clearly indicated by
a jump in the CDW structure factor and a peak in χE(V )
at V = 2.068 ± 0.04. In the CDW-phase, the system has
a quasi-degenerate (= degenerate up to some finite size
splitting) twofold ground state, corresponding to the two
possible charge-density-wave patterns with a small finite
size gap. The symmetry eigenvalue W

(0,0)
C4

of the lower
energy ground state changes from −i to 1, which indicates
a Chern-trivial phase of the ground state according to
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Figure 3. ED of a 4 × 4 cluster. (a) Static structure factor
SCDW at K = (π, π) corresponding to a checkerboard pattern.
(b) Energy of the ground state E0 and first two excited states
(E1, E2). (c) Energy gap between E0 and (E1, E2). (d) Second
derivative of E0 as a function of the interaction strength V/t.
The interaction strength is varied in steps δV = 4/1000. The
IQHE and CDW phases are displayed in white and blue,
respectively.

Eq. (20). We verified the absence of accidental crossings
for different twist angles in the CDW phase, which ensures
that the many-body Chern number of the lower energy
ground state is well defined.

To take into account finite-size effects, calculations on
a 4 × 6 cluster have also been performed. Note that
this cluster breaks C4 rotation symmetry, so instead of
Eq. (20) the many-body Chern number is determined
with

eπiC = W
(0,0)
C2

W
(0,π)
C2

W
(π,0)
C2

W
(π,π)
C2

. (24)

There is no qualitative difference in the results of these
calculations compared to those shown in Fig. 3. The
phase transition occurs at V = 2.078 ± 0.003 and is again
accompanied by a change of the Chern number of the
ground state, given by the symmetry indicator in Eq. (24).

Next we consider a 4 × 5 cluster, which is an LSM
cluster as Ny is an odd number. The Hamiltonian now
transforms under translation, according to Eq. (13), as

T̂ M
x Ĥ(θx, θy)

(
T̂ M
x

)†
= Ĥ(θx, θy + π). (25)

As a result, any single state with an energy gap for all twist
angles must have a non-trivial Chern number according

to Eq. (14). In addition, the ground state degeneracy of
the CDW-phase increases, as a checkerboard pattern is
not commensurable with the lattice dimensions anymore.
In the limit of t → 0, V = 1 there is a tenfold ground
state degeneracy with an excitation gap of V . This can be
understood from the fact that the reciprocal lattice vector
K = (π, π) is not in the reciprocal lattice of clusters for
odd Ny.

}
C ≠ 0
C ≠ 0

C = 0

ΔE

En
er

gy

C ≠ 0

ΔE

(a) Hall Insulator
(b) Trivial Insulator

(a) Hall Insulator
(b) Trivial Insulator

Figure 4. Ground state and ground state quasidegeneracy of
a (a) Hall insulating versus (b) trivial insulating state. In the
trivial insulating state, each gapped quasidegenerate ground
state possesses a nontrivial Chern number. In both cases the
ground state(s) have to be separated by some energy gap ∆E
from excitations.

How does the phase transition occur and can we still
speak of a topological phase transition? The system
is driven into the CDW by an avoided crossing, where
the nondegenerate Hall insulating state turns into ten
quasidegenerate CDW states. The system undergoing an
avoided crossing instead of a level crossing is symmetry
protected by the LSM-type theorem. For larger LSM
clusters, the discontinuous nature of the phase transition
that is evident for the non-LSM clusters studied before
will become more apparent. While it is true that the
lowest energy ground state and the other quasidegenerate
states (assuming that they are all gapped with respect
to each other) are individually topologically non-trivial,
the sum of their Chern numbers must be equal to zero as
they are adiabatically connected to Chern-trivial states
at t → 0, V = 1. This situation is displayed in Fig. 4. In
this sense the phase transition is still topological, which
will be discussed much more carefully in Sec. V.

Calculations are shown in Fig. 5. Since the LSM-
type theorem prohibits a topological phase transition
of the lowest energy ground state, there is no obvious
choice for a particular twist angle θ anymore. We pick
θ = (0, −πφNy), where the Hamiltonian is at least C2
invariant. The phase transition is still indicated by a peak
of χE(V ) at V = 2.71±0.01, although due to strong finite
size effects and the cluster not being commensurable to
the CDW order, it appears broad on the logarithmic scale.
It should be noted that even at V = 10 there are still con-
siderable energy gaps between the three quasi-degenerate
ground states. This can be understood by considering
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Figure 5. ED of a 4 × 5 cluster. (a) Energy of the ground
state E0 and first two excited states (E1, E2). (b) Energy
gap between E0 and (E1, E2). (c) Second derivative of E0 as
a function of the interaction strength V/t. The interaction
strength is varied in steps δV = 4/1000. The IQHE and CDW
phases are displayed in white and blue, respectively. The two
images correspond to two orthogonal states that minimize Ĥint
and that are related to each other by two virtual hoppings.

perturbation theory. The two ground states of a commen-
surate cluster are related by Ne virtual hoppings with
an amplitude of t/V , whereas in a non-commensurate
cluster hybridization between some of the ground states
will approximately take

√
ρNe virtual hoppings, as the

CDW order is incommensurable with the lattice geometry
by one row, leading to a much larger splitting between
the lowest energy levels.

