1 2	Sustainability of seed harvesting in wild plant populations: an insight from a global database of matrix population models
3	Anna Bucharova ^{1,*} , Oliver Bossdorf ² , J. F. Scheepens ³ and Roberto Salguero-Gómez ⁴
4	
5	¹ Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8
6	35032 Marburg, Germany
7	² Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen,
8	Germany
9	³ Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt
10	am Main, Germany
11	⁴ Department of Biology, University of Oxford, 11a Mansfield Rd, OX1 3SZ, Oxford, UK
12	
13	*Contact author: anna.lampei-bucharova@biologie.uni-marburg.de , +49 6421 28-26586
14	

15 Abstract

16 Seed harvesting from wild plant populations is key for ecological restoration, but may threaten the 17 persistence of source populations. Consequently, several countries have set guidelines limiting the 18 proportions of harvestable seeds. However, these guidelines are so far inconsistent, and they lack a 19 solid empirical basis. Here, we use high-resolution data from 298 plant species to model the 20 demographic consequences of seed harvesting. We find that the current guidelines do not protect 21 populations of annuals and short-lived perennials, while they are overly restrictive for long-lived 22 plants. We show that the maximum possible fraction of seed production – what can be harvested 23 without compromising the long-term persistence of populations – is strongly related to the 24 generation time of the target species. When harvesting every year, this safe seed fraction ranges 25 from 80% in long-lived species to 2% in most annuals. Less frequent seed harvesting substantially 26 increases the safe seed fraction: In the most vulnerable annual species, it is safe to harvest 5%, 10% 27 or 30% of population seed production when harvesting every two, five or ten years, respectively. Our 28 results provide a quantitative basis for seed harvesting legislations worldwide, based on species' 29 generation time and harvesting regime.

30 Significance:

31 The UN Decade on Ecosystem Restoration, 2021-2030, foresees upscaling restoration, and the demand for native seed is skyrocketing. Seeds for restoring native vegetation are often harvested in 32 33 wild, but too intensive harvest can threaten the donor populations. Existing guidelines that set limits 34 to wild seed harvest are mostly based on expert opinions, yet they commonly lack empirical basis 35 and vary among regions in one order of magnitude. We show that the current guidelines urgently 36 need to be reformulated, because they are overly restrictive in long-lived species, while they do not 37 protect annual plants from extinction. Using matrix population models of nearly 300 plant species, 38 we provide a quantitative basis for a new seed harvesting legislation world-wide.

39

40 Introduction

41	The restoration of degraded ecosystems is a major goal of global nature conservation (1). We are in
42	the middle of the 'UN Decade on Ecosystem Restoration' (2), with a key goal to reverse the
43	destruction and degradation of billions of hectares of ecosystems. However, ecological restoration at
44	such scales requires high volumes of plant seeds for the re-establishment of native vegetation (3).
45	Although there is a growing industry for the production of wild plant seeds in specialised seed
46	orchards (4, 5), large-scale harvesting of seeds from wild populations is still common in ecological
47	restoration, and is projected to continue growing (6). Seed harvesting is particularly common for
48	plant species that are long-lived or difficult to cultivate (7–10).
49	With increasing demands for wild plant seeds, there is a growing risk of driving source populations to
50	local extinction (11, 12). Moreover, donor populations are often remnants of habitats with high
51	conservation value (11, 13). Some regions, in particular the US (14), Australia (15), and Europe (16,
52	17), have therefore begun to set limits for the maximum fraction of seeds that can be harvested
53	annually from wild plant populations, to prevent significant negative effects on their long-term
54	viability ('safe seed fraction', hereafter). Notably, though, the safe seed fraction guidelines are
55	inconsistent across countries, with e.g. 20% harvest allowed in the US (14) and 10% in Australia (15),
56	but only 2-10% in Germany, depending on plant growth type (16). When the harvest does not take
57	place annually, some guidelines permit higher safe seed fractions (16). In general, however, these
58	guidelines are mostly based on expert opinion and lack a solid quantitative basis.

Only a few studies have experimentally tested the effects of seed harvesting on wild populations. However, these studies are either focused on individual species or specific ecosystems (11, 18, 19). More effective rules would require collection of data across multiple species and ecosystems, but this course of action is labour- and cost-demanding. As an alternative to collecting new data, Menges and colleagues (12) used published plant matrix population models to link seed harvesting to the probabilities of population extinction for 22 perennial species. While this study is widely used to back

65 up seed collection guidelines for rare species for ex-situ conservation (e.g., (15, 20), the species set is limited to mostly herbaceous perennials of temperate and subtropical North America. To obtain a 66 quantitative basis for predicting the effects seed harvesting on wild populations globally, data from 67 68 many more species across life histories and ecosystems are essential. 69 Here, we employed a modelling approach and simulated seed harvesting for 298 plant species 70 ranging from annuals to long-lived trees from many habitats around the globe using matrix 71 population models stored in the the COMPADRE Plant Matrix Database (21, 22), Table S1. 72 Specifically, we (1) tested the efficacy of current guidelines at safeguarding long-term population 73 persistence, (2) identified traits that are associated with species vulnerability to seed harvesting, and 74 (3) used the trait that best determines species vulnerability to seed harvesting, generation time, to

75 predict safe seed fraction, and formulated quantitative basis for seed harvesting in wild plant

76 populations world-wide.

77 Results

78 To test how well the current safe seed fraction guidelines protect source populations from 79 overharvesting, we modelled the maximal possible harvest fractions permitted in the US, Australia, 80 and Germany. To allow comparison across species, we expressed effects of seed harvesting as 81 relative population sizes, where 1 indicates no effect, 0 indicates extinction, and e.g. 0.8 represents a 82 20% reduction of population size in comparison to the population size that would be reached without 83 seed harvesting. Seed harvesting according the existing safe seed fraction guidelines results in rather 84 variable relative population sizes among species (Figure 1). For instance, the current US guidelines 85 (20% seed harvesting allowed) protect long-lived palms, with relative population sizes of 0.6 to 1 after 30 years, but would drive all 10 annual plants in our data to extinction (Fig. 1). With the more 86 87 restrictive German guidelines (2% seed harvesting allowed), annual plants are projected to persist, 88 with relative population sizes of 0.54 to 0.63 after 30 years. Within all other plant growth types, the 89 effects of seed harvesting on the relative population sizes are much more variable. For example, with

the 20% seed harvesting currently allowed in the US, the predicted relative population sizes of
herbaceous perennials would range from 0 (local extinction) to 1 (no effect) after 30 years, while that
of shrubs would range from 0.12 to 0.99, of succulents from 0.27 to 0.99, and of trees from 0.18 to
0.99 (Fig. 1).

94 We next examined whether and which life history traits are better predictors of seed harvesting impacts (Figure 2). We found out that generation time, the mean age of reproductive individuals in 95 96 the population, is the strongest predictor of population vulnerability to seed harvesting. This life 97 history trait alone explains 52.3% of the variation in harvesting vulnerability, and vulnerability to seed 98 harvesting decreases with increasing generation time (Fig. 2B). Four other life history traits are also 99 significantly related to seed harvesting vulnerability (Fig. 2B) – species that reproduce more 100 frequently and/or postpone their first reproductive event are more vulnerable to seed harvesting, 101 while species with clonal reproduction and/or persistent seed banks are less vulnerable – but the 102 predictive power of these traits is low (Fig. 2A, Table S3). Population vulnerability also differs 103 significantly among plant growth types, but with minor effects (Fig. 2C, Table S3). All five life history 104 traits together explain 62.3% variability in vulnerability to seed harvesting among species. 105 To improve the efficacy of seed harvesting regulation, we then used the best predictor of species 106 vulnerability to seed harvesting, generation time, to estimate safe seed fraction across species. For 107 annual harvesting, the safe seed fraction ranges from close to 0% to 100%, with an average of 2.3% 108 (95% CI: 0.5-4.1%) for annual and biennial plants, 10.1% (6.8-14.2%) for species with a 5-year 109 generation time, and 40.1% (36.4-43.7%) for species with generation times of 20 years (Fig. 3A). With 110 simulated harvesting only every two years, the safe seed fraction for annuals and biennials increases 111 from 2.3% to 5.3 % (2.7-7.9%), and with a 5-year or 10-year harvesting interval to 11.3% (6.5-16.0%) 112 and 30.3% (23.8-36.8%), respectively (Fig 3B-D). For plant species with generation times above two 113 years, a 5-year harvesting cycle resulted in an average safe seed fraction of >30% (Fig. 3C). While safe 114 seed fraction critically depends on generation time, there is substantial residual variation among 115 species.

The estimated safe seed fraction for each species was not substantially affected by environmental stochasticity. The median of safe seed fractions based on models that included environmental stochasticity (see methods) was on average 1.8% larger than the safe seed fraction based on the mean models for each species, yet they were closely correlated (Figure S3).

120

121 Discussion

122 Seed harvesting in wild population is indispensable for ex-situ conservation and ecosystem

restoration, but overharvesting can threaten source populations (13). Consequently, some countries

have introduced limits that restrict wild seed harvesting (14–16). Here, using data from wild

125 populations of 298 plant species from five continents, we show that the current seed harvesting

126 guidelines are often ineffective: existing guidelines do not protect populations of annuals and short-

127 lived perennials, while they are overly restrictive for long-lived plants. Based on generation time, the

128 trait that best predicts seed harvesting vulnerability, we estimate that safe seed fraction varies from

129 2% in annual and biennial plants to 80-100% in long-lived plants, when seeds are harvested annually.

130 Lower frequency of harvesting allows for higher seed fractions in a viable way. The safe seed

131 fractions presented here can serve as a solid quantitative basis for seed harvesting regulations

132 globally.

When wild seed harvesting follows the existing safe seed fraction guidelines, the effects on
population sizes can vary from no effect to extinction, depending on the species. For example, annual
seed harvesting of 20% of the annual seed production, as currently recommended in the US (14),
would have small effect on palms, trees or some herbaceous perennials, but it would drive all
annuals plants to extinction within three decades. In reality, extinction will be less common because
we modelled an extreme scenario when seeds are harvested every growing season for 30

139 consecutive years from the same population, which is possible but uncommon (13). Nevertheless,

140 the high variability in model outcomes highlights that effective safe seed fraction guidelines must be

141 more nuanced than one-size-fits-all – one safe seed fraction for all species – as currently

implemented in many regions (14, 15, 17).

143 The current German safe seed fractions guidelines are plant growth-type specific (16). For annual 144 plant species, the safe seed fraction is 2% when harvesting annually, which in our modelling does not 145 cause unacceptable population declines (Figure 1). For herbaceous perennials, the safe seed fraction 146 in Germany is set to 10% for annual harvest, yet this threshold leads to a wide range of relative 147 population sizes, from substantial population declines to no effects. The variability within the 148 herbaceous perennials is even stronger when following the US guidelines (20% of annual seed 149 production). Plant growth type alone is thus a poor predictor of species vulnerability to seed 150 harvesting.

151 Over 60% of the vulnerability to seed harvesting is predicted by life history traits. The highest 152 predictive value in our analyses offers generation time, which alone predicts the seed harvesting 153 vulnerability by more than 50%. Population growth rates in long-lived species are generally 154 insensitive to changes in fecundity (23, 24). Indeed, (12) showed that long-lived plants are relatively 155 insensitive to seed harvesting. Other life history traits in the present study have much smaller 156 predictive power for seed harvesting impacts. For instance, species with higher iteroparity (i.e. 157 reproducing more than once during their life cycle), and species that are later sexually mature, are 158 more vulnerable to seed harvesting, while clonal species and species with permanent soil seed banks 159 are less vulnerable. The buffering effect of seed bank against the effects of seed harvesting are well 160 supported by the literature (25). However, the relatively small effect of clonality on the impacts of 161 seed harvesting is surprising, since clonality provides an alternative reproduction independent of 162 seed production, and has been experimentally identified as a major predictor of vulnerability to seed harvesting in grassland plants (18). This discrepancy is likely because many matrix population models 163 164 calculate generation times of individuals originated from seeds, *i.e.* genets. Clonal reproduction thus 165 leads to longer generation times of the genets (24, 26), and explains little additional variability in

vulnerability to seed harvesting above what is already explained by generation time as the moreuniversal predictor.

168 To provide a universal quantitative basis for seed harvesting guidelines, we estimated safe seed 169 fraction as a function of generation time, the best predictor of vulnerability to seed harvesting 170 (Figure 3). The lowest safe seed fractions are in annuals and biennial, 2.3% for annual harvest, which 171 is close to the current German guidelines of 2%, (16). The safe seed fraction continuously increases 172 with generation time, but remains below 10% for plants with generation times of five years and less. 173 Adhering to such low seed safe fractions is possible only when collecting seed manually, yet this is 174 very labor intensive. In grasslands, seeds are commonly harvested using combine harvesters, which 175 typically removes 30% of the ripe seeds (27). Such a high proportion is safe for annual harvesting only 176 in species with generation time above 15 years. Grasslands are dominated by annuals and 177 herbaceous perennials, of which 60% in our dataset have generation times below 15 years. Annual 178 seed removal with combine harvesters thus threatens a substantial proportion of grasslands species, 179 especially non-clonal forbs and annuals (18).

180 Less frequent harvesting allows higher safe seed fractions. Harvesting seeds less often is already 181 suggested as a precautional principle in some guidelines (e.g. (13, 17), although mostly without a 182 clear specification of safe seed fractions and harvesting frequencies. Less frequent harvesting is 183 relevant especially for species with short generation times, where the safe seed fraction is the 184 lowest. In annual and biennials, the safe seed fraction increases from 2.3% for annual harvesting to 185 5% when harvesting every second year, 11% every five years and 30% every 10 years. Importantly, 186 harvesting at 10-year intervals allows to collect 30 % of the seed production even in the most 187 vulnerable species. Seed harvesting with combine harvesters, which collects on average 30% of the 188 seed (27), should be sustainable even in drylands with high proportion of annual plants, if done at 189 sufficiently long intervals.

Seed harvesting is less problematic in species with long generation times. In species with generation times above 20 years (most trees and palms, many shrubs and some herbaceous perennials (28)), safe seed fractions are above 40% when harvesting every year, and above 80% when harvesting less frequently. Previous empirical and modelling studies also reported that long-lived species are rather insensitive to seed harvesting (12, 18, 29), although too frequent and too intense harvesting can deplete populations of seedlings (19). Even in long-lived species, it might thus be beneficial to omit seed harvesting in some years to give populations opportunities for juvenile recruitment.

197 Our results demonstrate the demographic impact of seed harvesting, and how it depends on plant 198 life histories. Yet, we could have overestimated harvesting impacts for three reasons. First, our 199 analyses are based on matrix population models of species averaged across years and sites, but 200 temporal or spatial variation in demographic rates could buffer some impacts of seed harvesting (30). 201 Indeed, incorporating environmental and demographic stochasticity into our models in a subset of 202 species resulted in safe seed fractions on average 1.8% larger, confirming that matrix averaging may 203 cause overestimation, but the effect was small. Second, our approach assumes plant populations to 204 be seed-limited. However, longer-lived plants are often limited by safe sites rather than seeds, 205 whereas seed limitation is more common in short-lived species (31). It is thus likely that in longer-206 lived species the effects of seed harvesting are even less severe than our findings suggest, but for 207 annuals and short-lived forbs – the most vulnerable to seed harvesting – our results are more likely 208 to be accurate. A specific case of safe-site limited habitats are European seminatural meadows that 209 are annually mown with the biomass, including a large proportion of seed, used as fodder for 210 domestic animals. Species growing in this ecosystem are likely adapted to regular seed removal and 211 thus less vulnerable to seed harvesting than predicted by our models. Third, our models do not 212 incorporate maximal carrying capacities, because this information is rarely available for matrix 213 population models. In populations with high population growth rates and close to carrying capacity 214 of the environment, matrix models still predict population growth even though the population

already reached maximal space occupancy. In such cases, seed harvesting might have much smallereffect than predicted.

217	Seed harvesting in wild populations should be generally accompanied by monitoring of the harvested
218	sites. Our results provide the currently best quantitative basis for sustainable seed harvesting in wild
219	populations. Yet, they are model results, and all models are simplifications of the reality as it is
220	impossible to capture the full complexity of the real world (32). As a precaution, and to be able to
221	adjust harvesting practice if necessary, it is therefore important to monitor the harvested sites. The
222	safe seed fractions presented here cause only very slow population declines, maximum 2% per year,
223	and monitoring every few years should be sufficient to detect unexpected negative effects on
224	population sizes before the population would be irreversibly damaged.
225	In summary, we show that seed harvesting in wild populations is possible and allows long-term
226	population persistence, but the harvesting must be guided by the critical factors of plant generation
227	time and harvesting frequency. For longer-lived species, harvesting large fractions of seeds is unlikely
228	to harm wild populations, particularly if seeds are not harvested every year. For short-lived species,
229	though, more caution is necessary. A profitable harvesting of 30% of the seeds of annual species may
230	only be possible if the harvesting takes place only every 10 or more years. However, ultimately, even
231	with improved guidelines, seed harvesting from wild populations is unlikely to cover the growing
232	worldwide needs of ecological restoration (33). The ambitious targets of the UN Decade on
233	Ecosystem Restoration (2) may only be reached with professional, large-scale seed production in
234	seed orchards (4, 34, 35).

