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Abstract 

This work aimed to investigate the regulation and activity of 5-lipoxygenase (5-LO), the central 

enzyme in leukotriene biosynthesis, in two colorectal cancer cell lines. The leukotriene pathway 

is positively correlated with the progression of several solid malignancies; however, factors 

regulating 5-LO expression and activity in tumors are poorly understood. 

Cancer development, as well as cancer progression, are strongly dependent on the tumor 

microenvironment. In the conventional monolayer culture of cancer cell lines, cell-matrix and cell-

cell interactions present in native tumors are absent. Furthermore, it is already known that various 

colon cancer cell lines dysregulate several important signaling pathways due to 3D growth. 

Therefore, the expression of the leukotriene cascade in HT-29 and HCT-116 colorectal cancer 

cells was investigated within a three-dimensional context using multicellular tumor spheroids to 

mimic a more physiological environment compared to conventional cell culture. Especially the 

expression of 5-LO, cPLA2α, and LTA4 hydrolase was altered due to threedimensional (3D) cell 

growth, which was investigated by qPCR and Western blot analysis. High cellular density in 

monolayer cultures led to similar results. The observed 5-LO upregulation was found inversely 

correlated with cell proliferation, determined by cell cycle analysis, and activation of 

PI3K/mTORC-2- and MEK-1/ERK-dependent pathways, determined using pharmacological 

pathway inhibition, stable shRNA knockdown cell lines, and analysis via qPCR and Western blot 

analysis. Following, the transcription factor E2F1 and its target gene MYBL2 were identified to 

play a role in the repression of 5-LO during cell proliferation. For this purpose, several stable 

MYBL2 over-expression and ALOX5 reporter cell lines were prepared and analyzed. Since 5-LO 

was already identified as a direct p53 target gene, the influence of p53, which is variably 

expressed in the cell lines (HT-29, p53 R273H mut; HCT-116 p53 wt; HCT-116 p53 KO), was 

investigated as well. Furthermore, HCT-116 cells carrying a p53 knockout were investigated. The 

PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO was also found in tumor cells 

from other origins (Capan-2, Caco-2, MCF-7), which was determined using pharmacological 

pathway inhibition and following analysis via qPCR. This suggests that the identified mechanism 

might apply to other tumor entities as well.  

5-LO activity was previously described as attenuated in HT-29 and HCT-116 cells compared to 

polymorphonuclear leukocytes, which express a highly active 5-LO. However, the present study 

showed that the enzyme activity is indeed low but inducible in HT-29 and HCT-116 cells. Of note, 

the general lipid mediator profile and the mediator concentrations were comparable to those of 

M2 macrophages. Finally, the analysis of substrate availability in HT-29 and HCT-116 cells 

revealed a vast difference between formed metabolite concentrations and supplemented fatty 

acid concentrations, indicating that the substrates are either transformed into lipoxygenase-

independent metabolites or are esterified into the cellular membrane.  

In summary, the data presented in this work demonstrate that 5-LO expression and activity are 

tightly regulated in HT-29 and HCT-116 cells and fine-tuned due to environmental conditions. The 

cells suppress 5-LO during proliferation but upregulate the expression and activity of the enzyme 

under cellular stress-triggering conditions. This implies a possible role of 5-LO in manipulating the 

tumor stroma to support a tumor-promoting microenvironment. 
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1 Introduction 

1.1 Lipoxygenases 

Lipoxygenases (LOs) are enzymes that introduce molecular oxygen into polyunsaturated fatty 

acids (PUFA) containing one (or more) (1Z,4Z)-pentadiene moieties to yield the respective 

(1S,2E,4Z)-hydroperoxide (Figure 1.1) (1–3). LOs have been identified in two of the three 

domains of life, namely bacteria and eukarya. In humans, six functional lipoxygenase isoforms 

are known, which are named according to the respective position of their oxygenation site within 

arachidonic acid [(5Z, 8Z, 11Z, 14Z)-eicosatetraenoic acid (ARA)]: 5-lipoxygenase (5-LO), 

platelet-type 12-lipoxygenase (12-LO), R-type 12-lipoxygenase (12R-LO), 15-lipoxygenase-1 

(15-LO-1), 15-lipoxygenase-2 (15-LO-2), and epidermis-type lipoxygenase-3 (eLO-3). In contrast 

to the 5-LO gene (ALOX5) mapped on chromosome 10, the genes encoding the other 

lipoxygenases (ALOX12, ALOX12B, ALOX15, ALOX15B, and ALOXE3) are located in a joint 

gene cluster within chromosome 17. Nevertheless, ALOX5 is not only unique due to its location: 

While all other LOX genes are similar in size (7-21 kb), ALOX5 is much larger (71.9 kbp) (4). 