In Fig. 6 we display calculations of the CDW structure
factor at all K points corresponding to the 4 × 5 clus-
ter. Since K = (π, π) is no longer contained, the CDW
structure factor for V = ∞ shows a peak at Kx = π,
Ky = ±4π/5 of SCDW(K) = 0.082(6). While charge
order is clearly indicated at large V , SCDW(K) grows
muchs slower than in the commensurate non-LSM clusters
studied before. Some order does emerge after the phase
transition at V = 4 indicated by SCDW(K) = 0.045(9)
compared to V = 2 with SCDW(K) = 0.025(4), however
even at V = 20 one finds SCDW(K) = 0.053(6), which is
still far away from the value at t = 0, V = 1.

Comparing our results from the non-LSM clusters with
the LSM cluster, the discontinuous phase transition into
a topologically trivial CDW phase is less clear indicated
in the LSM cluster, as the level crossings in the non-LSM

clusters lead to a jump of the CDW structure factor and
a change of the lowest energy ground state topology. In
comparison, the avoided level crossing with continuous
S(K) and χE of the LSM cluster makes the identification
of phase boundaries more challenging, as well as the fact
that the change in the topology of the system can only
be described by considering all quasidegenerate ground
states together.

We close this section by appending a comment on the
interplay between the topological phase transition of the
ground state wave function, the CDW transition and the
symmetries of the cluster. Using ED calculations, it is
possible to map out the phase boundaries at zero temper-
ature of the Hamiltonian with respect to some parameter
using the lowest energy ground state. The topological
phase transition may then not occur at the same pa-
rameter as the CDW transition transition solely due to
finite size effects; in particular this is often caused by the
cluster not having the same symmetries as the infinite
plane [23, 24]. In our case there will be no topological
phase transition of the lowest energy ground state wave
function at all for LSM-clusters, where the Hamiltonian
does not commute with the translation operator, while
we found perfect overlap between both transitions for
non-LSM clusters. We have already argued that for the
characterization of the topological phase transition one
has to consider the topology of all quasidegenerate ground
states, instead of the lowest energy one. On non-LSM
clusters however, the topological phase transition is also
accompanied, by a topological phase transition of the low-
est energy ground state by a level crossing. One arrives
therefore at the seemingly paradoxical but by no means
contradictory result that in the case of actual translation
invariance, the Chern number of the ground state is not
constrained by the LSM-type theorem, whereas in the
other cases the LSM-type theorem is strictly valid and
one finds a topological phase—that however is protected
only by a finite size gap.

IV. TOPOLOGICAL PHASE TRANSITIONS FOR
VARIOUS FLUX QUANTUM RATIOS

We want to complete the numerical study of Sec. III
and inquire the possibility of topological phase transitions
of the Hofstadter model for flux quantum ratios φ ̸= 1/2
and particle densities ρ ̸= 1/2 that can still be explored
within the limits of ED. In contrast to other methods, ED
has the advantage that the aforementioned influence of
the cluster geometry on the validity of the LSM constraint
can be inquired; in addition, a mean-field ansatz is difficult
to implement for band fillings other than 1/2, where the
order parameter is unknown. This is already an issue on
the honeycomb lattice [53], but especially problematic on
the square lattice.

In the following, the Hamiltonian is always of the form

Ĥ = Ĥ(θ) + Ĥint(V ), (26)
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(a) (b) (c)

Figure 6. Static structure factor of the Hofstadter Model on a 4 × 5 cluster at (a) V = 2, (b) V = 4 and (c) V = ∞.
Corresponding to the cluster dimensions, the wave vectors of the reciprocal lattice are given by Kx = −π, −π/2, . . . , π/2 and
Ky = −4π/5, −2π/5, . . . , 4π/5.

where Ĥ(θ) has been defined in Eq. (10). NNN-hopping
is not included as NN-hopping is sufficient to break TRI.
Here Ĥint(V ) provides the long-range Coulomb interaction

Ĥint(V ) =
Nx∑

m≤m′=1

Ny∑
n≤n′=1

V

rmin
n̂m,nn̂m′,n′ (27)

where rmin is taken to be the smallest distance on the
torus geometry. The interaction range is now truly long
range and decays like 1/r, in contrast to Eq. (16), where
nearest neighbor Coulomb interaction was considered to
be sufficient to obtain a CDW at half filling.

We perform calculations for the flux quantum ratios
p/q = 1/5 and p/q = 2/5 with a particle density corre-
sponding to both one or two occupied Hofstadter bands.
The critical interaction strengths for each flux quantum
ratio and number of particles as well as the single particle
gap ∆E of the non-interacting band structure is displayed
in Tab. I. As a general trend, smaller single particle band-
widths correspond to smaller Vcrit. Plots of the single
particle band structures are presented in Appendix B.