235

236 Methods

We used data stored in The COMADRE Plant Matrix Database (version 5.0.0. last accessed 25.8.2019 (22), and selected matrix population models for 298 species (SM, section 1). As the ultimate goal of this study was to simulate seed harvesting, we selected field-based models for angiosperms with

240 clearly defined sexual reproduction (SM 1.3 for details). For the majority of studies in COMPADRE, 241 matrix population models are available for several annual transitions and populations. For all 242 calculations, except the stochastic simulations (see below), we used a single MPM per species 243 averaged across all years and populations available for that species. Below we briefly outline our 244 methods; a more detailed description is available in online supplementary information. 245 To test how well the current guidelines safeguard long-term populations persistence, we used matrix 246 population models to calculate 30-year projections of population sizes. We simulate seed harvesting 247 as a reduction of the sexually produced new recruits. We generally modelled the most extreme 248 scenario: the highest permitted seed fraction harvested every year. To allow comparison across 249 species, we expressed effects of seed harvesting as relative population sizes, where e.g. 0.8 250 represents a 20% reduction of population size and 0.3 a 70% reduction over 30 years, in comparison 251 to the population sizes that would be reached without seed harvesting (SM, section 4). As the effects 252 of seed harvesting were independent of the biogeographic origins of the examined species (Table 253 S2), we generally used all species in our dataset to test the guidelines of specific countries. We 254 present the results separately for different growth types, as in the German the guidelines the 255 recommended safe seed fractions are growth-type specific (16).

256 To find a better predictor of safe seed fraction than the growth types, we examined whether and 257 which life history traits were better predictors of seed harvesting impacts (Figure 2). To enable 258 practitioners to apply our findings, we restricted our analyses to five key life history traits readily 259 available from public databases (21, 22, 36) or easy to estimate in the field: generation time, mean 260 age at sexual maturity, the degree of iteroparity (frequency of reproduction) and clonality, and seed 261 bank persistence (Figure 2, SM section 5). We then related these traits to the vulnerability of our 298 262 species to seed harvesting, defined as the slope of the relative decrease in population size with 263 increasing seed harvesting (SM sections 3 and 6, Table S3).

To provide a quantitative basis for improving seed harvesting guidelines, we used generation time, 264 265 the best predictor of species vulnerability to seed harvesting, to estimate safe seed fractions across 266 species (SM section 7). The safe seed fractions were defined as the proportions of seed production 267 where annual removal caused a <50% decrease of population sizes during 30 years of continuous 268 seed harvesting, compared to the same populations without seed harvesting. A 50% decrease over 269 30 years corresponds to an annual decrease of about 2%. Importantly, this threshold ensures a >95% 270 probability of population viability under environmental stochasticity in all analysed species but one 271 (Figure S4).

272 To understand how environmental stochasticity affected our prediction for seed harvesting based on 273 mean matrix population models, we simulated the effects of environmental stochasticity on 274 population dynamics (SM section 8). This was possible in 108 species for which we had at least three 275 spatial or temporal replicate matrix population models (so called individual models). We simulated 276 environmental stochasticity as projecting population vector by randomly drawn individual matrix 277 population models in each step, replicated 1000 times to obtain probability distributions of seed 278 harvesting impacts. To understand how robust our estimates were to environmental stochasticity, 279 we compared the safe seed fractions based on the mean matrix models to the respective medians of 280 the safe seed fractions based on stochastic simulations (SM section 8.1). We also used stochastic 281 simulations to test whether the thresholds of 50% population declines (see above) effectively 282 prevented populations from extinction (SM section 8.2).

- 1. IPBES, *The IPBES assessment report on land degradation and restoration.*, L. Montanarella, R.
- 285 Scholes, A. Brainich, Eds. (Secretariat of the Intergovernmental Science-Policy Platform on

286 Biodiversity and Ecosystem Services, 2018).

- 287 2. UN Decade on Ecosystem Restoration 2021-2030. Available at:
- 288 https://www.decadeonrestoration.org/.
- 289 3. N. Hölzel, E. Buisson, T. Dutoit, Species introduction a major topic in vegetation restoration.

290 *Applied Vegetation Science* **15**, 161–165 (2012).

- 4. M. Conrady, et al., Plants cultivated for ecosystem restoration can evolve toward a
- 292 domestication syndrome. *Proceedings of the National Academy of Sciences* **120**,
- 293 e2219664120 (2023).
- 294 5. P. G. Nevill, *et al.*, Seed production areas for the global restoration challenge. *Ecology and*295 *Evolution* (2016).
- 296 6. T. A. Jones, Native Seeds in the Marketplace: Meeting Restoration Needs in the
- 297 Intermountain West, United States in *Rangeland Ecology and Management*, (Elsevier Inc.,

298 2019), pp. 1017–1029.

- An Assessment of Native Seed Needs and the Capacity for Their Supply: Final Report (National
 Academies Press, 2023).
- 301 8. L. Broadhurst, *et al.*, Seeding the future the issues of supply and demand in restoration in
- 302 Australia. *Ecological Management & Restoration* **16**, 29–32 (2015).
- 303 9. R. M. Stevenson, Commercial Wildland Harvested Seed and the Utah Connection.
- 304 *Rangelands* **38**, 273–277 (2016).
- A. White, J. B. Fant, K. Havens, M. Skinner, A. T. Kramer, Restoring species diversity: assessing
 capacity in the U.S. native plant industry. *Restoration Ecology* 26, 605–611 (2018).
- 307 11. J. C. Meissen, S. M. Galatowitsch, M. W. Cornett, Risks of overharvesting seed from native

308 tallgrass prairies. *Restoration Ecology* **23**, 882–891 (2015).

- 309 12. E. S. Menges, E. O. Guerrant, S. Hamze, "Effects of seed collection on the extinction risk of
- 310 perennial plants" in *Ex Situ Plant Conservation: Supporting Species Survival in the Wild*, E. O.
- 311 Guerrant, K. Havens, M. Maunde, Eds. (Island Press, 2004), pp. 305–324.
- 312 13. S. Pedrini, *et al.*, Collection and production of native seeds for ecological restoration.
- 313 *Restoration Ecology* **28**, S228–S238 (2020).
- 14. Plant Conservation Alliance, "National seed strategy for rehabilitation and restoration."
- 315 (2015).
- 316 15. M. A. J. Yenson, *et al.*, Plant Germplasm Conservation in Australia: strategies and guidelines
- for developing, managing and utilising ex situ collections. Third edition. (2021).
- 31816.R. Prasse, D. Kunzmann, R. Schröder, "Development and practical implementation of minimal
- requirements for the verification of origin of native seeds of herbaceous plants (in German).
- 320 In cooperation with Verband Deutscher Wildsamen- und Wildpflanzenproduzenten. DBU,
- 321 reference no. 23931, 166p." (2010).
- 322 17. ENSCONET, "Seed collecting manual for wild species" (2009).
- 323 18. J. C. Meissen, S. M. Galatowitsch, M. W. Cornett, Assessing long-term risks of prairie seed
- harvest: what is the role of life-history? *Botany* **95**, 1081–1092 (2017).
- 325 19. C. A. Peres, *et al.*, Demographic threats to the sustainability of Brazil nut exploitation. *Science*326 (*New York*, *N.Y.*) **302**, 2112–4 (2003).
- 327 20. Center for Plant Conservation., CPC Best Plant Conservation Practices to Support Species
- 328 Survival in the Wild. Center for Plant Conservation, Escondido, CA. (2019).
- R. Salguero-Gómez, *et al.*, The compadre Plant Matrix Database: an open online repository
 for plant demography. *Journal of Ecology* **103**, 202–218 (2015).
- 22. COMPADRE Plant Matrix Database (2019). Available from: https://www.compadre-db.org
- 332 [25.8.2019, Version 5.0.0]. (2019). [Accessed 25 August 2019].
- M. Franco, J. Silvertown, A comparative demography of plants based upon elasticities of vital
 rates. *Ecology* 85, 531–538 (2004).

335	24.	Z. Janovský, T. Herben, Reaching similar goals by different means – Differences in life-history
336		strategies of clonal and non-clonal plants. Perspectives in Plant Ecology, Evolution and
337		Systematics 44 , 125534 (2020).
338	25.	V. M. Adams, D. M. Marsh, J. S. Knox, Importance of the seed bank for population viability
339		and population monitoring in a threatened wetland herb. <i>Biological Conservation</i> 124 , 425–
340		436 (2005).
341	26.	L. C. de Witte, J. Stöcklin, Longevity of clonal plants: why it matters and how to measure it.
342		Annals of Botany 106 , 859–870 (2010).
343	27.	M. Scotton, M. Ševčíková, Efficiency of mechanical seed harvesting for grassland restoration.
344		Agriculture, Ecosystems and Environment 247 , 195–204 (2017).
345	28.	R. Salguero-Gómez, et al., Fast-slow continuum and reproductive strategies structure plant
346		life-history variation worldwide. Proceedings of the National Academy of Sciences of the
347		United States of America 113 , 230–5 (2016).
348	29.	J. C. Meissen, S. M. Galatowitsch, M. W. Cornett, Risks of overharvesting seed from native
349		tallgrass prairies. Restoration Ecology 23, 882–891 (2015).
350	30.	J. Villellas, D. F. Doak, M. B. García, W. F. Morris, Demographic compensation among
351		populations: what is it, how does it arise and what are its implications? Ecology Letters 18,
352		1139–1152 (2015).
353	31.	L. A. Turnbull, M. J. Crawley, M. Rees, Are plant populations seed-limited? A review of seed
354		sowing experiments. <i>Oikos</i> 88, 225–238 (2000).
355	32.	G. E. P. Box, Science and Statistics. Journal of the American Statistical Association 71, 791–
356		799 (1976).
357	33.	S. Díaz, et al., Pervasive human-driven decline of life on Earth points to the need for
358		transformative change. Science (New York, N.Y.) 366 (2019).

- 359 34. M. Conrady, C. Lampei, O. Bossdorf, W. Durka, A. Bucharova, Evolution during seed
- 360 production for ecological restoration? A molecular analysis of 19 species finds only minor
- 361 genomic changes. *Journal of Applied Ecology* **59**, 1383–1393 (2022).
- 362 35. E. K. Espeland, *et al.*, Evolution of plant materials for ecological restoration: Insights from the
- applied and basic literature. *Journal of Applied Ecology* **54**, 102–115 (2017).
- 364 36. J. Kattge, et al., TRY a global database of plant traits. *Global Change Biology* **17**, 2905–2935
- 365 (2011).
- 366

- 368 **Figure 1.** Predicted effects of 30 years of continuous seed harvesting on the relative population sizes
- 369 of 298 plant species worldwide, using the current guidelines of countries where legislation exists:
- 370 USA, Germany, and Australia. Points represent individual species. The data result from simulation of
- 371 seed harvesting using matrix population models parameterised with data from natural populations.
- Herb. = Herbaceous; n = numbers of species included.

373

375 Figure 2. Associations of plant life histories and growth forms with variation in seed harvesting 376 vulnerability across 298 plant species, as calculated from matrix population models parameterised with data from natural populations. (A) Proportion of variability explained by different life history 377 traits, and (B) their effect estimates. (C) The fitted values of vulnerability for different growth types. 378 379 Estimates in (B) and (C) are presented with their 95% credible intervals. As both vulnerability to seed 380 harvesting and all explanatory variables were standardised prior the analysis, the slope estimates are 381 in arbitrary units. (D) Definitions of the five examined life history traits (for calculation see Table S2). Herb. = herbaceous. Significance levels: * P<0.05, ** P<0.01, *** P<0.001, See Table S3 for detailed 382 model results.

(D)

Generation time: the mean age of reproductive individuals in a population.

Iteroparity: the frequency of reproduction throughout the lifespan of an individual, with high/low Demetrius' entropy (S) values for highly iteroparous/semelparous populations.

Age at sexual maturity: the average number of years after which individuals in a population become sexually reproductive.

Seed bank: the mean life expectancy of seeds in the soil seed bank.

Clonality: the per-capita clonal contributions, weighted by the relative frequency of individuals in each stage along the life cycle of the species.

385

384

- **Figure 3.** Relationships between the generation times of 298 plant species and their safe fractions for
- 387 seed harvesting, estimated at different harvesting frequencies. The safe seed fraction is the
- 388 maximum proportion of annual seed production of a population that can be harvested without
- reducing the relative population size to below 50% in 30 years.

390

391

393	
394	Supplementary Materials for
395	
396	Sustainable seed harvesting in wild plant populations
397	
398	Anna Bucharova*, Oliver Bossdorf, J. F. Scheepens and Roberto Salguero-Gómez
399	*Corresponding author: <u>anna.lampei-bucharova@uni-marburg.de</u>
400	
401	

402 Materials and Methods, Supplementary results

403 To quantify the effect of seed harvesting on wild plant populations, we used matrix population models 404 (35). We first tested the impacts of seed harvesting by simulating the regulatory recommendations on 405 seed harvesting in the wild of three regions where such regulations are in place (Australia, Germany 406 and USA). Second, we calculated the population vulnerability to seed harvesting for each of the 280 407 plant species examined. Third, we related those effects to plant key life history traits (i.e. defining 408 characteristics of their life cycles; e.g. generation time, age at maturity). In the fourth step, we used 409 the life history traits that explained most of the vulnerability of natural populations to seed harvesting 410 to formulate biologically-sound management recommendations. The ultimate goal of these 411 recommendations is to introduce a threshold to seed harvesting so that (i) the population size does 412 not decline more than by 50% over 30 years of consecutive (i.e. annual) seed harvest and (ii) the 413 population may still have a 95% probability of persistence. All calculations and statistics were performed in R (36), and the reproducible, commented scripts are found as Auxiliary material and will 414 415 be available at Zonedo upon acceptance.

416

417 **1** Matrix population models

418 1.1 General introduction

419 Matrix population models (MPMs, hereafter) are a widely used tool for investigating population dynamics (35). Briefly, an MPM describes the life cycle of an organism in terms of age, size and/or 420 421 developmental stages along its life cycle and the transitions between stages, usually from one year to 422 the next, as well as the sexual and clonal per-capita contributions to the population by individuals in 423 each of those stages (Figure S1). One of the many applications of MPMs is to project the dynamics of 424 a population through time (35), whereby a long-term population growth rate can be estimated (Figure 425 S1). Importantly here, MPMs can also be used to calculate a wide range of population characteristics 426 such as life history traits (37), extinction probability (38), and the effects of different hypothetical 427 events (such as seed harvesting) on the long-term viability of a population (39, 40).

428

In this study, we used MPMs to simulate seed harvesting as reduction of the per-capita contribution(s) describing seed production (Figure S1). We did so by simulating the harvesting of newly produced seeds while keeping all other demographic processes unaltered. The resulting MPM thus describes the population dynamics in a year where seed harvesting took place.

433

434 1.2 COMPADRE database

We used data stored in THE COMPADRE Plant Matrix Database (version 5.0.0.), last accessed 25.8.2019 435 436 (20). In this version, COMPADRE contains 9121 MPMs from 647 published works describing life cycles 437 of 760 plant species, ranging from algae to trees worldwide. MPMs in the database are accompanied by extensive metadata including the continent where the study was carried out, whether it was carried 438 439 out in captivity or in the wild, and standardized information about each life cycle stage in three categories: propagules, individuals photosynthetically active, and individuals in vegetative dormancy. 440 441 In the vast majority of MPMs in COMPADRE, the full MPM **A** is divided into three submatrices (37): **U** 442 includes demographic processes that depend on survival of individuals alive at the beginning of the census (i.e., progressive growth, stasis, retrogressive growth, seed bank persistence, and vegetative 443 444 dormancy), F includes sexual reproduction (e.g. production of seeds and juveniles), and C includes 445 clonal reproduction (*i.e.* vegetative reproduction through ramets), such that

446

447

448 **1.3** Selection of the MPMs

We selected species and MPMs from COMPADRE based on the following criteria to allow for inter-specific comparisons to answer our questions:

A = U + F + C

Only angiosperms and gymnosperms, since the ultimate goal of this study is to simulate the
 effect of seed harvesting on seed-producing plants.

MPMs parameterised from field data from wild populations and under unmanipulated
 conditions, because the aim of this study is to understand the effect of seed harvest on natural,
 wild populations.

MPMs for which the sexual reproduction component had been quantified explicitly, and
 separated from other processes in order to allow us to accurately perturb sexual reproduction (seed
 production; see below).

- MPMs that are irreducible, ergodic, and primitive, so the dominant eigenvalue (population
 growth rate) and other key properties could be calculated (*35*).
- When multiple studies per species were available (n = 235 species), we selected the single
 study per species that:
- 463 documented a seed bank, because inclusion of this transition in MPMs is vital to
 464 correct estimation of life history traits (41)

eq. 1

465 466

467

 contained the highest number of individual MPMs (*i.e.*, from more populations or more years, see SM section 1.4) to use the most representative demographic information for the target species.