All human LOs share a closely related two-domain protein structure: A small N-terminal β-barrel 

domain and a C-terminal mostly α-helical catalytic domain. The N-terminal domain has been 

implicated in Ca2+-dependent membrane binding and activity regulation, while the C-terminal 

domain bears the catalytic center and the substrate-binding pocket. The size of the respective 

polypeptide chain ranges between 75-80 kDa (5). Within their catalytic centers LOs contain iron. 

Although the human LO enzymes share a highly conserved catalytic core, they strongly differ 

concerning the O2 access and the U-shaped hydrophobic channel. This region hosts the PUFA 

substrate and determines by its invariant leucines, which (1Z,4Z)-pentadiene is aligned at the 

active site (6). 

Depending on the type of human LO, the accepted substrates and the resulting products are 

divergent (7). Besides ARA, known substrates are linoleic acid (LA), docosahexaenoic acid 

(DHA), eicosapentaenoic acid (EPA), and endocannabinoids like N-arachidonoylethanolamine 

(AEA) and 2-arachidonoylglycerol (2AG) (see Figure 1.1 for structures of ARA, DHA, and EPA) 

(8). However, LO-metabolized products of those free fatty acids can also act as substrates. Free 

PUFAs are preferred over esterified PUFAs, but some enzymes also accept the esterified 

derivatives. Here, polyenoic fatty acids, as parts of phospholipids or cholesterol esters, serve as 

substrates (9, 10).  

The proximity of the C-3 methylene group from the (1Z,4Z)-pentadiene and the central catalytic 

iron determines the oxygenation position. Depending on the substrate binding pocket and the 

orientation of the fatty acid substrate (carboxyl-end or ω-end first), different CH2 groups are in 

position for hydrogen abstraction and the following oxygenation (7). Since LOs share closely 

related structures, their mechanism of introducing molecular oxygen to PUFAs is identical: 

Stereoselective hydrogen abstraction at C-3 of a (1Z,4Z)-pentadiene moiety, resulting in a radical, 

which migrates over the neighboring double bond and reacts with molecular oxygen at C-5 (in 

case of ARA and 5-LO), forming a peroxy radical (Figure 1.1) (11). Hydrogen abstraction and 

oxygen insertion proceed in an antarafacial relation, for example, on opposite sides of the 
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substrate. The hydrogen removal is proposed to be through a proton-coupled electron transfer 

mechanism (PCET), where the transfer of the electron and the proton proceed simultaneously 

(12). The radical is then converted into a peroxy anion and protonated to a hydroperoxide. The 

hydrogen abstraction is catalyzed by reducing the nonheme iron from Fe3+ (active, ferric form) to 

Fe2+ (inactive, ferrous form), while the peroxy anion formation is conversely catalyzed by oxidation 

of the nonheme iron from Fe2+ to Fe3+ (Figure 1.1). Therefore, the enzymes require oxidation to 

switch into their catalytically active form, which is accomplished by trace amounts of 

hydroperoxides. Nonenzymatic autoxidation can occur within a similar mechanism but without 

stereoselectivity (13). 

 

Figure 1.1: Examples for lipoxygenase substrates and scheme of the oxygenation mechanism.  

Adapted from (7) and (11). 

Through their peroxidizing function, LOs contribute to the cellular redox status, but their activity 

simultaneously depends on the redox status. Due to this redox-regulating dependency, LOs have 

significant leverage on general physiological processes besides their canonical lipid-oxidizing and 

lipid mediator-producing function (5). 
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1.1.1 5-lipoxygenase 

Like other LOs, 5-LO metabolizes ω-3 and ω-6 PUFAs into a broad range of eicosanoids. 