Plots for the static structure factors are provided in
Appendix C for the closest numerically evaluated interac-
tion strengths before and after the phase transition into
the CDW regime. The onset of charge order is clearly
indicated by the jump of SCDW as several K values. In
addition, for clusters with ρ = 2/5 we observe a breaking
of C4 rotation symmetry.

p/q Ne Nx × Ny ∆E Vcrit

1/5 5 5 × 5 1.553699 22.652 ± 0.002
1/5 10 5 × 5 0.520147 4.7875 ± 0.0125
2/5 5 5 × 5 0.157179 4.918 ± 0.002
2/5 10 5 × 5 1.539145 17.775 ± 0.025

Table I. Critical interaction strengths Vcrit and single-particle
band gaps ∆E for varying flux quanta, particle numbers and
lattice dimensions. The particle number Ne always corre-
sponds to an integer filling of non-interacting bands.

V. SPONTANEOUS TRANSLATION
INVARIANCE BREAKING

In view of the previous numerical results, in this section
we want to inquire the relation between spontaneous
translation symmetry breaking and the topological phase
transition from Chern to trivial insulators with magnetic
translation symmetry more rigorously, aware that the
LSM-type theorem is a non-perturbative result. It is clear
that for macroscopically large systems, the physics behind
the phase transition cannot change in a meaningful way
depending on the specific cluster geometry. Nevertheless,
in the following argumentation we will have to carefully
distinguish between LSM and non-LSM clusters, by virtue
of the fact that some properties are only mathematically
well-defined in one or the other. An example is the LSM-
type theorem itself, which only strictly holds for LSM
geometries. Nonetheless, the physical relevance of these
properties has to be the same in the thermodynamic limit,
independent of the lattice geometry.

We start by considering integer fillings—that is an
integer number of Hofstadter bands are occupied. These
cases have been investigated numerically in this work.
Then we continue with the consideration of fractional
fillings and the differences between lattice and continuum
models in this context. For convenience, when translation
symmetry is addressed, we always have the magnetic
translation operator T̂ M

a in mind unless stated otherwise.

A. Integer quantum Hall effect

The formation of a CDW phase for a translation invari-
ant Hamiltonian requires spontaneous symmetry breaking
of translation invariance. In the thermodynamic limit,
the Hamiltonian will obtain a set of degenerate ground
states. The wave function that describes a real sample
(at zero temperature) will be a superposition of these
ground states that breaks translation symmetry. In com-
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pliance with our numerical calculations we want to un-
derstand this mechanism and its physical implications on
the LSM-type theorem now for possibly macroscopic sys-
tems, but still of finite size. We need to understand why
quasidegeneracy is essential for the phase transition into
a topologically trivial insulating state and why its origin
must be given by the spontaneous breaking of translation
symmetry as opposed to some other cause.

On non-LSM clusters, i.e. clusters where the magnetic
translation operators commute with the Hamiltonian,
spontaneous breaking of translation symmetry must be
accompanied by a set of quasi-degenerate ground states
that are eigenstates of the translation operators with
different crystalline momenta K. While the different non-
degenerate eigenstates (in particular the ground states) of
the Hamiltonian are naturally eigenstates of the transla-
tion operator for these finite size clusters, a superposition
of states belonging to different K breaks translation in-
variance.

Why does the ground state wave function of a real
sample break translation symmetry? In the following we
will assume that the symmetry breaking phase also has a
local order parameter, such as the varying charge density.
Then the macroscopic wave function will collapse upon
any measurement of the local order parameter into one of
the symmetry broken states. The system is trapped in the
symmetry broken state due to ergodicity breaking [54].
A flux insertion to measure the Hall conductivity within
the linear response regime is too small a perturbation
to let the system tunnel into another ground state, in
particular if the broken symmetry is discrete. Note that
this argument relies on the existence of a local order
parameter, a point to which we will come back to in the
next subsection.

We have seen that the CDW phase comes with a
quasidegenerate ground state spectrum and a translation
symmetry breaking state best describes the real system.
How is this connected to topology? On non-LSM clusters
Eq. (14) does not strictly hold anymore. This manifests
itself in the fact that in that case it is possible to have
gapped eigenstates of Ĥ(θ) for all twist angles θ with a
trivial many-body Chern number, which justified the use
of symmetry-indicators to detect the topological phase
transition in Sec. III. Is a ground state quasi-degeneracy
then required to set up a topologically trivial phase and
does it have to be related to spontaneous symmetry break-
ing?

Let us first address the question of degeneracy. In the
case of LSM clusters they must have a quasi-degeneracy of
a multiple of q according to Eq. (14), if they are supposed
to belong to a trivial insulating phase, otherwise the sum
of the Chern numbers of the ground states could not be
zero and the ground states would not be adiabatically
connected to localized, hence topologically trivial CDW
states. On non-LSM clusters that have no long-range
structure of period q [55] one expects to find the same
quasi-degeneracy [29]. If the physical origin of the quasi-
degeneracy is the formation of a CDW, then the number

of ground states may only change depending on whether
the CDW pattern is commensurable with the given cluster
as we have seen in Sec. III. However, the very presence of
many ground states must pertain to all possible impurity-
free clusters.