468

469 These selection criteria resulted in 467 MPMs from 467 plant species. Next, we checked the reliability 470 of incorporating a seed bank in them or not. While survival of seeds in the seed bank is well 471 documented in many demographic studies (42), between 42.9% and 47.3% of studies using MPMs in 472 plant species unjustifiably exclude seed banks (8), thus assigning seedlings in year t to reproductive 473 plants in t-1 (e.g. (43)). However, this assumption is only correct in species with a transient seed bank, 474 i.e. seeds survive in the soil less than one year and thus, do not form a permanent soil seed bank (41). 475 For those studies in our list where seed banks were not explicitly considered in their MPMs, we verified whether the species indeed have only a transient seed bank or not. We did so by carefully examining 476 477 the original source of the MPM(s). If the source did not mention a seed bank, we further searched in 478 the TRY database (21) for its potential existence. Consequently, we excluded 169 species where seed 479 banks were unjustifiably excluded from their MPMs.

In twelve species, the simulated seed harvesting (SM section 2) did not cause any changes of
 population sizes, which suggests that generative reproduction was not correctly incorporated in these
 MPMs. We excluded these species from the further analysis.

This final selection criterion resulted in a dataset of 280 species (each with a representative MPM)
from 83 plant families. This is the final set of species and data that were used for the simulations
described below (Error! Reference source not found.).

486 **1.4 Mean MPMs vs individual MPMs**

For the majority of studies in COMPADRE, MPMs are available for several annual transitions and populations. This was also the case in our final dataset. For all calculations, except in the case of stochastic simulations (Section 8), we used a single *mean* MPM per species across all years and populations of demographic data available for that species. This mean MPM was calculated as the element-by-element arithmetic mean of the aforementioned MPMs, or pooled directly (e.g. weighted mean by sample size) from the individual-level data when provided by the author in the publication or through personal communications with the COMPADRE team.

For the stochastic simulations we used *individual* MPMs, which represented the population dynamics
during a given annual transition and at a given population. We only used species that were represented

in the database by at least three individual MPMs (Section 8), resulting in 1578 individual MPMs from
across 108 plant species in our dataset.

498 2 Simulating seed harvesting

499 We used the selected MPMs to simulate the impact of seed harvesting on populations. We first used 500 the mean MPM (Section 1.4) for each species, and simulated seed harvesting as a reduction in the 501 values describing reproduction via seed in the sexual reproduction matrix F (see equation 1). 502 Specifically, we created a modified MPM A' with reduced per-capita contributions of seed production 503 in **F**. To carry out our projections, we initiated the population vector \mathbf{n}_0 as the stable stage distribution 504 of the original MPM **A**. This vector \mathbf{n}_0 was obtained as the right-eigenvector of **A** following methods 505 described by Caswell (2001). We then projected n_0 over 30 years using the modified MPM A' and the 506 chain rule (35). We chose this period of time for our projections because it is long enough to observe 507 even minor changes in the overall population size N that are not typically possible to quantify by shortterm monitoring (44), while it is of sufficient length to fit within the active career of a land manager or 508 509 conservation practitioner. We benchmarked the resulting population size $N_{30 \text{ harvest}}$ relative to the 510 population size $N_{30 \text{ no harvest}}$ that would have been achieved in the absence of seed harvesting as in 511 equation 2:

512
$$N_{30 \ relative} = \frac{N_{30 \ harvest}}{N_{30 \ no \ harvest}} \qquad eq.2$$

513 The relative population size $N_{30 \text{ relative}}$ thus ranges between 1 (when seed harvesting has no effect on 514 population size; $N_{30 \text{ harvest}} = N_{30 \text{ no-harvest}}$ to 0 (when the effect is so drastic it drives N to 0 within 30 515 years). For example, a value of $N_{30 \text{ relative}} = 0.1$ means that the population size achieved with seed 516 harvesting is 10% of the population size that would have been achieved without seed harvesting. The 517 use of this metric as measure of seed harvesting impact allowed us to implement intra- and inter-518 specific comparisons, regardless of the variable population growth rates of each species' population. 519 When calculating the population sizes with and without harvest ($N_{30 \text{ harvest}}$ and $N_{30 \text{ no harvest}}$), we included 520 only the active but not dormant (seed bank, dormant vegetative) life stages of the population vectors 521 N_{30} because practitioners and scientists commonly evaluate population size based on counting active, 522 standing individuals.

523 3 Vulnerability to seed harvesting

524 We used mean MPMs to calculate species vulnerabilities to seed harvesting. For each species, we

525 created 101 MPMs that describe the population dynamics when harvesting 0-100% of seed

production, in 1% steps (Figure S1). As in section 2, we used the virtual MPMs to project population
sizes over 30 years. We then fitted an exponential-decay model to quantify the effects of the varying
proportion of harvested seed (p) on the relative population size in 30 years (N_{30 relative}) as follows:

529
$$N_{30 \ relative} = e^{p(-b)} \qquad \text{eq. 3}$$

530 where *b* determines how steeply the relative population size ($N_{30 \text{ relative}}$) decreases with increasing

531 proportion of harvest pressure, such that the larger *b*, the steeper this decrease is. We refer to this

532 coefficient as vulnerability to seed harvesting (Error! Reference source not found.).

533 4 Testing current recommendations

Next, we used MPMs to simulate the impact of seed harvesting according to the current rules on the relative population size $N_{30 relative}$. As far as we are aware of, explicit recommendations for the maximal proportion of seeds that can be harvested from natural populations so far exist only in three countries. In USA and Australia, this value is 20% and 10%, respectively, for common plant species when harvesting seeds for restoration projects (*13*, *14*). German rules are available for herbaceous plants: 2% for annual and 10% for perennial species when harvested every year (*15*).

540 As the current recommendations are partly growth-form specific (15), we examined the reduction in relative population size as a function of plant growth form: annuals, herbaceous perennials, 541 epiphytes, lianas, palms, succulents, shrubs, and trees, as indicated in the COMPADRE metadata. We 542 543 excluded growth forms represented by less than 5 species: epiphytes (n=4) and lianas (n=1), as well as plant species whose generation time disagreed with the metadata of the species, in particular 544 545 annual species with generation times larger than two years (n=4). As the vulnerability to seed 546 harvesting of individual species (Section 3) depended neither on a continent nor on the interaction 547 between a continent and plant growth form (Table S2), we grouped species only by growth form and 548 used the same set of species to test the recommendations from Australia, USA and Germany (Figure 549 1 in the main text).

550 5 Life history traits

We used life history traits to explain species vulnerability to seed harvesting. A life history trait is a key feature that describes the life cycle of the organism (e.g. generation time, survival of seeds in the seed bank, clonal propagation). As our ultimate motivation was to facilitate the translation of our findings to land managers and practitioners, out of the wide range of life history traits that can be derived from MPMs (e.g (*35*, *37*)), we selected the traits that are readily available in trait databases

or easy to estimate in the field (Table S3). All life history traits were calculated based on the matrix A
of the mean MPM of each of our 280 species.

558

559 6 The effect of life history traits on vulnerability to seed harvesting

560 We used linear models to determine which life history traits (generation time, degree of iteroparity, 561 age at sexual maturity, seed bank residence, clonality) best explained species' vulnerability to seed 562 harvesting (Section 3). We also added plant growth form as an explanatory variable (as defined in the 563 COMPADRE database (20)) to the model to test whether it explains any additional variability. 564 Restricting the model to key life history traits allowed us to keep the full model and avoid model 565 selection, which is known to produce exaggerated effect sizes and spurious effects (45). Species vulnerability to seed harvesting was log-transformed prior analysis to achieve normality. Other 566 567 explanatory variables except plant growth type (factor) were log-transformed and standardised to 568 adhere to the model assumptions of normally distributed errors.

569

570 To illustrate the importance of the life history traits for predicting the species vulnerability to seed 571 harvesting (Figure 2 in the main text), we expressed the relative importance of each predictor in the 572 model as the proportion of explained variability assigned to each predictor. As the explained variability 573 can depend on the sequential order of the predictors in the model, we averaged the explained 574 variability for each predictor across all possible ordering of the predictors using the R package relaimp 575 (46). To visualize effect sizes of the effects of life history traits on species vulnerability to seed 576 harvesting, as well as uncertainty of these effects, we used 95% credible intervals, a Bayesian analogue 577 of confidence intervals. These were calculated from 10,000 simulations of the mean and variance of 578 each estimate, using the sim function in the R package arm with non-informative prior (47).

579 We also ran a model including the phylogenetic relationships among species to test the extent to which 580 the explanatory power of life history traits on species' vulnerability to seed harvesting is in fact driven 581 by the phylogenetic inertia in plant life history traits (48). We used a phylogenetic generalized least 582 square model to include the phylogeny of our species. We obtained the phylogeny from COMPADRE, 583 following methods detailed elsewhere (37). With this model, we estimated Pagel's λ (not to be 584 confused with the population growth rate, also referred to as λ in the demographic literature (35)), a 585 measure of phylogenetic signal in the trait structure. Briefly, Pagel's λ =0 indicates no effect of the 586 phylogenetic structure in the dataset in explaining variation in a given trait, while Pagel's λ =1 indicates 587 that the phylogenetic structure perfectly predicts, i.e. is responsible for, the life history trait structure.

588 Negative values suggest that closely related species have more different traits than would be expected 589 by chance ((48). We found that the phylogenetic signal was overall weak and negative (Pagel's λ =-0.1). 590 Based on this result, we opted to present in this paper results from the linear model without 591 phylogenetic correction.

592 **7** Assessing limits of seed collection

We used the mean MPM per species to estimate what fraction of seed production one can collect from a natural population while only moderately affecting its dynamics. As a moderate effect we defined a reduction in population size *N* to not below 50% of the size that would have been achieved without seed harvesting during 30 years of a constant annual harvest intensity. While a reduction of population size by up to 50% over 30 years may seem relatively high, it corresponds to an annual decline of <2%. This threshold also allows for the persistence of the natural population under environmental stochasticity in >99% of species (see section 8.2).

For each species' MPM, we simulated the effect of seed harvesting as a reduction of seed production 600 601 transition by 0-100%, in 1% intervals. We used such reduced, virtual MPMs to simulate population 602 dynamics across 30 years, and we recorded the final population size and expressed it as relative to 603 population size that would be achieved without seed harvesting (see Section 2, note this calculation is the same 604 as the first step of the calculation of vulnerability to seed harvesting, Section 3). Besides annual harvests, we also modelled 605 the effect of harvesting seeds every 2, 5 or 10 years because reducing harvesting frequency up to once 606 in 10 years is sometimes recommended to limit negative effects of seed harvesting on population 607 dynamics (11). In this case, we modelled population dynamics with the original mean MPM while the reduced MPM was used every 2nd, 5th or 10th run. As the safe fraction for seed harvesting, we 608 609 considered the largest proportion of seed that was possible to harvest without exceeding the 50 % 610 reduction of the relative population size.

We related the safe fraction for seed harvesting to the generation time of plants – the most important predictor of species vulnerability to seed harvesting, which alone explained 52.3% of total variability in species vulnerability to seed harvesting. We used non-linear regression in *R* (*nsl*) to describe the sigmoid relationship between the safe fractions of seed harvesting and the generation time, and used function *PredFit* in package *investr* (*49*) to generate confidence intervals for the relationship (Figure 3 in the main text).

617 8 Effect of environmental stochasticity

618 In a subset of our studied species, we simulated the effects of environmental stochasticity on 619 population dynamics to understand how environmental stochasticity affects our prediction for seed harvesting based on mean MPMs. We used all species in our dataset represented by at least three 620 621 individual MPMs (Section 1.4), resulting in 1,578 MPMs across 108 plant species. We simulated 622 environmental stochasticity as projecting vector of stable stage distribution of the mean MPM by 623 randomly drawn individual MPM in each step. To obtain a probability distribution of results under 624 environmental stochasticity, we repeated this process 1,000 times. We expressed the results as N_{30} 625 relative (equation eq. 2). The effects of seed harvesting were simulated as above (Section 4), with the difference that in each of the 30 annual time-steps in each of the 1,000 simulation runs, we randomly 626 627 drew an individual MPM from the set of individual MPMs available for a given species.

628 **8.1** The effect of seed harvesting on population size based on environmental

629

stochasticity versus mean MPM

To understand how environmental stochasticity affected our results, we estimated the robustness of our results in stochastic environments. As an example, we used the effect of harvest of 20% of seed production, expressed as $N_{30 \text{ relative}}$, and simulated seed harvesting either using mean MPMs or stochastic simulation. We then compared the safe fraction for seed harvesting ($N_{30 \text{ relative}} > 0.5$) based on the mean MPMs to the median of safe seed fraction based on the stochastic simulations.

635 The median of relative population sizes $N_{30 \text{ relative}}$ based on 1,000 permutations of stochastic simulations 636 (y axis in Figure S3) closely correlated with the $N_{30 \text{ relative}}$ based on the mean MPMs. Interestingly, the 637 relative population size $N_{30 \text{ relative}}$ based on stochastic simulation (orange points in Figure S3) was slightly 638 higher than the $N_{30 \text{ relative}}$ based on mean MPMs (black line in Figure S3), especially in species that are 639 more vulnerable to seed harvesting. Consequently, the safe fraction for seed harvesting based on the median of stochastic simulations was on average 0.017 higher that safe fraction based on the mean 640 641 MPMs (Figure S4). This suggests that environmental stochasticity partly buffers the predicted decrease 642 of population size caused by seed harvesting.

643

644 **8.2** Threshold for seed harvesting based on mean MPM versus extinction probability

645 In the models above, we set a threshold for seed harvesting so that the relative population size N_{30} 646 $_{relative}$ decreased not below 50% of the population size that would be achieved without seed harvesting. 647 In this section, we tested whether this threshold also prevented populations from extinctions. For each 648 species, we computed what fraction of seeds could be sustainably harvested without causing

extinction in at least 95% of stochastic simulations. We considered a population to go locally extinct when $N_{30 \ relative} < 0.01$ (see Section 2 for definition of $N_{30 \ relative}$). For each species, we compared the threshold based on the 95% probability of population survival with the threshold based on mean MPM and $N_{30 \ relative} > 0.5$.

In the vast majority (>99%) of examined species, the threshold based on $N_{30 \ relative}$ > 0.5 (as calculated using mean MPMs, black line in the Figure S5) allowed for the collection of a lower proportion of seeds than the threshold based on 95% probability population survival when using stochastic simulations (individual points in Figure 5). This suggests that the rules based on $N_{30 \ relative}$ > 0.5 derived from the mean MPMs prevent populations from going locally extinct.

658

660 **Fig. S1.**

Population	projection	matrix
------------	------------	--------

\ = 1.24		YEAR 1		
		Seed	Vegetative	Flowering
YEAR 2	Seed	0.10	0	45.00
	Vegetative	0.06	0.05	0.11
	Flowering	0	0.40	0.41

$$\lambda = \frac{N_{(t+1)}}{N_t}$$

661

Figure S1: Life cycle of a hypothetical plant species with three stages (seedbank, juvenile, and adult) and its corresponding matrix population model (MPM), with λ indicating its long-term population growth rate, which is a function of population size (*N*) between two time-points *t* and *t*+1. Seed harvesting in this study was simulated by manipulating the transitions that describe generative reproduction.

667

669 **Fig. S2.**

670

671 **Figure S2**. Vulnerability of population dynamics to seed harvesting (*b* in equation S3) in two

of our 280 examined plant species. Note how the larger the value of *b*, the more vulnerable

673 the given species is to seed harvesting. Black dots: simulated values; red line: fitted

exponential-decay model as per equation 3.

675

677 **Fig. S3.**

Figure S3: Comparison of relative population sizes ($N_{30 relative}$) when 20% seeds were harvested based on mean MPMs (x axis and the 1:1 black line) versus from calculations with environmental stochasticity (y axis).

683 **Fig. S4.**

684

Figure S4: The safe fractions for seed harvesting based on $N_{30 relative} > 0.5$ as calculated from the mean MPM (x-axis and 1:1 black line) versus the same safe fraction based on stochastic simulations (with 95% CI).

689 Fig. S5.

Figure S5: Comparison of the threshold for maximal seed harvest based on $N_{30 relative} > 0.5$ as calculated from the mean MPM (x-axis and the 1:1 black line), with the maximal seed harvest that allows 95% probability of population survival of each considered species, as based on stochastic simulation.