However, its preferred substrate is the ω-6 PUFA arachidonic acid. Leukotrienes (LTs), the main 

products of this reaction, are potent modulators of the immune system, and the enzyme itself is 

predominantly expressed in leukocytes. For this reason, 5-LO is considered part of the innate 

immune system. In the following sections the enzyme, its function, regulation, and its products 

will be described in more detail. 

1.1.1.1 The ALOX5 gene and its regulation 

The human arachidonate ALOX5 gene is located on chromosome 10q11.2 and consists of 14 

exons separated by 13 introns. The regulatory five prime untranslated region (5’UTR) of the gene 

bears the ALOX5 promoter with 10 GC-boxes, 8 of them within a GC-rich region. The promoter 

lacks TATA and CCA AAT boxes which generally, like multiple GC-boxes and a general GC-rich 

sequence, are a unique feature of housekeeping genes (14). Several transcription initiation sites 

(TIS) have been described, with the major TIS located at -65 relative to ATG (translation starting 

site (TSS)) (15). Investigations via reporter gene assay analysis of deletion mutants revealed 

three positive (-5900 to -3700 bp; -931 to -854 bp; -844 to -294 bp each relative to TSS) and two 

negative (-3400 to -1157 bp; -727 to -292 bp) regulatory regions within the ALOX5 promoter 

(Figure 1.2) (15, 16). 

The GC-rich region is mapped within the core promoter where several transcription factors were 

shown to bind. Five of the eight known GC-boxes are arranged in tandem (-176 to -147 bp, often 

referred to as GC0) and are recognized by the transcription factors Sp1 (specificity protein 1) and 

Egr-1 (early growth response protein 1) (17). The GC-rich region was also found to regulate the 

basal ALOX5 promoter activity (18). Despite those GC-boxes, the core promoter harbors several 

other putative binding sites for additional transcription factors outside the GC-rich region: Binding 

sites for NF-κB (nuclear factor kappa light-chain-enhancer of activated B cells), AP-2 (activation 

protein 2), several PU.1 (SPI-1), NFAT (nuclear factor of activated T-cells), as well as a vitamin 

D response element (VDRE) and a SMAD binding element were identified (15, 16, 19). A Myb 

binding sequence was described downstream of the 10 GC-boxes (Figure 1.2) (15). Finally, 

quantitative proteomic analysis identified several other proteins that interact with the proximal 

ALOX5 promoter in myeloid and B-lymphocytic cells. Among them the Krüpple-like factors (KLF) 

13 and 16, several zinc finger proteins (e.g., the Myc-associated zinc finger protein MAZ), and 

the helicases BLM and DHX36 (20). 
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Figure 1.2: ALOX5 promoter sequence overview.  

Dark grey indicates negative regulatory regions, while light gray indicates positive regulatory regions. Yellow (T) marks 

the TIS. ATG marks the TSS. Angular boxes indicate classical GC-boxes (GGGCGG or CCGCCC). Turquoise indicates 

Sp1 binding sites (GGGCGG or GGGAGG). The rounded lined box indicates the MYB binding region 

(AAATAAACCGTTA). The DR3 type VDRE is marked with a dot-dash line (AGGGCAAAGGGTGGA). The NF-κB 

binding site is indicated by the rounded dash line box (TAGGGAGTCCCC). 
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Besides regulation via transcription factors, the 5-LO promoter was also found to be regulated by 

deoxyribonucleic acid (DNA) methylation and histone acetylation. Studies investigating 5-LO-

positive and -negative cells of myeloid origin found that the 5-LO promoter was fully methylated 

in 5-LO-negative cell lines (U-937, HL-60TB). Cell lines that express 5-LO only after differentiation 

showed no 5-LO promoter methylation (21, 22). Furthermore, treatment of 5-LO-negative cells 

with the demethylating compound 5-Aza-2’-deoxycytidine led to 5-LO messenger ribonucleic acid 

(mRNA) expression in those cells (22). Therefore, DNA methylation was proposed to suppress 