Why is the degeneracy a multiple of q for non-LSM
clusters? Consider mean-field theory: if the formation of
a CDW is modeled by an on-site potential of an effective
single-particle Hamiltonian, then the unit cell of the ef-
fective Hamiltonian must contain an integer multiple of
a flux quantum for the single particle band structure to
be topologically trivial according to Eq. (1). This is only
possible if it contains a multiple of q original unit cells
plaquettes resulting in an integer multiple of q different
possible positions of the on-site potential and hence an
integer multiple of q different ground states. Note that
one considers different mean-field Hamiltonians for a sin-
gle Hamiltonian of the many-body system. The ground
states are degenerate, as the different mean-field Hamil-
tonians are equivalent to each other under translation on
non-LSM clusters.

We have argued, why a quasi-degeneracy of ground
states in a translation invariant Hamiltonian in an ex-
ternal magnetic field is essential to have a trivial Hall
conductivity. Why is the spontaneous breaking of the
translation symmetry the origin of the quasi-degeneracy
in a topologically trivial phase? An example for a differ-
ent discrete symmetry that may be broken spontaneously
is TRI, which can in principle occur at a flux quantum
ratio of p/q = 1/2, where the Hamiltonian commutes with
the TR operation if one only includes nearest neighbor
hoppings in the Hamiltonian. In case of spontaneous TRI
breaking, the Hamiltonian would have two time reversal
partners as ground states that do not have to break trans-
lation symmetry. In Ref. [31], Eq. (14) is argued to hold
in the thermodynamic limit if the ground state is an eigen-
state of the magnetic translation operator. If translation
maps a flux (associated to some twist angle) to a different
flux according to Eq. (13), then ground states possess
an effective translation symmetry, expressed through the
modified translation operator

˜̂
T M
x = F̂y(2πφNy)T̂ M

x , (28)

where F̂y(2πφNy) is a flux insertion to exactly compen-
sate the change of Aharonov-Bohm phases around non-
contractable loops of the given cluster. Let us pick one
of the two time reversal partners. Under the tacit as-
sumption that this state cannot transform into its part-
ner by translation or adiabatic flux insertion, the Hall-
conductivity would then still be quantized to non-zero
values, as the effective translation symmetry maps the
state onto itself. A topologically trivial phase hence re-
quires SSB of translation symmetry.

We want to provide a final proof, why the Hall con-
ductivity for sufficiently strong long-range interaction has
to be trivial, independent of the filling factor, lattice ge-
ometry and underlying tight-binding Hamiltonian. In
the limit of infinitely strong interaction strength, ground
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states must minimize ⟨Ĥint⟩. The set of ground states
will then only consist of charge-ordered states |Ψ̃i⟩ that
do not hybridize with respect to the tight-binding Hamil-
tonian, i.e. ⟨Ψ̃i|Ĥ|Ψ̃j⟩ = 0, as going from one state to the
other would require multiple fermions to hop to a different
lattice site, provided the interaction is long ranged. As
a consequence, ground states will not be affected by a
flux insertion so that only zero Hall transport is possible.
Finite t/V ≪ 1 leads to negligible corrections; in the case
of φ = 1/2 = ρ and non-LSM clusters, for example, these
are of the order of O(t/V )Ne .

B. Fractional quantum Hall effect

We now discuss the more general case of fractional
fillings, in particular the fractional quantum Hall effect
(FQHE). Here, a genuine many-body treatment is in-
evitable as the presence of quasiparticles in a topologi-
cally ordered system does not permit the usual mean-field
ansatz [56]. In contrast to integer fillings, ground state
degeneracy is enforced by the generalized LSM theorem
in the fractional Hall insulating phase and the LSM-type
theorem becomes [33]

e2πi( p
q C−ρ)D = 1, (29)

with qρ = m̄/D and coprime m̄, D, where D is equal to
the ground state degeneracy and C, which is now to be
interpreted as the Chern number per ground state, is a
rational fraction of D. We will argue why the characteris-
tic topological properties of these ground states, among
others the LSM-type theorem Eq. (29), are protected by
magnetic translation symmetry before arguing why CDW
states are trivial nevertheless.