695 **Table S1.**

Table S1: The final set of species used in this study and the original study that was the source of the

- 697 MPMs.
- 698

Species	Publication
Abies concolor	Van Mantgem, P. J., & Stephenson, N. L. (2005). The accuracy of matrix
	population model projections for coniferous trees in the Sierra Nevada,
	California. Journal of Ecology, 93(4), 737–747. Portico.
	https://doi.org/10.1111/j.1365-2745.2005.01007.x
Abies magnifica	Van Mantgem, P. J., & Stephenson, N. L. (2005). The accuracy of matrix
	population model projections for coniferous trees in the Sierra Nevada,
	California. Journal of Ecology, 93(4), 737–747. Portico.
	https://doi.org/10.1111/j.1365-2745.2005.01007.x
Abies sachalinensis	Hiura, T., & Fujiwara, K. (1999). Density-dependence and co-existence of
	conifer and broad-leaved trees in a Japanese northern mixed forest. Journal
	of Vegetation Science, 10(6), 843–850. Portico.
	https://doi.org/10.2307/3237309
Acacia bilimekii	Jiménez-Lobato, V., & Valverde, T. (2006). Population dynamics of the shrub
	Acacia bilimekii in a semi-desert region in central Mexico. Journal of Arid
	Environments, 65(1), 29–45.
	https://doi.org/10.1016/j.jaridenv.2005.07.002
Acacia suaveolens	Warton, D. I., & Wardle, G. M. (2003). Site-to-site variation in the
	demography of a fire-affected perennial, Acacia suaveolens, at Ku-ring-gai
	Chase National Park, New South Wales, Australia. Austral Ecology, 28(1),
	38–47. https://doi.org/10.1046/j.1442-9993.2003.01246.x
Acer amoenum	Tanaka, H., Shibata, M., Masaki, T., Iida, S., Niiyama, K., Abe, S., Kominami,
	Y., & Nakashizuka, T. (2008). Comparative demography of three coexisting
	Acer species in gaps and under closed canopy. Journal of Vegetation
	Science, 19(1), 127–138. Portico. https://doi.org/10.3170/2007-8-18342

Species	Publication
Acer mono	Tanaka, H., Shibata, M., Masaki, T., Iida, S., Niiyama, K., Abe, S., Kominami,
	Y., & Nakashizuka, T. (2008). Comparative demography of three coexisting
	Acer species in gaps and under closed canopy. Journal of Vegetation
	Science, 19(1), 127–138. Portico. https://doi.org/10.3170/2007-8-18342
Acer rufinerve	Tanaka, H., Shibata, M., Masaki, T., Iida, S., Niiyama, K., Abe, S., Kominami,
	Y., & Nakashizuka, T. (2008). Comparative demography of three coexisting
	Acer species in gaps and under closed canopy. Journal of Vegetation
	Science, 19(1), 127–138. Portico. https://doi.org/10.3170/2007-8-18342
Acer saccharum	Lin, Y., & Augspurger, C. K. (2008). Impact of spatial heterogeneity of
	neighborhoods on long-term population dynamics of sugar maple (Acer
	saccharum). Forest Ecology and Management, 255(10), 3589–3596.
	https://doi.org/10.1016/j.foreco.2008.02.040
Actaea spicata	Fröborg, H., & Eriksson, O. (2003). Predispersal seed predation and
	population dynamics in the perennial understorey herb Actaea spicata.
	Canadian Journal of Botany, 81(11), 1058–1069.
	https://doi.org/10.1139/b03-099
Adesmia	Cipriotti, P. A., & Aguiar, M. R. (2011). Direct and indirect effects of grazing
volckmannii	constrain shrub encroachment in semi-arid Patagonian steppes. Applied
	Vegetation Science, 15(1), 35–47. https://doi.org/10.1111/j.1654-
	109x.2011.01138.x
Aeschynomene	Griffith, A. B., & Forseth, I. N. (2005). Population matrix models of
virginica	Aeschynomene virginica, a rare annual plant: implications for conservation.
	Ecological Applications, 15(1), 222–233. https://doi.org/10.1890/02-5219
Aesculus turbinata	Kaneko, Y., Takada, T., & Kawano, S. (1999). Population biology of Aesculus
	turbinata Blume: A demographic analysis using transition matrices on a
	natural population along a riparian environmental gradient. Plant Species
	Biology, 14(1), 47–68. https://doi.org/10.1046/j.1442-1984.1999.00007.x
Agrimonia	Mondragón Chaparro, D., & Ticktin, T. (2011). Demographic effects of
eupatoria	harvesting epiphytic bromeliads and an alternative approach to collection.
Species	Publication
---------------------	---
	Conservation Biology, 25(4), 797–807. https://doi.org/10.1111/j.1523-
	1739.2011.01691.x
Ailanthus altissima	Bullock, J. M., White, S. M., Prudhomme, C., Tansey, C., Perea, R., &
	Hooftman, D. A. P. (2011). Modelling spread of British wind-dispersed
	plants under future wind speeds in a changing climate. Journal of Ecology,
	100(1), 104–115. https://doi.org/10.1111/j.1365-2745.2011.01910.x
Alliaria petiolata	Evans, J. A., Davis, A. S., Raghu, S., Ragavendran, A., Landis, D. A., &
	Schemske, D. W. (2012). The importance of space, time, and stochasticity to
	the demography and management of Alliaria petiolata. Ecological
	Applications, 22(5), 1497–1511. https://doi.org/10.1890/11-1291.1
Allium tricoccum	Nault, A., & Gagnon, D. (1993). Ramet demography of Allium tricoccum, a
	spring ephemeral, perennial forest herb. The Journal of Ecology, 81(1), 101.
	https://doi.org/10.2307/2261228
Alyxia stellata	Wong, T. M., & Ticktin, T. (2014). Using population dynamics modelling to
	evaluate potential success of restoration: a case study of a Hawaiian vine in
	a changing climate. Environmental Conservation, 42(1), 20–30.
	https://doi.org/10.1017/s0376892914000204
Andropogon	Canales, J., Trevisan, M.C., Silva, J.F. & Caswell, H. (1994): A demographic-
brevifolius	study of an annual grass (Andropogon brevifolius Schwarz) in burnt and
	unburnt savanna. Acta Oecologica 15(3): 261-273
Androsace	Dostál, P. (2007). Population dynamics of annuals in perennial grassland
elongata	controlled by ants and environmental stochasticity. Journal of Vegetation
	Science, 18(1), 91–102. Portico. https://doi.org/10.1111/j.1654-
	1103.2007.tb02519.x
Anemone patens	Williams, J. L., & Crone, E. E. (2006). The impact of invasive grasses on the
	population growth of Anemone patens, a long-lived native forb. Ecology,
	87(12), 3200–3208. https://doi.org/10.1890/0012-
	9658(2006)87[3200:tioigo]2.0.co;2

Species	Publication
Anthericum	Černá, L., & Münzbergová, Z. (2013). Comparative population dynamics of
ramosum	two closely related species differing in ploidy level. PLoS ONE, 8(10),
	e75563. https://doi.org/10.1371/journal.pone.0075563
Anthyllis vulneraria	Davison, R., Jacquemyn, H., Adriaens, D., Honnay, O., de Kroon, H., &
	Tuljapurkar, S. (2010). Demographic effects of extreme weather events on a
	short-lived calcareous grassland species: stochastic life table response
	experiments. Journal of Ecology, 98(2), 255–267.
	https://doi.org/10.1111/j.1365-2745.2009.01611.x
Aquilaria crassna	Zhang, L., Brockelman, W. Y., & Allen, M. A. (2008). Matrix analysis to
	evaluate sustainability: The tropical tree Aquilaria crassna, a heavily
	poached source of agarwood. Biological Conservation, 141(6), 1676–1686.
	https://doi.org/10.1016/j.biocon.2008.04.015
Aquilaria	Soehartono, T., & C. Newton, A. (2001). Conservation and sustainable use of
malaccensis	tropical trees in the genus Aquilaria II. The impact of gaharu harvesting in
	Indonesia. Biological Conservation, 97(1), 29–41.
	https://doi.org/10.1016/s0006-3207(00)00089-6
Aquilaria	Soehartono, T., & C. Newton, A. (2001). Conservation and sustainable use of
microcarpa	tropical trees in the genus Aquilaria II. The impact of gaharu harvesting in
	Indonesia. Biological Conservation, 97(1), 29–41.
	https://doi.org/10.1016/s0006-3207(00)00089-6
Aquilegia	Stubben, C.J. (2007). Projecting the response of yellow columbine
chrysantha	populations to climate change. PhD thesis, New Mexico State University,
	Las Cruces, New Mexico.
Aquilegia sp.	Stubben, C. & Milligan, B. (2007): Estimating and analyzing demographic
	models using the popbio package in R. Journal of Statistics Software 22(11):
	1-23
Araucaria	Bekessy, S., Newton, A., Fox, J., Lara, A., Premoli, A., Cortes, M., Gonzalez,
araucana	M., & Burgman, M. (2004). Monkey puzzle tree (Araucaria araucana) in
	southern Chile: Effects of timber and seed harvest, volcanic activity, and

Species	Publication
	fire. Species Conservation and Management: Case Studies (pp. 48-63). RMIT
	University.
Araucaria	Enright, N., & Ogden, J. (1979). Applications of transition matrix models in
cunninghamii	forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New
	Zealand. Austral Ecology, 4(1), 3–23. https://doi.org/10.1111/j.1442-
	9993.1979.tb01195.x
Araucaria	Enright, N. J. (1982). Does Araucaria hunsteinii compete with its
hunsteinii	neighbours? Austral Ecology, 7(1), 97–99. https://doi.org/10.1111/j.1442-
	9993.1982.tb01304.x
Araucaria muelleri	Enright, N. J., Miller, B. P., Perry, G. L. W., Goldblum, D., & Jaffré, T. (2013).
	Stress-tolerator leaf traits determine population dynamics in the
	endangered New Caledonian conifer Araucaria muelleri. Austral Ecology,
	39(1), 60–71. https://doi.org/10.1111/aec.12045
Arenaria bolosii	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Arenaria	Dostál, P. (2007). Population dynamics of annuals in perennial grassland
serpyllifolia	controlled by ants and environmental stochasticity. Journal of Vegetation
	Science, 18(1), 91–102. Portico. https://doi.org/10.1111/j.1654-
	1103.2007.tb02519.x
Argyroxiphium	Forsyth, S. A. (2003). Density-dependent seed set in the Haleakala
sandwicense subsp.	<i>silversword</i> : evidence for an Allee effect. Oecologia, 136(4), 551–557.
macrocephalum	https://doi.org/10.1007/s00442-003-1295-3
Armeria maritima	Lefebvre, C., & Chandler-Mortimer, A. (1984). Demographic characteristics
	of the perennial herb Armeria maritima on zinc lead mine wastes. The
	Journal of Applied Ecology, 21(1), 255. https://doi.org/10.2307/2403051

Species	Publication
Armeria merinoi	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Artemisia genipi	Marcante, S., Winkler, E., & Erschbamer, B. (2009). Population dynamics
	along a primary succession gradient: do alpine species fit into demographic
	succession theory? Annals of Botany, 103(7), 1129–1143.
	https://doi.org/10.1093/aob/mcp047
Asarum canadense	Damman, H., & Cain, M. L. (1998). Population growth and viability analyses
	of the clonal woodland herb, Asarum canadense. Journal of Ecology, 86(1),
	13–26. https://doi.org/10.1046/j.1365-2745.1998.00242.x
Astragalus	Nicole F. (2005): Biologie de la conservation appliquée aux plantes
alopecurus	menacées des Alpes. PhD thesis, University of Grenoble, Grenoble, France.
Astragalus	Kaye, T. (1990). Autecology, reproductive ecology, and demography of
<i>australis</i> var.	Astragalus australis var. olympicus (Fabaceae). MSc. Thesis, Oregon State
olympicus	University.
Astragalus peckii	Martin, E. F., & Meinke, R. J. (2012). Variation in the demographics of a rare
	central Oregon endemic, Astragalus peckii Piper (Fabaceae), with
	fluctuating levels of herbivory. Population Ecology, 54(3), 381–390. Portico.
	https://doi.org/10.1007/s10144-012-0318-5
Astragalus	Lesica, P (1995): Demography of Astragalus scaphoides and effects of
scaphoides	herbivory on population-growth. Great Basin Naturalis 55(2): 142-150
Astragalus	Kaye, T. N., & Pyke, D. A. (2003). The effect of stochastic technique on
tyghensis	estimates of population viability from transition matrix models. Ecology,
	84(6), 1464–1476. https://doi.org/10.1890/0012-
	9658(2003)084[1464:teosto]2.0.co;2

Species	Publication
Astrophytum	Martínez-Ávalos J.G. (2007): Estudio demográfico del "star cactus"
asterias	Astrophytum asterias (Lem.) Zucc. (Cactaceae) una especie en riesgo de
	extinción. PhD Thesis, Universidad Autónoma de Nuevo León, México.
Astrophytum	Mandujano, M. C., Bravo, Y., Verhulst, J., Carrillo-Angeles, I., & Golubov, J.
capricorne	(2015). The population dynamics of an endemic collectible cactus. Acta
	Oecologica, 63, 1–7. https://doi.org/10.1016/j.actao.2014.12.004
Astrophytum	Zepeda-Martínez, V., Mandujano, M. C., Mandujano, F. J., & Golubov, J. K.
ornatum	(2013). What can the demography of Astrophytum ornatum tell us of its
	endangered status? Journal of Arid Environments, 88, 244–249.
	https://doi.org/10.1016/j.jaridenv.2012.08.006
Avicennia	López-Hoffman, L., Ackerly, D. D., Anten, N. P. R., Denoyer, J. L., & Martinez-
germinans	Ramos, M. (2007). Gap-dependence in mangrove life-history strategies: a
	consideration of the entire life cycle and patch dynamics. Journal of
	Ecology, 95(6), 1222–1233. https://doi.org/10.1111/j.1365-
	2745.2007.01298.x
Banksia ericifolia	Bradstock, R. A., & O'Connell, M. A. (1988). Demography of woody plants in
	relation to fire: Banksia ericifolia L.f. and Petrophile pulchella (Schrad) R.Br.
	Austral Ecology, 13(4), 505–518. https://doi.org/10.1111/j.1442-
	9993.1988.tb00999.x
Borassus	Barot, S., Gignoux, J., Vuattoux, R., & Legendre, S. (2000). Demography of a
aethiopum	savanna palm tree in Ivory Coast (Lamto): population persistence and life-
	history. Journal of Tropical Ecology, 16(5), 637–655.
	https://doi.org/10.1017/s0266467400001620
Borderea chouardii	García, M. B., Guzmán, D., & Goñi, D. (2002). An evaluation of the status of
	five threatened plant species in the Pyrenees. Biological Conservation,
	103(2), 151–161. https://doi.org/10.1016/s0006-3207(01)00113-6
Boswellia	Groenendijk, P., Eshete, A., Sterck, F. J., Zuidema, P. A., & Bongers, F.
papyrifera	(2011). Limitations to sustainable frankincense production: blocked
	regeneration, high adult mortality and declining populations. Journal of

Species	Publication
	Applied Ecology, 49(1), 164–173. Portico. https://doi.org/10.1111/j.1365- 2664.2011.02078.x
Brassica insularis	Noël, F., Maurice, S., Mignot, A., Glémin, S., Carbonell, D., Justy, F., Guyot, I., Olivieri, I., & Petit, C. (2010). Interaction of climate, demography and genetics: a ten-year study of <i>Brassica insularis</i> , a narrow endemic Mediterranean species. Conservation Genetics, 11(2), 509–526. https://doi.org/10.1007/s10592-010-0056-1
Brassica napus	Garnier, A., & Lecomte, J. (2006). Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape. Ecological Modelling, 194(1–3), 141–149. https://doi.org/10.1016/j.ecolmodel.2005.10.009
Braya fernaldii	Squires, S. (2010): Insect pests and pathogens compromise the persistence of two endemic and rare <i>Braya</i> (Brassicaceae). PhD Dissertation, memorial University of Newfoundland, Newfoundland and labrador, 184 pp.
Braya longii	Squires, S. (2010): Insect pests and pathogens compromise the persistence of two endemic and rare <i>Braya</i> (Brassicaceae). PhD Dissertation, memorial University of Newfoundland, Newfoundland and Labrador, 184 pp.
Bursera glabrifolia	Hernández-Apolinar, M., Valverde, T., & Purata, S. (2006). Demography of <i>Bursera glabrifolia</i> , a tropical tree used for folk woodcrafting in Southern Mexico: An evaluation of its management plan. Forest Ecology and Management, 223(1–3), 139–151. https://doi.org/10.1016/j.foreco.2005.10.072
Calathea ovandensis	Horvitz, C. C., & Schemske, D. W. (1995). Spatiotemporal variation in demographic transitions of a tropical understory herb: projection matrix analysis. Ecological Monographs, 65(2), 155–192. Portico. https://doi.org/10.2307/2937136
Callitris intratropica	Price, O., & Bowman, D. M. J. S. (1994). Fire-stick forestry: a matrix model in support of skillful fire management of <i>Callitris intratropica</i> R. T. Baker by