ALOX5 expression in cells of non-myeloid origin, e.g., adherent cancer cells (19). Further, it was 

shown that the pan-HDAC (histone deacetylase) inhibitor Trichostatin A (TSA) mediates 5-LO 

upregulation within the proximal ALOX5 promoter in transfected HeLa and Mono Mac 6 (MM6) 

reporter cells (23). This effect was mediated through increased binding of Sp1 and Sp3 to GC-

box 4 (GC-box upstream of the five tandem GC-boxes) (24). Furthermore, it was demonstrated 

in HeLa reporter cells that the histone-lysine N-methyltransferase 2A (MLL1) could induce ALOX5 

expression (25). 

Naturally occurring mutations within the GC-rich region of the ALOX5 promoter were shown to 

influence the gene expression by altering the number of Sp1 and Egr-1 binding sites. However, 

deletion and insertion of the identified mutations into reporter constructs and subsequent 

transfection of Hela cells led to a decreased reporter activity compared to the wild-type (wt) 

reporter construct. In contrast, it was shown that the mutated reporter constructs carrying the 

insertion increased the reporter activity compared to the wt reporter construct in Schneider cells 

(Drosophila SL2 cells) which do not express Sp1 or Egr-1. This discrepancy was explained by the 

possibility of unknown transcription factors interacting with this promoter region (26). Besides this, 

mutations were also found within the coding sequence (cds) in exons 1, 2, and 13 but led to no 

changes in the amino acid sequence (27). 

In MM6 and HL-60 cells it was shown that myeloid cell differentiation by transforming growth 

factor beta (TGF-β) and calcitriol (1,25(OH)2-vitamin D3) induces 5-LO expression (28, 29). The 

same treatment also activates SMAD3/4 in those cells, which are known to bind intron M of the 

ALOX5 gene (30). Additionally, calcitriol activates the vitamin D receptor (VDR) that binds to the 

VDRE in the ALOX5 gene, as described above. Besides the ALOX5 promoter, VDREs are also 

found in exons 10, 12, and introns D and M. Regulation was especially shown for intron D (31). 

Therefore, ALOX5 expression was also found to be regulated independently of the promoter by 

sequences within the gene’s introns (Figure 3). The tumor suppressor p53 interacts with a p53RE 

in intron G of ALOX5. This interaction induced 5-LO expression in several p53 wt cell lines after 

genotoxic stress, while no change in expression was detected in p53 knockout and knockdown 

cells (32). 
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Figure 1.3: Schematic overview of the human ALOX5 gene.  

Figure adapted from (33). 

Moreover, by analysis of ChIP-Seq data sets several master regulators (RUNX1, SMAD1, Wnt, 

C/EBPα, GATA2) of stem cell regeneration and differentiation were identified to bind to the ALOX5 

gene (introns C, D, and G) (33).  

Besides the previously described actions, ALOX5 expression can also be modified 

posttranscriptionally by alternative splicing. Several 5-LO mRNA isoforms have been identified 

that are not substrates to non-sense-mediated mRNA decay (34). Even though those isoforms 

show no canonical enzyme activity, it was shown that some (5-LOΔ13, 5-LOΔ4) could influence 

5-LO wt activity (35, 36). While coexpression of wt 5-LO and 5-LOΔ13 in HEK293T cells reduced 

LT formation, coincubation of wt 5-LO with 5-LOΔ4 was found to have a stimulatory effect on LT 

formation. Interestingly, the cellular localization of expressed isoforms differs from the localization 

of wt 5-LO (37, 38). 