One of the hallmarks of the FQHE is topological order
that manifests itself on a torus geometry as ground state
degeneracy due to the presence of quasiparticles in the
thermodynamic limit [57]. The number of ground states
is independent of the chosen cluster as its origin lies in
the quasiparticle statistics and not in some long-range
structure in real space. For the calculation of the Hall
conductivity, the joint Chern number of all ground states
has to be computed, in contrast to the integer filling
states in Sec. V A, where we argued that a flux insertion
should be seen as a small perturbation that does not
allow a ground state to tunnel into a different ground
state. However, in the case of the FQHE, the different
ground states have to transform into each other under
flux insertion as argued in [57, 58] from a field-theoretic
perspective. Let

˜̂
Fx/y(Φ0) (30)

be a combination of a flux insertion operation of Φ0 and a
gauge transformation (see Eq. (D5)) that maps a ground
state to another ground state. Then

˜̂
Fx(Φ0) ˜̂

Fy(Φ0) ∼= e−2πi/D ˜̂
Fy(Φ0) ˜̂

Fx(Φ0). (31)

The symbol ∼= restricts Eq. (31) to the ground state sub-
space. Eq. (31) implies at least D ground states as the
flux insertion operators obey the same algebra as mag-
netic translation operators. This transformation behavior
as well as the ground state degeneracy [59] can be proven
exactly for some non-LSM clusters as demonstrated in
Appendix D, even though, similarly to the generalized
LSM theorem and LSM-type theorem, there are some
technicalities depending on the chosen cluster. In partic-
ular, as any stable exact degeneracy has to be symmetry
protected, Eq. (31) strictly holds only if the topologically
degenerate ground states (that is degenerate in the ther-
modynamic limit even in the presence of impurities or
lattice potential [58]) are related by magnetic translation
symmetry (see Eq. (D2) and Eq. (D3)). Otherwise finite
size splittings lead to a change of the algebra in Eq. (31),
provided the adiabatic flux insertion is slow compared
to finite size gaps, which is not an issue in the thermo-
dynamic limit. Since the different states transform into
each other, when inserting flux to measure the Hall con-
ductivity, the contribution of all ground states has to be
summed.

What happens in the CDW phase regime? In the limit
t → 0, V = 1 it is clear that CDW states don’t transform
under a flux insertion and should hence be eigenstates
of both flux insertion operators, implying that the flux
insertion operators in Eq. (30) now commute. This al-
ready implies at least D2 quasi-degenerate ground states,
compared to the D ground states of the FQHE, see Ap-
pendix D. In addition, the number of ground states also
has to be an integer multiple of q, according to Eq. (29).
The quasi-degeneracy turns into sets of D exactly degen-
erate ground states if they are related by translation, as
then they transform under irreducible projective repre-
sentations DK

M of the translation group [8]. It should
be noted that these degenerate states possess different
crystalline momenta, when expressed in the eigenbasis
of either T̂ M

x or T̂ M
y . This alone, however, does not in-

dicate spontaneous symmetry breaking. In the FQHE
regime this difference in momentum is carried by quasi-
particles known as visons in the context of quantum Hall
physics [31, 60]. Instead, in the CDW phase regime there
have to be D copies of each DK

M . In the case that the
many-body translation operators commute and states
transform under the usual 1D irreducible representations
of the translation group, the symmetry protection of the
ground state degeneracy is lifted and only maintained
in the thermodynamic limit. The ground states of the
FQHE then all carry the same momentum, whereas the
CDW are again characterized by different momenta [60].

C. Continuous space

So far only lattice Hamiltonians have been considered.
We close this section by touching briefly on free interacting
particles. The absence of a periodic lattice potential
implies continuous translation invariance in the infinite
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plane. On a torus, following the argumentation leading
to Eq. (13), a twist angle θ can be transformed into any
other twist angle by a suitable translation. This property
is independent of the chosen sample dimensions so that
the LSM-type theorem always applies exactly. In fact,
translation invariance implies that the Chern numbers
of each Landau level have to be equal to one, which can
be seen in the following way. It is possible to divide a
torus, being pierced by NΦ0 unit flux quanta, into a grid
of Nc virtual plaquettes with a flux of p/q flux quanta
per plaquette, so that NΦ0 = Ncp/q. A filling factor of
nLL occupied Landau levels leads to an average particle
density of

ρ = NΦ0nLL

Nc
= p

q
nLL. (32)

particles per virtual plaquette With coprime p, q and
according to Eq. (14) this immediately implies that

C − nLL = 0 mod q. (33)

Since this argument is independent of the partition of the
torus, Eq. (33) has to hold for all q, leading to C = nLL.

At sufficiently large long-range interactions, a quantum
Hall system can be expected to be driven into a Wigner
crystal phase with zero Hall conductance [61]. In case
the classical Wigner lattice does not contain an integer
number of flux quanta, even in the limit of strong coulomb
interaction, finite kinetic energy may cause the electrons
to condense into stripe or bubble patterns that may lead to
further reduction of translation symmetry [62, 63]. From
the previous paragraph it follows that either the number
of ground states would have to be infinite which can be
ruled out for finite clusters or there has to be a gapless
excitation spectrum. This is realized, at least in the low
energy sector, by Goldstone modes as a consequence of
the breakdown of continuous translation symmetry: in
a Wigner crystal electrons order periodically and hence
possess gapless phonon-like excitations [64]. The stability
of such a charge ordering in the case of free particles
depends on the electrons being subject to a long-range
interaction (especially at finite temperature, where long
range interaction provides a loophole of the Hohenberg-
Mermin-Wagner theorem [65]). Indeed, in the case of
the FQHE sufficiently short ranged interaction actually
stabilizes the incompressible quantum Hall liquid state [66,
67].