Species	Publication
	north Australian Aborigenes. Journal of Biogeography, 21(6), 573.
	https://doi.org/10.2307/2846032
Calluna vulgaris	Scandrett, E., & Gimingham, C. H. (1989). A model of Calluna population
	dynamics; the effects of varying seed and vegetative regeneration.
	Vegetatio, 84(2), 143–152. https://doi.org/10.1007/bf00036515
Calocedrus	Van Mantgem, P. J., & Stephenson, N. L. (2005). The accuracy of matrix
decurrens	population model projections for coniferous trees in the Sierra Nevada,
	California. Journal of Ecology, 93(4), 737–747. Portico.
	https://doi.org/10.1111/j.1365-2745.2005.01007.x
Calochortus albus	Fiedler, P. L. (1987). Life history and population dynamics of rare and
	common mariposa lilies (Calochortus pursh: Liliaceae). The Journal of
	Ecology, 75(4), 977. https://doi.org/10.2307/2260308
Calochortus	Fiedler, P. L. (1987). Life history and population dynamics of rare and
obispoensis	common mariposa lilies (Calochortus pursh: Liliaceae). The Journal of
	Ecology, 75(4), 977. https://doi.org/10.2307/2260308
Calochortus	Fiedler, P. L. (1987). Life history and population dynamics of rare and
pulchellus	common mariposa lilies (Calochortus pursh: Liliaceae). The Journal of
	Ecology, 75(4), 977. https://doi.org/10.2307/2260308
Calochortus	Fiedler, P. L. (1987). Life history and population dynamics of rare and
tiburonensis	common mariposa lilies (Calochortus pursh: Liliaceae). The Journal of
	Ecology, 75(4), 977. https://doi.org/10.2307/2260308
Carduus nutans	Shea, K., Kelly, D., Sheppard, A. W., & Woodburn, T. L. (2005). Context-
	dependent biological control of an invasive thistle. Ecology, 86(12), 3174–
	3181. https://doi.org/10.1890/05-0195
Carlina vulgaris	Jongejans, E., Jorritsma-Wienk, L. D., Becker, U., Dostál, P., Mildén, M., & de
	Kroon, H. (2010). Region versus site variation in the population dynamics of
	three short-lived perennials. Journal of Ecology, 98(2), 279–289.
	https://doi.org/10.1111/j.1365-2745.2009.01612.x

Species	Publication
Carnegiea gigantea	Steenbergh, W. F., & Lowe, C. H. (1969). Critical factors during the first
	years of life of the saguaro (Cereus giganteus) at Saguaro National
	Monument, Arizona. Ecology, 50(5), 825–834. Portico.
	https://doi.org/10.2307/1933696
Cassia nemophila	Silander, J. A. (1983). Demographic variation in the Australian desert cassia
	under grazing pressure. Oecologia, 60(2), 227–233.
	https://doi.org/10.1007/bf00379524
Castanea dentata	Davelos, A. L., & Jarosz, A. M. (2004). Demography of American chestnut
	populations: effects of a pathogen and a hyperparasite. Journal of Ecology,
	92(4), 675–685. Portico. https://doi.org/10.1111/j.0022-0477.2004.00907.x
Сесгоріа	Alvarez-Buylla, E. R. (1994). Density dependence and patch dynamics in
obtusifolia	tropical rain forests: matrix models and applications to a tree species. The
	American Naturalist, 143(1), 155–191. https://doi.org/10.1086/285599
Centaurea	Emery, S. M., & Gross, K. L. (2005). Effects of timing of prescribed fire on
maculosa	the demography of an invasive plant, spotted knapweed Centaurea
	maculosa. Journal of Applied Ecology, 42(1), 60–69.
	https://doi.org/10.1111/j.1365-2664.2004.00990.x
Cephalanthera	Shefferson, R. P., Kull, T., Tali, K., & Kellett, K. M. (2012). Linking vegetative
longifolia	dormancy to fitness in two long-lived herbaceous perennials. Ecosphere,
	3(2), art13. https://doi.org/10.1890/es11-00328.1
Chaerophyllum	Magda, D., Duru, M., & Theau, JP. (2004). Defining management rules for
aureum	grasslands using weed demographic characteristics. Weed Science, 52(3),
	339–345. https://doi.org/10.1614/p2202-067
Chamaecrista	Liu, H., Menges, E. S., & Quintana-Ascencio, P. F. (2005). Population viability
keyensis	analyses of Chamaecrista keyensis: Effects of fire season and frequency.
	Ecological Applications, 15(1), 210–221. https://doi.org/10.1890/03-5382
Chamaedorea	Valverde, T., Hernandez-Apolinar, M., & Mendoza-Amarom, S. (2006)
elegans	Effect of leaf harvesting on the demography of the tropical palm

Species	Publication
	Chamaedorea elegans in South-Eastern Mexico. Journal of Sustainable
	Forestry, 23(1), 85–105. https://doi.org/10.1300/j091v23n01_05
Chamaedorea	Endress, B. A., Gorchov, D. L., & Noble, R. B. (2004).Non-timber forest
radicalis	product extraction: effects of harvest and browsing on an understory palm.
	Ecological Applications, 14(4), 1139–1153. https://doi.org/10.1890/02-5365
Choerospondias	Brodie, J. F., Helmy, O. E., Brockelman, W. Y., & Maron, J. L. (2009).
axillaris	Functional differences within a guild of tropical mammalian frugivores.
	Ecology, 90(3), 688–698. Portico. https://doi.org/10.1890/08-0111.1
Cimicifuga elata	Kaye, T. N., & Pyke, D. A. (2003). The effect of stochastic technique on
	estimates of population viability from transition matrix models. Ecology,
	84(6), 1464–1476. https://doi.org/10.1890/0012-
	9658(2003)084[1464:teosto]2.0.co;2
Cirsium acaule	Bullock, J. M., White, S. M., Prudhomme, C., Tansey, C., Perea, R., &
	Hooftman, D. A. P. (2011). Modelling spread of British wind-dispersed
	plants under future wind speeds in a changing climate. Journal of Ecology,
	100(1), 104–115. https://doi.org/10.1111/j.1365-2745.2011.01910.x
Cirsium dissectum	Jongejans, E., de Vere, N., & de Kroon, H. (2008). Demographic vulnerability
	of the clonal and endangered meadow thistle. Plant Ecology, 198(2), 225–
	240. https://doi.org/10.1007/s11258-008-9397-y
Cirsium palustre	Ramula, S. (2008). Population dynamics of a monocarpic thistle: simulated
	effects of reproductive timing and grazing of flowering plants. Acta
	Oecologica, 33(2), 231–239. https://doi.org/10.1016/j.actao.2007.11.005
Cirsium perplexans	Dodge, G.J. 2005. Ecological effects of the biocontrol insects, Larinus planus
	and Rhinocyllus conicus, on native thistles. PhD Thesis, University of
	Maryland, Maryland
Cirsium scariosum	Dodge, G.J. 2005. Ecological effects of the biocontrol insects, Larinus planus
	and Rhinocyllus conicus, on native thistles. PhD Thesis, University of
	Maryland, Maryland

Species	Publication
Cirsium undulatum	Dodge, G.J. 2005. Ecological effects of the biocontrol insects, Larinus planus
var. <i>tracyi</i>	and Rhinocyllus conicus, on native thistles. PhD Thesis, University of
	Maryland, Maryland
Cirsium vulgare	Bullock, J. M., Hill, B. C., & Silvertown, J. (1994). Demography of Cirsium
	vulgare in a grazing experiment. The Journal of Ecology, 82(1), 101.
	https://doi.org/10.2307/2261390
Cochlearia bavarica	Abs, C. (1999). Differences in the life histories of two Cochlearia species.
	Folia Geobotanica, 34(1), 33–45. https://doi.org/10.1007/bf02803075
Cochlearia	Abs, C. (1999). Differences in the life histories of two Cochlearia species.
pyrenaica	Folia Geobotanica, 34(1), 33–45. https://doi.org/10.1007/bf02803075
Colchicum	Winter, S., Jung, L. S., Eckstein, R. L., Otte, A., Donath, T. W., & Kriechbaum,
autumnale	M. (2014). Control of the toxic plant Colchicum autumnale in semi-natural
	grasslands: effects of cutting treatments on demography and diversity.
	Journal of Applied Ecology, 51(2), 524–533. https://doi.org/10.1111/1365-
	2664.12217
Collinsia verna	Kalisz, S., & McPeek, M. A. (1992). Demography of an age-structured
	annual: resampled projection matrices, elasticity analyses, and seed bank
	effects. Ecology, 73(3), 1082–1093. Portico.
	https://doi.org/10.2307/1940182
Conyza canadensis	Bullock, J. M., White, S. M., Prudhomme, C., Tansey, C., Perea, R., &
	Hooftman, D. A. P. (2011). Modelling spread of British wind-dispersed
	plants under future wind speeds in a changing climate. Journal of Ecology,
	100(1), 104–115. https://doi.org/10.1111/j.1365-2745.2011.01910.x
Coryphantha	Schmalzel, R.J., Reichenbacher F.W. & Rutman S. (1995). Demographic
robbinsorum	study of the rare Coryphantha robbinsorum (Cactaceae) in southeastern
	Arizona. Madroño 42: 332-348
Cynoglossum	Boorman I. A. & Fuller R. M. (1984). The comparative ocology of two cond
officinale	dune hiennials: Lactura virosa L and Cunoalossum officinale L New
	aune menniais. Luciucu virosu L. anu cynogiossuni officinaie L. New

Species	Publication
	Phytologist, 96(4), 609–629. https://doi.org/10.1111/j.1469-
	8137.1984.tb03596.x
Cypripedium	Nicolè, F., Brzosko, E., & Till-Bottraud, I. (2005). Population viability analysis
calceolus	of Cypripedium calceolus in a protected area: longevity, stability and
	persistence. Journal of Ecology, 93(4), 716–726. Portico.
	https://doi.org/10.1111/j.1365-2745.2005.01010.x
Cypripedium	Shefferson, R. P., Warren, R. J., & Pulliam, H. R. (2014). Life-history costs
parviflorum var.	make perfect sprouting maladaptive in two herbaceous perennials. Journal
parviflorum	of Ecology, 102(5), 1318–1328. https://doi.org/10.1111/1365-2745.12281
Cytisus scoparius	da Silveira Pontes, L., Magda, D., Jarry, M., Gleizes, B., & Agreil, C. (2012).
	Shrub encroachment control by browsing: Targeting the right demographic
	process. Acta Oecologica, 45, 25–30.
	https://doi.org/10.1016/j.actao.2012.08.006
Dactylorhiza	Sletvold, N., Øien, DI., & Moen, A. (2010). Long-term influence of mowing
lapponica	on population dynamics in the rare orchid Dactylorhiza lapponica: The
	importance of recruitment and seed production. Biological Conservation,
	143(3), 747–755. https://doi.org/10.1016/j.biocon.2009.12.017
Daphne rodriguezii	Rodríguez-Ortega C. (2008). Consecuencias demográficas y evolutivas del
	secuestro de semillas en tres especies del género Mammillaria (Cactaceae).
	PhD Dissertation, Universidad Autónoma Metropolitana, Mexico.
Daucus carota	Verkaar, H. J., & Schenkeveld, A. J. (1984). On the ecology of short-lived
	forbs in chalk grasslands: life-history characteristics. New Phytologist, 98(4),
	659–672. https://doi.org/10.1111/j.1469-8137.1984.tb04155.x
Dicerandra	Menges, E. S., Quintana Ascencio, P. F., Weekley, C. W., & Gaoue, O. G.
frutescens	(2006). Population viability analysis and fire return intervals for an endemic
	Florida scrub mint. Biological Conservation, 127(1), 115–127.
	https://doi.org/10.1016/j.biocon.2005.08.002

Species	Publication
Digitalis purpurea	van Baalen, J., & Prins, E. G. M. (1983). Growth and reproduction of Digitalis
	purpurea in different stages of succession. Oecologia, 58(1), 84–91.
	https://doi.org/10.1007/bf00384546
Dioon merolae	Lázaro-Zermeño, J. M., González-Espinosa, M., Mendoza, A., Martínez-
	Ramos, M., & Quintana-Ascencio, P. F. (2011). Individual growth,
	reproduction and population dynamics of Dioon merolae (Zamiaceae) under
	different leaf harvest histories in Central Chiapas, Mexico. Forest Ecology
	and Management, 261(3), 427–439.
	https://doi.org/10.1016/j.foreco.2010.10.028
Dipsacus sylvestris	Werner, P. A., & Caswell, H. (1977). Population rowth rates and age versus
	stage-distribution models for teasel (Dipsacus sylvestris Huds.). Ecology,
	58(5), 1103–1111. Portico. https://doi.org/10.2307/1936930
Draba asterophora	Putnam, E. R. S. (2013): Ecology, phylogenetics, and conservation of Draba
	asterophora complex: a rare, alpine, endemic from Lake Tahoe, USA. PhD
	Thesis, Birgham Young University, Utah.
Dracocephalum	Dostálek, T., & Münzbergová, Z. (2012).Comparative population biology of
austriacum	critically endangered Dracocephalum austriacum (Lamiaceae) in two distant
	regions. Folia Geobotanica, 48(1), 75–93. https://doi.org/10.1007/s12224-
	012-9132-2
Echeveria	Martorell, C., Garcillán, P. P., & Casillas, F. (2012). Ruderality in extreme-
longissima	desert cacti? Population effects of chronic anthropogenic disturbance on
	Echinocereus lindsayi. Population Ecology, 54(2), 335–346. Portico.
	https://doi.org/10.1007/s10144-012-0307-8
Echinocactus	Jiménez-Sierra, C., Mandujano, M. C., & Eguiarte, L. E. (2007). Are
platyacanthus	populations of the candy barrel cactus (<i>Echinocactus platyacanthus</i>) in the
	desert of Tehuacán, Mexico at risk? Population projection matrix and life
	table response analysis. Biological Conservation, 135(2), 278–292.
	https://doi.org/10.1016/j.biocon.2006.10.038

Species	Publication
Echinospartum	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
algibicum	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Echium vulgare	Klemow, K. M., & Raynal, D. J. (1985). Demography of two facultative
	biennial plant species in an unproductive habitat. The Journal of Ecology,
	73(1), 147. https://doi.org/10.2307/2259775
Encephalartos	Raimondo, D. C., & Donaldson, J. S. (2003). Responses of cycads with
cycadifolius	different life histories to the impact of plant collecting: simulation models
	to determine important life history stages and population recovery times.
	Biological Conservation, 111(3), 345–358. https://doi.org/10.1016/s0006-
	3207(02)00303-8
Epipactis	Hens, H., Pakanen, VM., Jäkäläniemi, A., Tuomi, J., & Kvist, L. (2017). Low
atrorubens	population viability in small endangered orchid populations: Genetic
	variation, seedling recruitment and stochasticity. Biological Conservation,
	210, 174–183. https://doi.org/10.1016/j.biocon.2017.04.019
Eriogonum	Satterthwaite, W. H., Menges, E. S., & Quintana-Ascencio, P. F. (2002).
<i>longifolium</i> var.	Assessing scrub buckwheat population viability in relation to fire using
gnaphalifolium	multiple modeling techniques. Ecological Applications, 12(6), 1672–1687.
	https://doi.org/10.1890/1051-0761(2002)012[1672:asbpvi]2.0.co;2
Eryngium alpinum	Andrello, M., Bizoux, JP., Barbet-Massin, M., Gaudeul, M., Nicolè, F., & Till-
	Bottraud, I. (2012). Effects of management regimes and extreme climatic
	events on plant population viability in Eryngium alpinum. Biological
	Conservation, 147(1), 99–106.
	https://doi.org/10.1016/j.biocon.2011.12.012
Eryngium	Menges, E. S., & Quintana-Ascencio, P. F. (2004). Population viability with
cuneifolium	fire in Eryngium cuneifolium: Deciphering a decade of demographic data.
	Ecological Monographs, 74(1), 79–99. https://doi.org/10.1890/03-4029

Species	Publication
Erythronium	Kawano S., Takada T., Nakayama S., Hiratsuka A. (1987) Demographic
japonicum	differentiation and life-history evolution in temperate woodland plants. In:
	Urbanska K. M. (ed.). Differentiation Patterns in Higher Plants. Academic
	Press, Harcourt Brace Jovanovich Publishers, London, pp. 153–181.
Escontria chiotilla	Ortega, B. (2001). Demografía de la cactácea columnar Escontria chiotilla.
	MSc. Thesis, Universidad Autónoma Metropolitana, Mexico.
Espeletia spicata	Silva, J. F., Trevisan, M. C., Estrada, C. A., & Monasterio, M. (2000).
	Comparative demography of two giant caulescent rosettes (Espeletia
	timotensis and E. spicata) from the high tropical Andes. Global Ecology and
	Biogeography, 9(5), 403–413. Portico. https://doi.org/10.1046/j.1365-
	2699.2000.00187.x
Espeletia	Silva, J. F., Trevisan, M. C., Estrada, C. A., & Monasterio, M. (2000).
timotensis	Comparative demography of two giant caulescent rosettes (Espeletia
	timotensis and E. spicata) from the high tropical Andes. Global Ecology and
	Biogeography, 9(5), 403–413. Portico. https://doi.org/10.1046/j.1365-
	2699.2000.00187.x
Eupatorium	Byers, D. L., & Meagher, T. R. (1997).A comparison of demographic
perfoliatum	characteristics in a rare and a common species of Eupatorium. Ecological
	Applications, 7(2), 519–530. https://doi.org/10.1890/1051-
	0761(1997)007[0519:acodci]2.0.co;2
Eupatorium	Byers, D. L., & Meagher, T. R. (1997).A comparison of demographic
resinosum	characteristics in a rare and a common species of Eupatorium. Ecological
	Applications, 7(2), 519–530. https://doi.org/10.1890/1051-
	0761(1997)007[0519:acodci]2.0.co;2
Fagus grandifolia	Batista, W. B., Platt, W. J., & Macchiavelli, R. E. (1998). Demography of a
	shade-tolerant tree (Fagus grandifolia) in a hurricane-disturbed forest.
	Ecology, 79(1), 38. https://doi.org/10.2307/176863