1.1.1.2 5-LO enzyme expression 

As already mentioned, 5-LO is mainly expressed in leukocytes which play a pivotal role in host 

defense. Specifically, 5-LO was found to be expressed in isolated human neutrophils, eosinophils, 

basophils, mast cells, B-lymphocytes, T-lymphocytes, dendritic cells, monocytes, and 

macrophages (33). The expression of 5-LO in B-lymphocytes was shown to depend on their 

differentiation and level of activation. 5-LO was shown to be highly expressed in the mantle zone 

area of lymph nodes, while 5-LO expression was not detectable in antibody-secreting plasma 

cells (39). Furthermore, activation of isolated human tonsillar B-lymphocytes induced 5-LO 

expression (40). While T-lymphocytes from human peripheral blood mononuclear cells (PBMCs) 

express 5-LO only when isolated freshly, 5-LO expression in macrophages depends on 

differentiation and polarization (41). 5-LO is strongly expressed in M1 macrophages, whereas 5-

LO expression in M2 macrophages is relatively low (42). Freshly isolated CD14+ (cluster of 

differentiation 14) monocytes express high levels of 5-LO, while immortalized human monocytic 

cell lines (THP-1, MM6) show a rather low 5-LO expression when not differentiated (20). However, 

cell differentiation using TGF-β and calcitriol as well as other differentiating agents strongly induce 

5-LO expression over 100-fold (28). In contrast to freshly isolated T-lymphocytes, which loose 5-

LO expression during cell cultivation, the MOLT-4 and Jurkat T-cell lines were shown to express 

high 5-LO amounts (43). In apoptotic Jurkat cells, 5-LO could be detected in lipid rafts (44). 

However, the findings for MOLT-4 and Jurkat cells are inconclusive since other studies showed 
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no ALOX5 mRNA or protein expression in those cells (40, 45, 46). 5-LO is also expressed in 

several human immortalized B-cell lines like Rec-1, BL-41, JEKO-1, and Daudi cells (20, 45, 47).  

Additionally to the status of cell differentiation, 5-LO expression was shown to correlate with 

cellular density, and cell proliferation led to a quick down-regulation of 5-LO expression (48). 

In addition to healthy leukocytes and cancer cells from the monocytic lineage of hematopoietic 

origin, 5-LO is also expressed in various human malignant tissues and epithelial cancer cell lines 

(49). Expression of the enzyme was found in tumors of the gastrointestinal tract, the reproductive, 

and the central nervous system (50–53). However, these tissues do not express 5-LO under 

physiological conditions. The expression of 5-LO and its role in cancer will be discussed in detail 

in chapter 1.2.5. 

1.1.1.3 Structure, cellular localization, and posttranslational modifications 

As described in 1.1, LOs consist of a single polypeptide chain which, in the case of 5-LO, is 673 

amino acids in length and approximately 78 kDa in size. 5-LO was found to form homo-dimers in 

aqueous solution, but dimerization is not required for leukotriene biosynthesis (54). Besides the 

typical two-domain LO structure, 5-LO bears some regulatory sites such as several nuclear import 

sequences (NIS), a nuclear export sequence (NES), an adenosine triphosphate (ATP) binding 

site (Trp75, Trp201), a calcium-binding site (Asn43, Asp44, Glu46), and a c-Src homology 3 

(SH3)-binding motif which is assumed to be the primary interaction site of 5-LO with other proteins 

(55–58). However, until today only two direct interaction partners have been identified that interact 

with the N-terminal C-2-like domain of 5-LO: The coactosin-like protein (CLP) and the multidomain 

RNA helicase/RNase III Dicer (59). Besides binding of said proteins, this domain also binds 

phosphatidylcholine vesicles and diacylglycerol (60–62).  

A crystal structure for wild-type human 5-LO is not available to date, but a model which is based 

on the crystal structure of stable-5-LO (63). Stable 5-LO lacks membrane insertion loops and 

harbors several stabilizing mutations. Comparison with the available crystal structures for rabbit 

15-LO and black sea rod 8R-LO revealed that the secondary structure elements in the enzymes 

are conserved with the exception of helix α2 which is a short 3-turn helix in stable-5-LO, while it 

is a 6-7 turn helix in 15-LO and 8R-LO (64, 65). This unique position in stable-5-LO limits access 

to the catalytic iron and provides an encapsulated catalytic center, where the entry into the active 

site is not clearly evident. Therefore, site-directed mutagenesis studies were used to identify a 

possible substrate entry and the resulting new model supports active site access, which requires 

repositioning of Phe177 and Tyr181. While Phe177 appears to play a significant role in product 

specificity, Tyr181 serves as a gatekeeper to the active site (66). Recently, stable-5-LO was also 

crystallized in combination with the allosteric inhibitor AKBA (3-acetyl-11-keto-beta-boswellic 

acid) and the redox-type inhibitor NDGA (nordihydroguaiaretic acid), which provides a better 

understanding of inhibitor binding to 5-LO (67). 