It should also be noted that the breakdown of transla-
tion invariance is a necessary but no sufficient criterium
for a trivial Hall conducting phase. Nonzero Hall con-
ductivity may coexist with electrons forming crystalline
order [61] and can be caused by collective excitations,
which is backed by experimental data [68–70].

VI. CONCLUSION AND OUTLOOK

In this paper we have studied topological phase transi-
tions of the interacting Hofstadter model from a Chern

insulating to a trivially insulating charge-density-wave
phase for various flux quantum ratios and particle num-
bers. The constraint on the quantization of the Hall con-
ductivity due to Lieb-Schultz-Mattis (LSM) type theorem,
depending on translation symmetry that in particular rule
out a Chern-trivial phase, is circumvented via spontaneous
breaking of translation symmetry driven by long-range
interaction. Qualitative differences between the inquired
cluster geometries emerge depending on whether they
have to strictly obey the LSM type theorem. On a large
class of clusters the topological phase transition occurs
via a symmetry protected level crossing with a jump of
the charge density wave structure factor indicating a dis-
continuous phase transition into a topologically trivial
CDW phase. Only on a specific set of cluster geometries it
is seen that a topologically non-trivial phase is protected
by a finite size gap which however quickly goes to zero in
the thermodynamic limit.

For future studies, it would be interesting to inquire
interacting quantum spin Hall phases subject to half inte-
ger flux quanta, where LSM-type theorems also impose a
constraint on the Z2 invariant [71], in particular it is far
less clear, whether a finite size gap can stabilize a genuine
topological many-body phase, as the definition of the Z2
invariant often relies on field-theoretic arguments or a
Schmidt decomposition which can be problematic in the
case of quasi-degeneracy. A tool that may be more suited
to study SSB for larger systems, even though the subtleties
of the lattice geometry may be lost, is DMRG, where the
obtained ground state usually spontaneously breaks sym-
metries, if the true ground state is quasi-degenerate [72].
Finally, while the present study focuses on the Hofstadter
Hamiltonian as a popular toy model, in particular in the
study of cold-atom gases [16], our results may also be
of value for quantum Hall phases in Moiré superlattices,
where the flux quantum per unit cell can be of the order
of a unit flux quantum [73, 74].
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Appendix A: Proof of the Hall conductivity
constraint

Here we outline how to deduce Eq. (1) and its many-
body generalization. The Chern number of Bloch states
|Ψn(k)⟩ occupying a gapped band is given by

Cn = − 1
2π

∫
BZ

dS∇k × An(k) (A1)
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with the Berry connection

An(k) = i⟨Ψn(k)|∇k|Ψn(k)⟩. (A2)

It is possible to rewrite Eq. (A1) using Stokes’ theorem as
a line integral over the boundary of the Brillouin zone [38].
Then the wave function must be chosen to be smooth over
the entire Brillouin zone but cannot satisfy the boundary
condition of the Brillouin zone, if it has a non-zero Chern
number. For the Bloch states defined in the leadup to
Eq. (8) we can define a smooth gauge with the boundary
conditions

|kx + 2π/q, ky⟩ = |kx, ky⟩
|kx, ky + 2π⟩ = e−iqCkx |kx, ky⟩. (A3)

Furthermore, we specify the wave functions to satisfy [7]

T̂ M
x |kx, ky⟩ = e−itkxq |kx, ky − 2πφ⟩, (A4)

where the integer t will be model specific (in the case of
the Hofstadter model with only nearest neighbor hopping,
they are given by a specific Diophantine equation [38] as
a special case of Eq. (1)). We then identify

e−iqkx |kx, ky⟩ =
(
T M
x

)q |kx, ky⟩ = e−itkxq2
|kx, ky − 2πp⟩

= e−itkxq2−iCpqkx |kx, ky⟩,
(A5)

leading to

Cφ − 1
q

= 0 mod 1. (A6)

If we don’t occupy a single band, but many bands with a
number of particles per unit cell ρ, then Eq. (1) follows.

For many-body systems, Eq. (14) can be shown analo-
gously [33]. The only major difference is that the many-
body translation operators technically depend on twist
angles resulting in some additional gauge transformations
in the proof. For example,

T̂ M,θx
x c†

m,n

(
T̂ M,θx
x

)†
= e−iθxδm,Nx e−2πiφn c†

m+1,n

T̂
M,θy
y c†

m,n

(
T̂

M,θy
y

)†
= e−iθyδn,Ny c†

m,n+1 (A7)

commute with the Hofstadter Hamiltonian in Eq. (10),
provided Nx/y are integer multiples of q. In addition,
while for single particles on the infinite plane one can pick
any (

T̂ M
x

)α

,
(

T̂ M
y

)β

(A8)

with αβ = q to define a set of Bloch vectors (where for
convenience one choses α = q, β = 1), in the many-
body case the translations that map one twist angle to
another one are determined by the cluster geometry. If
translations in the x-direction result according to Eq. (13)
in α′ different twist angles and translations in the y-
direction result in β′ different twist angles, then Eq. (14)
follows if α′β′ = q. Otherwise for α′β′ < q one obtains
a weaker quantization condition or none in the case of
α′ = β′ = 1.