Species	Publication
Fritillaria meleagris	Zhang, L., & Hytteborn, H. (1985). Effect of ground water regime on
	development and distribution of Fritillaria meleagris. Ecography, 8(4), 237–
	244. https://doi.org/10.1111/j.1600-0587.1985.tb01174.x
Gardenia	Osunkoya, O. O. (2003). Two-sex population projection of the endemic and
actinocarpa	dioecious rainforest shrub, Gardenia actinocarpa (Rubiaceae). Biological
	Conservation, 114(1), 39–51. https://doi.org/10.1016/s0006-
	3207(02)00417-2
Gentianella	Lennartsson, T., & Oostermeijer, J. G. B. (2001). Demographic variation and
campestris	population viability in Gentianella campestris: effects of grassland
	management and environmental stochasticity. Journal of Ecology, 89(3),
	451–463. Portico. https://doi.org/10.1046/j.1365-2745.2001.00566.x
Geonoma	Souza, A. F., & Martins, F. R. (2006). Demography of the clonal palm
brevispatha	Geonoma brevispatha in a Neotropical swamp forest. Austral Ecology,
	31(7), 869–881. https://doi.org/10.1111/j.1442-9993.2006.01650.x
Geonoma	Rodríguez-Buriticá, S., Orjuela, M. A., & Galeano, G. (2005). Demography
orbignyana	and life history of Geonoma orbignyana: An understory palm used as
	foliage in Colombia. Forest Ecology and Management, 211(3), 329–340.
	https://doi.org/10.1016/j.foreco.2005.02.052
Geonoma	Sampaio, M. B., & Scariot, A. (2010). Effects of stochastic herbivory events
schottiana	on population maintenance of an understorey palm species (Geonoma
	schottiana) in riparian tropical forest. Journal of Tropical Ecology, 26(2),
	151–161. https://doi.org/10.1017/s0266467409990599
Geranium	Ramula, S., Toivonen, E., & Mutikainen, P. (2007). Demographic
sylvaticum	consequences of pollen limitation and inbreeding depression in a
	gynodioecious herb. International Journal of Plant Sciences, 168(4), 443–
	453. https://doi.org/10.1086/512040
Geum rivale	Kiviniemi, K. (2002). Population dynamics of Agrimonia eupatoria and Geum
	<i>rivale</i> , two perennial grassland species. Plant Ecology, 159(2), 153–169.
	https://doi.org/10.1023/a:1015506019670

Species	Publication
Gilia tenuiflora	Levine, J. M., McEachern, A. K., & Cowan, C. (2008). Rainfall effects on rare
subsp. hoffmannii	annual plants. Journal of Ecology, 96(4), 795–806.
	https://doi.org/10.1111/j.1365-2745.2008.01375.x
Grias peruviana	Peters, C.M. 1990b. Population ecology and management of forest fruit
	trees in Peruvian Amazonian. In A.B. Anderson (ed.), Alternatives to
	Deforestation: Steps Toward Sustainable Use of the Amazon Rain Forest,
	pp. 86-98. Columbia University Press, New York
Guaiacum sanctum	Lopez-Toledo, L., Burslem, D. F. R. P., Martinez-Ramos, M. & Garcia-
	Naranno, A. (2008): Non-detriment findings report on Guaiacum sanctum in
	Mexico. NDF Workshop Case Studies, WG1 - Trees, Case Study 7. CITES
	Plant Commitee, Mexico
Haplopappus	Kaye, T. N., & Pyke, D. A. (2003). The effect of stochastic technique on
radiatus	estimates of population viability from transition matrix models. Ecology,
	84(6), 1464–1476. https://doi.org/10.1890/0012-
	9658(2003)084[1464:teosto]2.0.co;2
Helenium	Adams, V. M., Marsh, D. M., & Knox, J. S. (2005). Importance of the seed
virginicum	bank for population viability and population monitoring in a threatened
	wetland herb. Biological Conservation, 124(3), 425–436.
	https://doi.org/10.1016/j.biocon.2005.02.001
Helianthemum	Marrero-Gómez, M. V., Oostermeijer, J. G. B., Carqué-Álamo, E., & Bañares-
juliae	Baudet, Á. (2007). Population viability of the narrow endemic
	Helianthemum juliae (Cistaceae) in relation to climate variability. Biological
	Conservation, 136(4), 552–562.
	https://doi.org/10.1016/j.biocon.2007.01.010
Helianthemum	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
polygonoides	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.

Species	Publication
Heliconia	Bruna, E. M. (2003). Are plant populations in fragmented habitats
acuminata	recruitment limited? Tests with an Amazonian herb. Ecology, 84(4), 932–
	947. https://doi.org/10.1890/0012-9658(2003)084[0932:appifh]2.0.co;2
Heracleum	Nehrbass, N., Winkler, E., Pergl, J., Perglova, I., & Pysek, P. (2006). Empirical
mantegazzianum	and virtual investigation of the population dynamics of an alien plant under
	the constraints of local carrying capacity: Heracleum mantegazzianum in
	the Czech Republic. Perspectives in Plant Ecology, Evolution and
	Systematics, 7(4), 253–262. https://doi.org/10.1016/j.ppees.2005.11.001
Hieracium	Thomas, A. G., & Dale, H. M. (1975). The role of seed reproduction in the
floribundum	dynamics of established populations of <i>Hieracium floribundum</i> and a
	comparison with that of vegetative reproduction. Canadian Journal of
	Botany, 53(24), 3022–3031. https://doi.org/10.1139/b75-331
Himantoglossum	Pfeifer, M., Wiegand, K., Heinrich, W., & Jetschke, G. (2006). Long-term
hircinum	demographic fluctuations in an orchid species driven by weather:
	implications for conservation planning. Journal of Applied Ecology, 43(2),
	313–324. https://doi.org/10.1111/j.1365-2664.2006.01148.x
Hymenoxys	Campbell, L. G., & Husband, B. C. (2005). Impact of clonal growth on
herbacea	effective population size in Hymenoxys herbacea (Asteraceae). Heredity,
	94(5), 526–532. https://doi.org/10.1038/sj.hdy.6800653
Hypericum	Quintana-Ascencio, P. F., Menges, E. S., & Weekley, C. W. (2003). A fire-
cumulicola	explicit population viability analysis of Hypericum cumulicola in Florida
	rosemary scrub. Conservation Biology, 17(2), 433–449.
	https://doi.org/10.1046/j.1523-1739.2003.01431.x
Ipomopsis	Campbell, D. R., & Waser, N. M. (2007). Evolutionary dynamics of an
tenuituba	Ipomopsis hybrid zone: Confronting models with lifetime fitness data. The
	American Naturalist, 169(3), 298–310. https://doi.org/10.1086/510758
Iris germanica	Burns, J. H., Pardini, E. A., Schutzenhofer, M. R., Chung, Y. A., Seidler, K. J., &
	Knight, T. M. (2013). Greater sexual reproduction contributes to differences

Species	Publication
	in demography of invasive plants and their noninvasive relatives. Ecology,
	94(5), 995–1004. https://doi.org/10.1890/12-1310.1
Jurinea fontqueri	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Khaya senegalensis	Gaoue, O. G., & Ticktin, T. (2010). Effects of harvest of nontimber forest
	products and ecological differences between sites on the demography of
	african mahogany. Conservation Biology, 24(2), 605–614.
	https://doi.org/10.1111/j.1523-1739.2009.01345.x
Knautia arvensis	Johansen, L., Wehn, S., & Hovstad, K. A. (2016). Clonal growth buffers the
	effect of grazing management on the population growth rate of a perennial
	grassland herb. Flora, 223, 11–18.
	https://doi.org/10.1016/j.flora.2016.04.007
Kosteletzkya	Pino, J., Picó, F. X., & De Roa, E.(2007). Population dynamics of the rare
pentacarpos	plant Kosteletzkya pentacarpos (Malvaceae): a nine-year study. Botanical
	Journal of the Linnean Society, 153(4), 455–462.
	https://doi.org/10.1111/j.1095-8339.2007.00628.x
Kummerowia	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
striata	models for 14 alien plant species in the presence and absence of
	aboveground competition. Ecology, e02681. Portico.
	https://doi.org/10.1002/ecy.2681
Lactuca serriola	Bullock, J. M., White, S. M., Prudhomme, C., Tansey, C., Perea, R., &
	Hooftman, D. A. P. (2011). Modelling spread of British wind-dispersed
	plants under future wind speeds in a changing climate. Journal of Ecology,
	100(1), 104–115. https://doi.org/10.1111/j.1365-2745.2011.01910.x
Lantana camara	Raghu, S., Osunkoya, O. O., Perrett, C., & Pichancourt, JB. (2014).
	Historical demography of Lantana camara L. reveals clues about the
	influence of land use and weather in the management of this widespread

Species	Publication
	invasive species. Basic and Applied Ecology, 15(7), 565–572.
	https://doi.org/10.1016/j.baae.2014.08.006
Lathyrus vernus	de Vries, C., & Caswell, H. (2017). Demography when history matters:
	construction and analysis of second-order matrix population models.
	Theoretical Ecology, 11(2), 129–140. https://doi.org/10.1007/s12080-017-
	0353-0
Lathyrus vernus	Ehrlen, J. (1995). Demography of the perennial herb Lathyrus vernus. II.
	Herbivory and population dynamics. The Journal of Ecology, 83(2), 297.
	https://doi.org/10.2307/2261568
Lechea cernua	Maliakal Witt, S. (2004): Microhabitat distribution and demography of two
	Florida scrub endemic plants with comparisons to their habitat-generalist
	congeners. PhD Thesis, Louisiana State Eniversity, Louisiana.
Lechea deckertii	Maliakal Witt, S. (2004): Microhabitat distribution and demography of two
	Florida scrub endemic plants with comparisons to their habitat-generalist
	congeners. PhD Thesis, Louisiana State Eniversity, Louisiana.
Leucopogon setiger	Swab R. M. (2014): Increasing understanding of species responses to global
	changes through modeling plant metapopulation dynamics. PhD Thesis,
	University of California, Riverside.
Limonium	Baltzer, J. L., Reekie, E. G., Hewlin, H. L., Taylor, P. D., & Boates, J. S. (2002).
carolinianum	Impact of flower harvesting on the salt marsh plant Limonium carolinianum.
	Canadian Journal of Botany, 80(8), 841–851. https://doi.org/10.1139/b02-
	070
Limonium	Hegazy, A. K. (1992). Age-specific survival, mortality and reproduction, and
delicatulum	prospects for conservation of Limonium delicatulum. The Journal of Applied
	Ecology, 29(3), 549. https://doi.org/10.2307/2404462
Limonium erectum	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio

Species	Publication
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino), Madrid, 242 pp.
Limonium	Irianda I.M. Albert M. I. Cimenez Penavides I. Deminguez Lezano E. 8
	Foundary, J. M., Albert M. J., Gillenez-Bellavides, L., Dominguez-Lozano, F. &
geronense	de la flore vecesular emergendo de Capeña. Dirección Concerte de Madia
	de la nora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Limonium	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
malacitanum	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Lindera umbellate	Hara, M., Kanno, H., Hirabuki, Y., & Takehara, A. (2004). Population
subsp.	dynamics of four understorey shrub species in beech forest. Journal of
membrancea	Vegetation Science, 15(4), 475–484. Portico.
	https://doi.org/10.1111/j.1654-1103.2004.tb02286.x
Linum catharticum	Verkaar, H. J., & Schenkeveld, A. J. (1984). On the ecology of short-lived
	forbs in chalk grasslands: life-history characteristics. New Phytologist, 98(4),
	659–672. https://doi.org/10.1111/j.1469-8137.1984.tb04155.x
Linum flavum	Münzbergová, Z. (2013). Comparative demography of two co-occurring
	Linum species with different distribution patterns. Plant Biology, 15(6),
	963–970. https://doi.org/10.1111/plb.12007
Linum tenuifolium	Münzbergová, Z. (2013). Comparative demography of two co-occurring
	Linum species with different distribution patterns. Plant Biology, 15(6),
	963–970. https://doi.org/10.1111/plb.12007
Lithospermum	Bricker, M., & Maron, J. (2012). Postdispersal seed predation limits the
ruderale	abundance of a long-lived perennial forb (Lithospermum ruderale). Ecology,
	93(3), 532–543. https://doi.org/10.1890/11-0948.1

Species	Publication
Lomatium	Kaye, T. N., Pendergrass, K. L., Finley, K., & Kauffman, J. B. (2001). The effect
bradshawii	of fire on the population viability of an endangered prairie plant. Ecological
	Applications, 11(5), 1366–1380. https://doi.org/10.1890/1051-
	0761(2001)011[1366:teofot]2.0.co;2
Lomatium cookii	Kaye, T. N., & Pyke, D. A. (2003). The effect of stochastic technique on
	estimates of population viability from transition matrix models. Ecology,
	84(6), 1464–1476. https://doi.org/10.1890/0012-
	9658(2003)084[1464:teosto]2.0.co;2
Lophophora diffusa	Diaz Segura O. (2013): Dinámica poblacional de Lophophora diffusa
	"peyote" (Cactaceae) en una localidad del Estado de Querétaro. MSc.
	Thesis, Universidad Autónoma Metropolitana, Mexico.
Lupinus arboreus	Kauffman, M. J., & Maron, J. L. (2006). Consumers limit the abundance and
	dynamics of a perennial shrub with a seed bank. The American Naturalist,
	168(4), 454–470. https://doi.org/10.1086/507877
Lupinus lepidus var.	Bishop, J. G. (1996): Demographic and population genetic variation during
lobii	colonization by the herb Lupinus lepidus on Mount St. Helens. PhD Thesis,
	University of Washington.
Lupinus tidestromii	Dangremond, E. M., Pardini, E. A., & Knight, T. M. (2010). Apparent
	competition with an invasive plant hastens the extinction of an endangered
	lupine. Ecology, 91(8), 2261–2271. https://doi.org/10.1890/09-0418.1
Magnolia dealbata	Sánchez-Velásquez, L. R., & Pineda-López, M. del R. (2009). Comparative
	demographic analysis in contrasting environments of Magnolia dealbata: an
	endangered species from Mexico. Population Ecology, 52(1), 203–210.
	Portico. https://doi.org/10.1007/s10144-009-0161-5
Malacothrix	Levine, J. M., McEachern, A. K., & Cowan, C. (2008). Rainfall effects on rare
indecora	annual plants. Journal of Ecology, 96(4), 795–806.
	https://doi.org/10.1111/j.1365-2745.2008.01375.x

Species	Publication
Mammillaria	Rodríguez-Ortega C. (2008). Consecuencias demográficas y evolutivas del
hernandezii	secuestro de semillas en tres especies del género Mammillaria (Cactaceae).
	PhD Dissertation, Universidad Autónoma Metropolitana, Mexico.
Mammillaria	Martínez, A. F., Medina, G. I. M., Golubov, J., Montaña, C., & Mandujano,
huitzilopochtli	M. C. (2010). Demography of an endangered endemic rupicolous cactus.
	Plant Ecology, 210(1), 53–66. https://doi.org/10.1007/s11258-010-9737-6
Mammillaria	Valverde, T., Quijas, S., López-Villavicencio, M., & Castillo, S. (2004).
magnimamma	Population dynamics of Mammillaria magnimamma Haworth. (Cactaceae)
	in a lava-field in central Mexico. Plant Ecology (Formerly Vegetatio), 170(2),
	167–184. https://doi.org/10.1023/b:vege.0000021662.78634.de
Mammillaria	Rodríguez-Ortega C. (2008). Consecuencias demográficas y evolutivas del
solisioides	secuestro de semillas en tres especies del género Mammillaria (Cactaceae).
	PhD Dissertation, Universidad Autónoma Metropolitana, Mexico.
Manilkara zapota	Cruz-Rodríguez, J. A., López-Mata, L., & Valverde, T. (2009). A comparison of
	traditional elasticity and variance-standardized perturbation analyses: a
	case study with the tropical tree species Manilkara zapota (Sapotaceae).
	Journal of Tropical Ecology, 25(2), 135–146.
	https://doi.org/10.1017/s0266467408005713
Miconia albicans	Hoffmann, W. A. (1999). Fire and population dynamics of woody plants in a
	neotropical savanna: matrix model projections. Ecology, 80(4), 1354–1369.
	https://doi.org/10.1890/0012-9658(1999)080[1354:fapdow]2.0.co;2
Mimulus cardinalis	Angert, A. L. (2006). Demography of central and marginal populations of
	monkeyflowers (<i>Mimulus cardinalisandm</i> . Lewisii). Ecology, 87(8), 2014–
	2025. https://doi.org/10.1890/0012-9658(2006)87[2014:docamp]2.0.co;2
Mimulus lewisii	Angert, A. L. (2006). Demography of central and marginal populations of
	monkeyflowers (Mimulus cardinalisandm. Lewisii). Ecology, 87(8), 2014–
	2025. https://doi.org/10.1890/0012-9658(2006)87[2014:docamp]2.0.co;2