The intracellular localization of the soluble enzyme is strongly dependent on the cell type and 

state. In resting cells, 5-LO is predominantly located within the cytosol and the nuclear envelope 

(68). For example, in resting human polymorphonuclear leukocytes (PMNL, often referred to as 

neutrophils) analyzed by Western blot, 5-LO was mainly found in cytosolic fractions (69, 70). In 

contrast, resting alveolar macrophages and mast cells of human and murine origin have nuclear 
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5-LO (68). In resting and activated B-cells from patients with chronic lymphocytic leukemia, 5-LO 

was found predominantly within the nuclear fraction analyzed via Western blot (71). Furthermore, 

5-LO was also found in the cytosol in HT-29 and HCT-116 colorectal cancer cells but within the 

nuclear envelope in U2-OS osteosarcoma cells (72). Cytosolic localization was also found in HEK 

293T cells, stably transfected with wt 5-LO (37). After stimulation, the enzyme can translocate to 

the inner and outer sides of the nuclear membrane in several cells where its activity is increased. 

Translocation from the cytosol to the nuclear envelope is mediated via NIS of the enzyme (73, 

74). In activated human PMNL, 5-LO and the 5-lipoxygenase activating protein (FLAP) were found 

in the nuclear envelope (75). Furthermore, two- and three-color STORM (stochastic optical 

reconstruction microscopy) analysis of activated murine neutrophils revealed co-localization of 5-

LO and FLAP and co-localization of FLAP and cPLA2α around the nuclear envelope (76). 

The enzyme’s localization was also shown to be dependent on posttranslational modifications, 

specifically on certain phosphorylation sites. Phosphorylation of 5-LO at Ser523 (mediated 

through protein kinase A (PKA)) in NIH-3T3 mouse fibroblast led to a permanent cytosolic location 

of the enzyme (77). This was caused by masking one of the NIS by phosphorylation at Ser523 

(73, 78). This phosphorylation could be demonstrated in primary B-cells and B-cell lines but not 

in human PMNL (47). Furthermore, the phosphorylation site at Ser523 was validated via MALDI-

MS analysis after in vitro phosphorylation (79). In contrast, phosphorylation of 5-LO at Ser271 

(mediated through mitogen-activated protein kinase (MAPK), p38, and mitogen-activated protein 

kinase activated protein kinase 2 (MK2)) was described to be associated with nuclear localization 

of the enzyme (80). In addition, phosphorylation at Ser271 was reported to interfere with a nuclear 

export sequence of the enzyme. However, phosphorylation of 5-LO at Ser271 was described to 

inhibit nuclear export of the enzyme and, on the other hand, to induce nuclear export (80). This 

phosphorylation site at Ser271 could also be validated via MALDI-MS analysis and mutational 

studies (79, 81). Finally, a third phosphorylation site of 5-LO at Ser663 (mediated through 

extracellular signal-regulated kinase 2 (ERK-2)) was described in vitro (82). The influence on 5-

LO localization by this phosphorylation is unknown. Furthermore, this phosphorylation could not 

be validated via MALDI-MS analysis and is therefore, the subject of controversial discussion (79). 

1.1.1.4 Non-canonical functions 

Besides 5-LO’s canonical lipid transforming function, multiple studies implicated additional non-

canonical functions of the enzyme. 5-LO was shown to be involved in the modulation of 

transcription, the translocation of β-Catenin and Runx2, p53 trafficking and transcriptional activity, 

and the modulation of micro ribonucleic acid (miRNA) processing. 

Because 5-LO was found within the nuclear envelope and was shown to be associated with 

euchromatin in resting cells, the implication of 5-LO in transcription stands to reason (68). 