Appendix B: Single-particle band structures

The single particle band structures of the Hofstadter
model are displayed in Fig. 7 along the high symmetry
path Γ(0, 0) → X(π/q, 0) → M(π/q, π/q) → Γ(0, 0) of
the magnetic wallpaper group p4m′m′.

Appendix C: Static structure factors

Static structure factors of the Hofstadter model for
φ, ρ = 1/5, 2/5 are displayed in Fig. 8.

Appendix D: Ground States Under Flux Insertion

In this appendix we want to deduce Eq. (31) in the frac-
tional quantum Hall regime and discuss the consequences
for the CDW phase.

On a torus, a FQH phase has a D-fold quasi-degenerate
ground state. Let the particle density be

ρ = n

qD
, (D1)

where n and D are coprime. We consider in the following
only non-LSM clusters with Nx = nxq and Ny = nyq.
The algebra of magnetic translation operators obeys

T̂ M
x T̂ M

y = e−2πφiNe T̂ M
y T̂ M

x , (D2)

where

e−2πφiNe = e−2π p
q iNxNyρ = e−2πi pnnxny

D = e−2πi m
D (D3)

and we stipulate coprime m and D (note that this may not
always be possible depending on the flux quantum ratio
and particle number per unit cell, e.g. in the case of n = 1,
q = 7 and D = 3). As a consequence, the ground states
are exactly degenerate. Under continuous flux insertion
of a flux Φ during a time T , say, without loss of generality
in y-direction, the hoppings of the Hamiltonian change as

c†
m+1,ncm,n → c†

m+1,ncm,n e−i Φ
Φ0

1
Nx

t
T , (D4)

which is unitarily equivalent to a twisted boundary of
Φt/Φ0T . The form of Eq. (D4) has the advantage that it
leaves the Hamiltonian translation invariant, i.e.

[T̂ M
α , Ĥ(Φt/T )] = 0, (D5)

where here and in the following α will denote either x
or y. Note that the insertion of a flux quantum Φ0 does
not produce a measurable Aharonov-Bohm phase, as it
is periodic in Φ0. Consequently, Ĥ(Φ0) and Ĥ(0) are
equivalent up to a gauge transformation.

We define the so-called “large gauge transforma-
tion” [31]

Ûα = exp
(

−2πi
Lα

∑
m,n

rαc†
m,ncm,n

)
, (D6)
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Figure 7. Band spectra of the Hofstadter model for (a) φ = 1/3, (b) φ = 1/4, (c) φ = 1/5, (d) φ = 2/5, (e) φ = 1/6.

where rα is the α-component of (m, n). It is easy to
verify that Ĥ(Φ0) = ÛαĤ(0)Û†

α. We can now define the
operator

˜̂
Fα(Φ0) = Û†

αF̂α(Φ0) (D7)

with the usual flux insertion operator

F̂α(Φ) = T̂ exp
(

− i
ℏ

∫ T

0
dtĤ(Φt/T )

)
(D8)

and time ordering operator T̂ . Consequently, ˜̂
Fα(Φ0) is

to be interpreted as an operator that introduces a flux
quantum Φ0 adiabatically through the action of F̂α(Φ0)
for large enough T , and then the gauge transformation
with Û†

α converts Ĥ(Φ0) to the original Hamiltonian Ĥ(0).
Summing up, ˜̂

Fα(Φ0) maps a ground state of the Hamil-
tonian to a ground state of the Hamiltonian in the same
gauge.

In the presence of translation invariance we can say
more about the algebra of ˜̂

Fα(Φ0). If translations com-
mute with the Hamiltonian, then any translation will
commute with F̂α(Φ0); on the other hand, by defining
ᾱ = y if α = x and ᾱ = x if α = y

T̂ M
α Ûα = ÛαT̂ M

α exp (2πiρNᾱ) = ÛαT̂ M
α exp

(
2πinnᾱ

D

)
(D9)

with coprime nnᾱ and D according to Eq. (D3) and

T̂ M
α Uᾱ = UᾱT̂ M

α . (D10)

This in turn implies

T̂ M
α

˜̂
Fα(Φ0) = ˜̂

Fα(Φ0)T̂ M
α exp

(
−2πinnα

D

)
, (D11)

whereas T̂ M
α and ˜̂

Fᾱ(Φ0) commute.
Now, let |Ψ⟩ be an eigenstate of T M

y ,

T̂ M
y |Ψ⟩ = e−iKy |Ψ⟩. (D12)