Species	Publication
Miscanthus	Matlaga, D. P., & Davis, A. S. (2013). Minimizing invasive potential of
giganteus	Miscanthus × giganteus grown for bioenergy: identifying demographic
	thresholds for population growth and spread. Journal of Applied Ecology,
	50(2), 479–487. Portico. https://doi.org/10.1111/1365-2664.12057
Mitrocereus	Vite González, F. & J. Zavala Hurtado, J. A. (1998). Estatus ecológicos de
fulviceps	Mammillaria pectinifera Weber y Pachycereus fulviceps Weber en el Valle
	de Zapotitlán, Puebla. Universidad Autónoma Metropolitana-Iztapalapa.
	División de Ciencias Biológicas y de la Salud. Informe final SNIB- CONABIO
	proyecto No. G022. México D. F.
Molinia caerulea	Jacquemyn, H., Brys, R., & Neubert, M. G. (2005). Fire increases invasive
	spread of Molinia caerulea mainly through changes in demographic
	parameters. Ecological Applications, 15(6), 2097–2108.
	https://doi.org/10.1890/04-1762
Mulinum spinosum	Cipriotti, P. A., & Aguiar, M. R. (2011). Direct and indirect effects of grazing
	constrain shrub encroachment in semi-arid Patagonian steppes. Applied
	Vegetation Science, 15(1), 35–47. https://doi.org/10.1111/j.1654-
	109x.2011.01138.x
Myosotis	Dostál, P. (2007). Population dynamics of annuals in perennial grassland
ramosissima	controlled by ants and environmental stochasticity. Journal of Vegetation
	Science, 18(1), 91–102. Portico. https://doi.org/10.1111/j.1654-
	1103.2007.tb02519.x
Narcissus	Barkham, J. P. (1980). Population dynamics of the wild daffodil (Narcissus
pseudonarcissus	pseudonarcissus): I. Clonal growth, seed reproduction, mortality and the
	effects of density. The Journal of Ecology, 68(2), 607.
	https://doi.org/10.2307/2259425
Neobuxbaumia	Esparza-Olguín, L., Valverde, T., & Mandujano, M. C. (2005). Comparative
macrocephala	demographic analysis of three Neobuxbaumia species (Cactaceae) with
	differing degree of rarity. Population Ecology, 47(3), 229–245. Portico.
	https://doi.org/10.1007/s10144-005-0230-3

Species	Publication
Neobuxbaumia	Esparza-Olguín, L., Valverde, T., & Mandujano, M. C. (2005). Comparative
mezcalaensis	demographic analysis of three Neobuxbaumia species (Cactaceae) with
	differing degree of rarity. Population Ecology, 47(3), 229–245. Portico.
	https://doi.org/10.1007/s10144-005-0230-3
Neobuxbaumia	Arroyo-Cosultchi, G., Golubov, J., & Mandujano, M. C. (2016). Pulse seedling
polylopha	recruitment on the population dynamics of a columnar cactus: Effect of an
	extreme rainfall event. Acta Oecologica, 71, 52–60.
	https://doi.org/10.1016/j.actao.2016.01.006
Neodypsis decaryi	Ratsirarson, J., Silander, J. A., & Richard, A. F. (1996). Conservation and
	management of a threatened Madagascar palm species, Neodypsis decaryi,
	Jumelle. Conservation Biology, 10(1), 40–52.
	https://doi.org/10.1046/j.1523-1739.1996.10010040.x
Oenothera	Thompson, D. M. (2005). Matrix models as a tool for understanding invasive
deltoides subsp.	plant and native plant interactions. Conservation Biology, 19(3), 917–928.
howellii	https://doi.org/10.1111/j.1523-1739.2005.004108.x
Orchis purpurea	Jacquemyn, H., Brys, R., & Jongejans, E. (2010). Seed limitation restricts
	population growth in shaded populations of a perennial woodland orchid.
	Ecology, 91(1), 119–129. https://doi.org/10.1890/08-2321.1
Pachycereus	Morales-Romero, D., Godínez-Álvarez, H., Campo-Alves, J., & Molina-
pecten-aboriginum	Freaner, F. (2012). Effects of land conversion on the regeneration of
	Pachycereus pecten-aboriginum and its consequences on the population
	dynamics in northwestern Mexico. Journal of Arid Environments, 77, 123–
	129. https://doi.org/10.1016/j.jaridenv.2011.09.005
Paeonia officinalis	Andrieu, E., Fréville, H., Besnard, A., Vaudey, V., Gauthier, P., Thompson, J.
	D., & Debussche, M. (2012). Forest-cutting rapidly improves the
	demographic status of Paeonia officinalis, a species threatened by forest
	closure. Population Ecology, 55(1), 147–158. Portico.
	https://doi.org/10.1007/s10144-012-0346-1

Species	Publication
Panax	Farrington, S. J., Muzika, RM., Drees, D., & Knight, T. M.(2009).Interactive
quinquefolius	effects of harvest and deer herbivory on the population dynamics of
	American ginseng. Conservation Biology, 23(3), 719–728.
	https://doi.org/10.1111/j.1523-1739.2008.01136.x
Parkinsonia	Raghu, S., Wilson, J. R., & Dhileepan, K. (2006). Refining the process of
aculeata	agent selection through understanding plant demography and plant
	response to herbivory. Australian Journal of Entomology, 45(4), 308–316.
	https://doi.org/10.1111/j.1440-6055.2006.00556.x
Paronychia	Forbis, T. A., & Doak, D. F. (2004). Seedling establishment and life history
pulvinata	trade-offs in alpine plants. American Journal of Botany, 91(7), 1147–1153.
	Portico. https://doi.org/10.3732/ajb.91.7.1147
Pedicularis	Menges, E. S. (1990). Population viability analysis for an endangered plant.
furbishiae	Conservation Biology, 4(1), 52–62. https://doi.org/10.1111/j.1523-
	1739.1990.tb00267.x
Periandra	Hoffmann, W. A., & Solbrig, O. T. (2003). The role of topkill in the
mediterranea	differential response of savanna woody species to fire. Forest Ecology and
	Management, 180(1–3), 273–286. https://doi.org/10.1016/s0378-
	1127(02)00566-2
Persoonia	McKenna D. J. (2007). Demographic and ecological indicators of rarity in a
bargoensis	suite of obligate-seeding Persoonia (Proteaceae) shrubs. PhD Thesis,
	University of Wollongong.
Persoonia	McKenna D. J. (2007). Demographic and ecological indicators of rarity in a
glaucescens	suite of obligate-seeding Persoonia (Proteaceae) shrubs. PhD Thesis,
	University of Wollongong.
Petrocoptis	García, M. B., Guzmán, D., & Goñi, D. (2002). An evaluation of the status of
pseudoviscosa	five threatened plant species in the Pyrenees. Biological Conservation,
	103(2), 151–161. https://doi.org/10.1016/s0006-3207(01)00113-6

Species	Publication
Petrophile	Bradstock, R. A., & O'Connell, M. A. (1988). Demography of woody plants in
pulchella	relation to fire: Banksia ericifolia L.f. and Petrophile pulchella (Schrad) R.Br.
	Austral Ecology, 13(4), 505–518. https://doi.org/10.1111/j.1442-
	9993.1988.tb00999.x
Phacelia insularis	Levine, J. M., McEachern, A. K., & Cowan, C. (2008). Rainfall effects on rare
var. <i>insularis</i>	annual plants. Journal of Ecology, 96(4), 795–806.
	https://doi.org/10.1111/j.1365-2745.2008.01375.x
Phaseolus lunatus	Degreef, J., Baudoin, JP., & Rocha, O. J. (1997). Case studies on breeding
	systems and its consequences for germplasm conservation. Genetic
	Resources and Crop Evolution, 44(5), 429–438.
	https://doi.org/10.1023/a:1008623521755
Phyllanthus	Ellis, M. M., Williams, J. L., Lesica, P., Bell, T. J., Bierzychudek, P., Bowles, M.,
emblica	Crone, E. E., Doak, D. F., Ehrlén, J., Ellis-Adam, A., McEachern, K., Ganesan,
	R., Latham, P., Luijten, S., Kaye, T. N., Knight, T. M., Menges, E. S., Morris,
	W. F., Nijs, H. den, Weekley, C. W. (2012). Matrix population models from
	20 studies of perennial plant populations. Ecology, 93(4), 951–951. Portico.
	https://doi.org/10.1890/11-1052.1
Phyllanthus	Ticktin, T., Ganesan, R., Paramesha, M., & Setty, S. (2012). Disentangling the
indofischeri	effects of multiple anthropogenic drivers on the decline of two tropical dry
	forest trees. Journal of Applied Ecology, 49(4), 774–784.
	https://doi.org/10.1111/j.1365-2664.2012.02156.x
Phytelephas	Bernal, R. (1998). Demography of the vegetable ivory palm Phytelephas
seemannii	seemannii in Colombia, and the impact of seed harvesting. Journal of
	Applied Ecology, 35(1), 64–74. Portico. https://doi.org/10.1046/j.1365-
	2664.1998.00280.x
Picris hieracioides	Klemow, K. M., & Raynal, D. J. (1985). Demography of two facultative
	biennial plant species in an unproductive habitat. The Journal of Ecology,
	73(1), 147. https://doi.org/10.2307/2259775

Species	Publication
Pimpinella	Auestad, I., Rydgren, K., Jongejans, E., & Kroon, H. de. (2010). Pimpinella
saxifraga	saxifraga is maintained in road verges by mosaic management. Biological
	Conservation, 143(4), 899–907.
	https://doi.org/10.1016/j.biocon.2009.12.037
Pinguicula alpina	Svensson, B. M., Carlsson, B. A., Karlsson, P. S., & Nordell, K. O. (1993).
	Comparative long-term demography of three species of <i>Pinguicula</i> . The
	Journal of Ecology, 81(4), 635. https://doi.org/10.2307/2261662
Pinguicula villosa	Svensson, B. M., Carlsson, B. A., Karlsson, P. S., & Nordell, K. O. (1993).
	Comparative long-term demography of three species of <i>Pinguicula</i> . The
	Journal of Ecology, 81(4), 635. https://doi.org/10.2307/2261662
Pinus albicaulis	Ettl, G., & N. Cottone (2004). Whitebark pine (Pinus albicaulis) in Mt. Rainier
	National Park: response to blister rust infection. Pages 36–47 in H. Akc
	akaya, M. Burgman, O.Kindvall, C. Wood, P. Sjogren-Gulve, J. Hatfield, and
	M.McCarthy (Eds.). Species conservation and management. Oxford
	University Press, New York, New York, USA
Pinus	Chien, P. D., Zuidema, P. A., & Nghia, N. H. (2008). Conservation prospects
kwangtungensis	for threatened Vietnamese tree species: results from a demographic study.
	Population Ecology, 50(2), 227–237. Portico.
	https://doi.org/10.1007/s10144-008-0079-3
Pinus lambertiana	Van Mantgem, P. J., & Stephenson, N. L. (2005). The accuracy of matrix
	population model projections for coniferous trees in the Sierra Nevada,
	California. Journal of Ecology, 93(4), 737–747. Portico.
	https://doi.org/10.1111/j.1365-2745.2005.01007.x
Pinus	López-Mata, L. (2013). The impact of seed extraction on the population
maximartinezii	dynamics of Pinus maximartinezii. Acta Oecologica, 49, 39–44.
	https://doi.org/10.1016/j.actao.2013.02.010
Pinus nigra subsp.	Buckley, Y. M., Brockerhoff, E., Langer, L., Ledgard, N., North, H., & Rees,
lauricio	M.(2005). Slowing down a pine invasion despite uncertainty in demography

Species	Publication
	and dispersal. Journal of Applied Ecology, 42(6), 1020–1030.
	https://doi.org/10.1111/j.1365-2664.2005.01100.x
Pinus strobus	Münzbergová, Z., Hadincová, V., Wild, J., & Kindlmannová, J. (2013).
	Variability in the contribution of different life stages to population growth
	as a key factor in the invasion success of <i>Pinus strobus</i> . PLoS ONE, 8(2),
	e56953. https://doi.org/10.1371/journal.pone.0056953
Pinus sylvestris	Usher, M. B. (1966). A matrix approach to the management of renewable
	resources, with special reference to selection forests. The Journal of
	Applied Ecology, 3(2), 355. https://doi.org/10.2307/2401258
Plantago	Villellas, J., Ehrlén, J., Olesen, J. M., Braza, R., & García, M. B. (2012). Plant
coronopus	performance in central and northern peripheral populations of the
	widespread Plantago coronopus. Ecography, 36(2), 136–145.
	https://doi.org/10.1111/j.1600-0587.2012.07425.x
Plantago media	Eriksson, Å., & Eriksson, O. (2000). Population dynamics of the perennial
	Plantago media in semi-natural grasslands. Journal of Vegetation Science,
	11(2), 245–252. Portico. https://doi.org/10.2307/3236803
Polemonium van-	Hill Bermingham, L. (2010). Deer herbivory and habitat type influence long-
bruntiae	term population dynamics of a rare wetland plant. Plant Ecology, 210(2),
	359–378. https://doi.org/10.1007/s11258-010-9762-5
Polygonella	Maliakal Witt, S. (2004): Microhabitat distribution and demography of two
basiramia	Florida scrub endemic plants with comparisons to their habitat-generalist
	congeners. PhD Thesis, Louisiana State Eniversity, Louisiana.
Potentilla anserina	Eriksson, O. (1988). Ramet behaviour and population growth in the clonal
	herb Potentilla anserina. The Journal of Ecology, 76(2), 522.
	https://doi.org/10.2307/2260610
Primula elatior	Jacquemyn, H., & Brys, R. (2008). Effects of stand age on the demography of
	a temperate forest herb in post-agricultural forests. Ecology, 89(12), 3480–
	3489. https://doi.org/10.1890/07-1908.1

Species	Publication
Primula veris	Ehrlén, J., Syrjänen, K., Leimu, R., Begoña Garcia, M., & Lehtilä, K. (2005).
	Land use and population growth of Primula veris: an experimental
	demographic approach. Journal of Applied Ecology, 42(2), 317–326.
	https://doi.org/10.1111/j.1365-2664.2005.01015.x
Primula vulgaris	Valverde, T., & Silvertown, J. (1998). Variation in the demography of a
	woodland understorey herb (Primula vulgaris) along the forest
	regeneration cycle: projection matrix analysis. Journal of Ecology, 86(4),
	545–562. Portico. https://doi.org/10.1046/j.1365-2745.1998.00280.x
Prosopis	Golubov, J., Mandujano, M. D. C., Franco, M., Montana, C., Eguiarte, L. E., &
glandulosa	Lopez-Portillo, J. (1999). Demography of the invasive woody perennial
	Prosopis glandulosa (honey mesquite). Journal of Ecology, 87(6), 955–962.
	https://doi.org/10.1046/j.1365-2745.1999.00420.x
Prosopis laevigata	Bernal R. (2010). Comportamiento demográfico y la dinámica espacio-
	temporal de la planta epífita <i>Tillandsia recurvata</i> L. (Bromeliaceae). PhD
	thesis. Universidad Nacional Autónoma de Mexico.
Prunus africana	Stewart, K. M. 2001. The commercial bark harvest of the African cherry
	(Prunus africana) on Mount Oku, Cameroon: effects on traditional uses and
	population dynamics. Ph.D. dissertation, Florida International University,
	Miami, FL.
Prunus serotina	Sebert-Cuvillier, E., Paccaut, F., Chabrerie, O., Endels, P., Goubet, O., &
	Decocq, G. (2007). Local population dynamics of an invasive tree species
	with a complex life-history cycle: A stochastic matrix model. Ecological
	Modelling, 201(2), 127–143.
	https://doi.org/10.1016/j.ecolmodel.2006.09.005
Pseudophoenix	Durán, R. & R. Franco. 1992. Estudio demográfico de Pseudophoenix
sargentii	sargentii. Bulletin de l'Institut Français d'Études Andines 21: 609-621.
Purshia subintegra	Maschinski, J., Baggs, J. E., Quintana-Ascencio, P. F., & Menges, E. S. (2006).
	Using population viability analysis to predict the effects of climate change
	on the extinction risk of an endangered limestone endemic shrub, arizona