Then

T̂ M
y (T̂ M

x |Ψ⟩) = e2πi m
D e−iKy (T̂ M

x |Ψ⟩), (D13)

but also

T̂ M
y ( ˜̂

Fy(Φ0)−pny |Ψ⟩) = e2πi m
D e−iKy ( ˜̂

Fy(Φ0)−pny |Ψ⟩).
(D14)

Since all D states carry a unique Ky momentum, and an
adiabatic flux insertion can only map a ground state to
another ground state, it follows that

˜̂
Fy(Φ0)−pny |Ψ⟩ ∝ T̂ M

x |Ψ⟩ (D15)

and
˜̂
Fx(Φ0)|Ψ⟩ ∝ |Ψ⟩. (D16)

Vice versa one finds in the eigenbasis of T̂ M
x

T̂ M
x ( ˜̂

Fx(Φ0)−pnx |Ψ⟩) = e2πi m
D e−iKx( ˜̂

Fx(Φ0)−pnx |Ψ⟩)
(D17)

and ˜̂
Fx(Φ0) is now diagonal. This implies a similar trans-

formation behavior between translations and flux insertion
according to

˜̂
Fy(Φ0)−pny ∼=T̂ M

x

˜̂
Fx(Φ0)−pnx ∼=

(
T̂ M
y

)†
. (D18)

As a consequence we find for the commutation relation
between the two flux insertion operators

˜̂
Fx(Φ0)pnx ˜̂

Fy(Φ0)pny = e−2πi m
D

˜̂
Fy(Φ0)pny ˜̂

Fx(Φ0)pnx

(D19)
or

˜̂
Fx(Φ0) ˜̂

Fy(Φ0) = e2πi nf
D

˜̂
Fy(Φ0) ˜̂

Fx(Φ0), (D20)

where f is some natural number coprime to D, so that
fp = 1 mod D, which exists according to Bézout’s iden-
tity.
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How do the above results change in a CDW phase? In
that case, the symmetry broken states should be eigen-
states of flux insertion operations as argued in Sec. V A,
hence

˜̂
Fα(Φ0)|Ψ⟩ = eiγα |Ψ⟩. (D21)

We can transform |Ψ⟩ into a state orthogonal to it by
translation:

˜̂
Fα(Φ0)

(
T̂ M
x

)lx
(

T̂ M
y

)ly

|Ψ⟩

= exp
(

2πinnᾱlα
D

)
eiγα

(
T̂ M
x

)lx
(

T̂ M
y

)ly

|Ψ⟩ (D22)

Therefore, there must be at least D2 orthogonal quasi-
degenerate CDW states. To be more precise, if(

T̂ M
α

)D

|Ψ⟩ ∝ |Ψ⟩, (D23)

then the CDW states transform exactly like single parti-
cles in a D × D cluster with periodic boundary conditions
and m/D flux quanta per unit cell. It is well known
that these states belong to DK=0

M , the irreducible projec-
tive representation of the translation group at K = 0.

In general K distinguishes all different possible projec-
tive representations of the translation group belonging
to a cluster, just like the well-known one-dimensional
irreducible representations of the translation group [8].
Assume

(
T̂ M

α

)Dδα

|Ψ⟩ ∝ |Ψ⟩ (D24)

with the smallest possible δα, then all of the CDW
states belong to D copies of DK

M for each Kα =
0, 2π/δα, . . . 2π(δα − 1)/δα. Finally, we want to make
two remarks. In the case δα = 1 (this could for example
be realized for q = D = 3), all CDW states transform
under the same projective irrep DK=0

M which does not con-
tradict the notion of symmetry breaking, as the projective
irreducible representations of the translation group are
higher dimensional. Secondly, the minimal required num-
ber of quasi-degenerate ground states in the CDW regime
is higher than would be the case for ordinary translation
symmetry (without an external magnetic field), where
both the CDW and the topologically ordered phase can
have the same number of ground states, providing no
clear sign for topological order.
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Figure 8. Static structure factors of the Hofstadter Model on 5 × 5 clusters shortly before (left panels) and after (right panels)
the phase transition. Ne = 5 and φ = 1/5 (a),(b), Ne = 5 and φ = 2/5 (c),(d), Ne = 10 and φ = 1/5 (e),(f), Ne = 10 and
φ = 2/5 (g),(h).


	Topological Phase Transitions of Interacting Fermions in the Presence of a Commensurate Magnetic Flux
	Abstract
	Introduction
	Lattice Hamiltonians in Commensurate Magnetic Flux
	Hofstadter model
	Magnetic translation algebra
	Constraints imposed by the LSM-type theorem on the Hall conductivity

	Topological Phase Diagram of the interacting Hofstadter Model for Half-Integer Flux Quanta
	Topological Phase Transitions for Various Flux Quantum Ratios
	Spontaneous translation invariance breaking
	Integer quantum Hall effect
	Fractional quantum Hall effect
	Continuous space

	Conclusion and Outlook
	Acknowledgments
	Proof of the Hall conductivity constraint
	Single-particle band structures
	Static structure factors
	Ground States Under Flux Insertion
	References