Species	Publication
	cliffrose. Conservation Biology, 20(1), 218–228.
	https://doi.org/10.1111/j.1523-1739.2006.00272.x
Quercus crispula	Hiura, T., & Fujiwara, K. (1999). Density-dependence and co-existence of
	conifer and broad-leaved trees in a Japanese northern mixed forest. Journal
	of Vegetation Science, 10(6), 843–850. Portico.
	https://doi.org/10.2307/3237309
Quercus rugosa	Bonfi, C. (2006): Regeneration and population dynamics of Quercus rugosa
	at the Ajusco Volcano, Mexico. In: Kappelle, M. (eds) Ecology and
	Conservation of Neotropical Montane Oak Forests. Ecological Studies, vol
	185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28909-
	7_12
Ranunculus acris	Sarukhan, J., & Harper, J. L. (1973). Studies on plant demography:
	Ranunculus repens L., R. bulbosus L. and R. acris L.: I. Population flux and
	survivorship. The Journal of Ecology, 61(3), 675.
	https://doi.org/10.2307/2258643
Rhizophora mangle	López-Hoffman, L., Ackerly, D. D., Anten, N. P. R., Denoyer, J. L., & Martinez-
	Ramos, M. (2007). Gap-dependence in mangrove life-history strategies: a
	consideration of the entire life cycle and patch dynamics. Journal of
	Ecology, 95(6), 1222–1233. https://doi.org/10.1111/j.1365-
	2745.2007.01298.x
Rhododendron	Salguero-Gomez R. 2004. Markov Chains applied to Rhododendron
ponticum	ponticum L.: ecological terminator in Great Britain ecologically terminated
	in Spain? MSc thesis. Kingston University, London.
Rubus discolor	Lambrecht-McDowell, S. C., & Radosevich, S. R. (2005). Population
	demographics and trade-offs to reproduction of an invasive and
	noninvasive species of <i>Rubus</i> . Biological Invasions, 7(2), 281–295.
	https://doi.org/10.1007/s10530-004-0870-9
Rubus ursinus	Lambrecht-McDowell, S. C., & Radosevich, S. R. (2005). Population
	demographics and trade-offs to reproduction of an invasive and

Species	Publication
	noninvasive species of <i>Rubus</i> . Biological Invasions, 7(2), 281–295.
	https://doi.org/10.1007/s10530-004-0870-9
Sabal minor	Ramp, P.F. (1989) Natural history of <i>Sabal minor</i> : Demography, population
	genetics, and reproductive biology. Ph.D. dissertation, Tulane University,
	New Orleans, Louisiana, 211 pp.
Salsola australis	Borger, C. P. D., Scott, J. K., Renton, M., Walsh, M., & Powles, S. B. (2009).
	Assessment of management options for Salsola australis in south-west
	Australia by transition matrix modelling. Weed Research, 49(4), 400–408.
	https://doi.org/10.1111/j.1365-3180.2009.00703.x
Sanicula europaea	Gustafsson, C., & Ehrlén, J. (2003). Effects of intraspecific and interspecific
	density on the demography of a perennial herb, Sanicula europaea. Oikos,
	100(2), 317–324. Portico. https://doi.org/10.1034/j.1600-
	0706.2003.11493.x
Sarcocapnos	Salinas, M. J., Suárez, V., & Blanca, G. (2002). Demographic structure of
baetica	three species of Sarcocapnos (Fumariaceae) as a basis for their
	conservation. Canadian Journal of Botany, 80(4), 360–369.
	https://doi.org/10.1139/b02-013
Sarcocapnos	Salinas, M. J., Suárez, V., & Blanca, G. (2002). Demographic structure of
enneaphylla	three species of Sarcocapnos (Fumariaceae) as a basis for their
	conservation. Canadian Journal of Botany, 80(4), 360–369.
	https://doi.org/10.1139/b02-013
Sarcocapnos	Salinas, M. J., Suárez, V., & Blanca, G. (2002). Demographic structure of
pulcherrima	three species of Sarcocapnos (Fumariaceae) as a basis for their
	conservation. Canadian Journal of Botany, 80(4), 360–369.
	https://doi.org/10.1139/b02-013
Sarracenia alata	Brewer, J. S. (2001). A demographic analysis of fire-stimulated seedling
	establishment of Sarracenia alata (Sarraceniaceae). American Journal of
	Botany, 88(7), 1250–1257. Portico. https://doi.org/10.2307/3558336

Species	Publication
Saussurea medusa	Law, W., Salick, J., & Knight, T. M. (2010). The effects of pollen limitation on
	population dynamics of snow lotus (Saussurea medusa and S. laniceps,
	Asteraceae): Threatened Tibetan medicinal plants of the eastern Himalayas.
	Plant Ecology, 210(2), 343–357. https://doi.org/10.1007/s11258-010-9761-
	6
Saxifraga	Dostál, P. (2007). Population dynamics of annuals in perennial grassland
tridactylites	controlled by ants and environmental stochasticity. Journal of Vegetation
	Science, 18(1), 91–102. Portico. https://doi.org/10.1111/j.1654-
	1103.2007.tb02519.x
Scabiosa	Verkaar, H. J., & Schenkeveld, A. J. (1984). On the ecology of short-lived
columbaria	forbs in chalk grasslands: life-history characteristics. New Phytologist, 98(4),
	659–672. https://doi.org/10.1111/j.1469-8137.1984.tb04155.x
Scorzonera	Münzbergová, Z. (2006). Effect of population size on the prospect of species
hispanica	survival. Folia Geobotanica, 41(2), 137–150.
	https://doi.org/10.1007/bf02806475
Senecio filaginoides	Cipriotti, P. A., & Aguiar, M. R. (2011). Direct and indirect effects of grazing
	constrain shrub encroachment in semi-arid Patagonian steppes. Applied
	Vegetation Science, 15(1), 35–47. https://doi.org/10.1111/j.1654-
	109x.2011.01138.x
Shorea acuminata	Yamada, T., Yamada, Y., Okuda, T., & Fletcher, C. (2012). Soil-related
	variations in the population dynamics of six dipterocarp tree species with
	strong habitat preferences. Oecologia, 172(3), 713–724.
	https://doi.org/10.1007/s00442-012-2529-z
Shorea bracteolata	Yamada, T., Yamada, Y., Okuda, T., & Fletcher, C. (2012). Soil-related
	variations in the population dynamics of six dipterocarp tree species with
	strong habitat preferences. Oecologia, 172(3), 713–724.
	https://doi.org/10.1007/s00442-012-2529-z
Silene acaulis	Morris, W. F., & Doak, D. F. (1998). Life history of the long-lived
	gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from

Species	Publication
	size-based population projection matrices. American Journal of Botany,
	85(6), 784–793. Portico. https://doi.org/10.2307/2446413
Silene spaldingii	Lesica, P., & Crone, E. E. (2007). Causes and consequences of prolonged
	dormancy for an iteroparous geophyte, Silene spaldingii. Journal of Ecology,
	95(6), 1360–1369. https://doi.org/10.1111/j.1365-2745.2007.01291.x
Sonchus pustulatus	Silva, J. L., Mejías, J. A., & García, M. B. (2015). Demographic vulnerability in
	cliff-dwelling Sonchus species endemic to the western Mediterranean. Basic
	and Applied Ecology, 16(4), 316–324.
	https://doi.org/10.1016/j.baae.2015.02.009
Stenocereus eruca	Clark-Tapia, R., Mandujano, M. C., Valverde, T., Mendoza, A., & Molina-
	Freaner, F. (2005). How important is clonal recruitment for population
	maintenance in rare plant species?: the case of the narrow endemic cactus,
	Stenocereus eruca, in Baja California, México. Biological Conservation,
	124(1), 123–132. https://doi.org/10.1016/J.BIOCON.2005.01.019
Stryphnodendron	Hartshorn, G. S. 1972. The ecological life history and population dynamics
excelsum	of Pen-taclethra macroloba, a tropical wet forest dominant and
	Stryphnodendron excel-sum, an occasional associate. Ph.D. Thesis,
	University Washington, Seattle.
Succisa pratensis	Milden, M. (2005): Local and regional dynamics of Succisa pratensis. PhD
	Thesis, University of Stockholm.
Syzygium jambos	Brown, K. A., Spector, S., & Wu, W. (2008). Multi-scale analysis of species
	introductions: combining landscape and demographic models to improve
	management decisions about non-native species. Journal of Applied
	Ecology, 45(6), 1639–1648. https://doi.org/10.1111/j.1365-
	2664.2008.01550.x
Taxus floridana	Kwit, C., Horvitz, C. C., & Platt, W. J. (2004). Conserving slow-growing, long-
	lived tree species: input from the demography of a rare understory conifer,
	Taxus floridana. Conservation Biology, 18(2), 432–443.
	https://doi.org/10.1111/j.1523-1739.2004.00567.x

Species	Publication
Thymus webbianus	Iriondo, J.M., Albert M. J., Gimenez-Benavides, L., Dominguez-Lozano, F. &
	Escudero, A. [Eds.] (2009): Poblaciones en peligro: viabilidad demográfica
	de la flora vascular amenazada de España. Dirección General de Medio
	Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y
	Marino), Madrid, 242 pp.
Tillandsia	Mondragón Chaparro, D., & Ticktin, T. (2011). Demographic effects of
macdougallii	harvesting epiphytic bromeliads and an alternative approach to collection.
	Conservation Biology, 25(4), 797–807. https://doi.org/10.1111/j.1523-
	1739.2011.01691.x
Tillandsia	Winkler, M., Hülber, K., & Hietz, P. (2007). Population dynamics of epiphytic
multicaulis	bromeliads: Life strategies and the role of host branches. Basic and Applied
	Ecology, 8(2), 183–196. https://doi.org/10.1016/j.baae.2006.05.003
Tillandsia	Toledo-Aceves, T., Hernández-Apolinar, M., & Valverde, T. (2014). Potential
punctulata	impact of harvesting on the population dynamics of two epiphytic
	bromeliads. Acta Oecologica, 59, 52–61.
	https://doi.org/10.1016/j.actao.2014.05.009
Tillandsia violacea	Mondragón Chaparro, D., & Ticktin, T. (2011). Demographic effects of
	harvesting epiphytic bromeliads and an alternative approach to collection.
	Conservation Biology, 25(4), 797–807. https://doi.org/10.1111/j.1523-
	1739.2011.01691.x
Trillium	Knight, T. M. (2003). Effects of herbivory and its timing across populations
grandiflorum	of <i>Trillium grandiflorum</i> (Liliaceae). American Journal of Botany, 90(8),
	1207–1214. Portico. https://doi.org/10.3732/ajb.90.8.1207
Trollius europaeus	Lemke, T., & Salguero-Gómez, R. (2015). Land use heterogeneity causes
	variation in demographic viability of a bioindicator of species-richness in
	protected fen grasslands. Population Ecology, 58(1), 165–178.
	https://doi.org/10.1007/s10144-015-0519-9

Species	Publication
Trollius laxus	Scanga, S. E., & Leopold, D. J. (2012). Managing wetland plant populations:
	Lessons learned in Europe may apply to North American fens. Biological
	Conservation, 148(1), 69–78. https://doi.org/10.1016/j.biocon.2012.01.061
Tsuga canadensis	Lamar, W. R., & McGraw, J. B. (2005). Evaluating the use of remotely sensed
	data in matrix population modeling for eastern hemlock (Tsuga canadensis
	L.). Forest Ecology and Management, 212(1–3), 50–64.
	https://doi.org/10.1016/j.foreco.2005.02.056
Veronica arvensis	Dostál, P. (2007). Population dynamics of annuals in perennial grassland
	controlled by ants and environmental stochasticity. Journal of Vegetation
	Science, 18(1), 91–102. Portico. https://doi.org/10.1111/j.1654-
	1103.2007.tb02519.x
Verticordia	Yates, C. J., & Ladd, P. G. (2010). Using population viability analysis to
fimbrilepis subsp.	predict the effect of fire on the extinction risk of an endangered shrub
fimbrilepis	Verticordia fimbrilepis subsp. fimbrilepis in a fragmented landscape. Plant
	Ecology, 211(2), 305–319. https://doi.org/10.1007/s11258-010-9791-0
Viola fimbriatula	Solbrig, O. T., Sarandon, R., & Bossert, W. (1988). A density-dependent
	growth model of a perennial herb, Viola fimbriatula. The American
	Naturalist, 131(3), 385–400. https://doi.org/10.1086/284796
Vochysia	Boucher, D. H., & Mallona, M. A. (1997). Recovery of the rain forest tree
ferruginea	Vochysia ferruginea over 5 years following Hurricane Joan in Nicaragua: a
	preliminary population projection matrix. Forest Ecology and Management,
	91(2–3), 195–204. https://doi.org/10.1016/s0378-1127(96)03890-x
Zamia inermis	Octavio-Aguilar, P., Rivera-Fernández, A., Iglesias-Andreu, L. G., Vovides, P.
	A., & de Cáceres-González, F. F. N. (2017). Extinction risk of Zamia inermis: a
	demographic study in its single natural population. Biodiversity and
	Conservation, 26(4), 787–800. https://doi.org/10.1007/s10531-016-1270-z
Zea diploperennis	Sanchez-Velasquez, L. R., Ezcurra, E., Martinez-Ramos, M., Alvarez-Buylla,
	E., & Lorente, R. (2002). Population dynamics of Zea diploperennis, an
	endangered perennial herb: effect of slash and burn practice. Journal of

Species

Publication

Ecology, 90(4), 684-692. https://doi.org/10.1046/j.1365-

2745.2002.00702.x

699

700
bioRxiv preprint doi: https://doi.org/10.1101/2023.01.12.523821; this version posted June 21, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

701 Table S2.

702

Table S2: The effects of continent and plant growth form on vulnerability to seed harvesting. Results
of a linear model with vulnerability to seed harvesting (log-transformed) as a response variable and
plant growth form, continent, and their interaction as explanatory variables. We report results of a
simple linear model because a generalized least square model with phylogenetic correction failed
due to singular fit. The terms were fitted sequentially. Significant values are in bold. Adjusted R²=0.15

df	resid. df	F	р
5	243	10.37	<0.001
5	243	1.12	0.350
13	243	0.99	0.466
	df 5 5 13	dfresid. df5243524313243	df resid. df F 5 243 10.37 5 243 1.12 13 243 0.99

708

709

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.12.523821; this version posted June 21, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

710 **Table S3.**

711 **Table S3**: Formulation of the life history traits used to explain species vulnerability to seed harvesting

- in 280 vascular plant species. λ is the population growth rate, which corresponds to the dominant
- eigenvalue of the matrix A; I_x and m_x are stage-specific survival and fertility schedules, C is the
- submatrix describing clonal reproduction, m is the dimension of the matrix *C*, *w* is the stable stage
- distribution of the matrix **A**, with j column entries of the matrix population model.
- 716

Life history	Biological meaning	Formula		
trait				
Generation	Number of years necessary for the	$log(\int_{-\infty}^{\infty} l_{m} dx)$		
time T	individuals of a population to be fully	$T = \frac{\log(J_1 - l_X m_X dx)}{\log(\lambda)}$		
	replaced by new ones			
Desires of				
Degree of	Spread of reproduction throughout the	$S = -e^{-i0g_X} l_x m_x log(e^{-i0g_X} l_x m_x)$		
iteroparity S	lifespan of the individual as quantified			
	by Demetrius' entropy (S). High/low S			
	values correspond to			
	iteroparous/semelparous populations			
Age at sexual	Number of years that it takes an	L_{α} as described in Caswell 2001's		
maturity L_{α}	average individual in the population to	equation 5.41 (<i>35</i>)		
	become sexually reproductive			
Seed bank	Mean amount of time individuals are	As described in Caswell 2001's		
residence	expected to stay in the seedbank stage	equation 5.36 (35) according to the		
		fundamental matrix approach for the		
		life cycle stage(s) that correspond to		
		the seed bank stage(s)		
		<u>m</u>		
Clonality K	Per-canita clonal contributions	111		

Clonality K Per-capita clonal contributions weighted by the stable stage distribution of the MPM $K = \sum_{1}^{m} \overline{C_j} \overline{w_j}$

717

718

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.12.523821; this version posted June 21, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

719 Table S4.

- 720 **Table S4:** The effects of life history traits on vulnerability to seed harvesting, with significant
- 721 values (*P*<0.05) in bold. Adjusted R² = 0.61.

	df	resid. df	F	р
Generation time	1	264	215.08	<0.001
Degree of iteropartity	1	264	6.34	0.012
Age at sexual maturity	1	264	12.30	<0.001
Seed bank residence	1	264	5.14	0.024
Clonality	1	264	10.17	0.002
Plant growth type	5	264	3.57	0.003

722 723

724