Knockout of 5-LO in mice was previously shown to have pleiotropic metabolic effects on adiposity 

and pancreatic function (83). Loss of 5-LO expression in leukemic cells reduced the activity of 

leukemic fusion proteins, which strongly activate canonical Wnt signaling. This was indicated to 

increase the self-renewal capacity of cancer stem cells (84). Furthermore, direct 5-LO and β-

catenin interaction was shown, and 5-LO/β-Catenin interaction prevented β-Catenin from entering 

the nucleus (85). Additionally, a similar interaction could be demonstrated between 5-LO and 
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Runx2. There, the interaction promoted the nuclear localization of Runx2, which led to an increase 

of EGFR transcription in cardiomyocytes (86).  

Finally, knockout of ALOX5 in HT-29, HCT-116, U-2 OS, and MM6 cells significantly altered gene 

expression independent of the canonical 5-LO activity (72, 87). Since 5-LO is a highly mobile 

enzyme and bears NIS, 5-LO was suggested to act as a shuttling regulator of transcription 

(STRaND) and is not assumed to bind DNA directly (Figure 1.5). However, 5-LO was indicated to 

interact with histones and might stabilize histone acetylation and the nucleosome-free region. 

Therefore, it might promote the transcriptional activation or repression of transcription factors 

(TFs) (33, 87). 

As discussed in 1.1.1.1, 5-LO expression is regulated by the tumor suppressor p53. 5-LO 

expression was induced by treatment with genotoxic compounds in various cancer cell lines, and 

p53 knockout completely abolished this effect (32, 88). Then again, 5-LO products were shown 

to influence the expression of pro-apoptotic p53 target genes (88). 5-LO and p53 were also shown 

to co-localize upon genotoxic stress, indicating a possible interaction. This interaction was shown 

by confocal microscopy and immunoprecipitation; therefore, 5-LO was suggested to be part of an 

autoregulatory negative feedback loop. This negative feedback loop might limit p53-dependent 

pro-apoptotic gene expression (32). 

Dicer processes miRNAs, which posttranscriptionally regulate gene expression through 

translational repression or target transcript degradation. Therefore, their influence on cellular 

processes (e.g., cell proliferation, signal transduction, immune regulation) is of high impact. 5-LO 

was shown to interact with Dicer (see 1.1.1.3) and to modulate its activity in vitro. More 

specifically, the interaction of 5-LO with Dicer was shown to alter the miRNA processing activity 

of Dicer in a pre-miRNA-specific manner (89, 90). This provides a link between miRNA-mediated 

regulation of gene expression and inflammation.  

1.1.2 12-, 15-lipoxygenase 1 & 2 

Like the ALOX5 promoter, ALOX12, ALOX15, and ALOX15B promoters lack TATA and CAAT 

boxes and show several regulatory TF binding sites (e.g., Sp1 and Sp3) (10, 91, 92). As discussed 

in 1.1.1, two different 12-LO enzymes are expressed in humans: Platelet type 12-LO (or 12-(S)-

LO) and R-type 12-LO (12-(R)-LO). As the name indicates, the platelet type is primarily expressed 

in platelets and thus, in megakaryocytes, human islet cells, and keratinocytes (93). The enzyme 

comprises 663 amino acids with a molecular weight of 75 kDa (94). Furthermore, platelet type 

12-LO was shown to form dimers like 5-LO (95). In contrast, the human R-type 12-LO is 

expressed in skin and hair follicles and comprises 694 amino acids with a molecular weight of 

approximately 80 kDa (96). The primary substrate of 12-LO is ARA yielding 12-HETE; however, 

12-(R)-LO only shows a weak enzymatic activity toward ARA. A third 12-LO type is often 

discussed as “white blood cell type 12-LO” (93). This actually refers to 15-LO-1, a lipoxygenase 

with a 12/15-lipoxygenase activity encoded by ALOX15. 15-LO-1 is primarily expressed in M2 

macrophages and eosinophils but is also found in various other cells (e.g., epithelial cells, smooth 

muscle, kidney) (97). The enzyme comprises 662 amino acids with a molecular weight of 75 kDa. 

Even though 15-LO-1 exhibits a 12/15-LO activity, its dual reaction specificity with ARA as 

substrate lies on the side of the 15-LO product (93%:7%). Utilizing the ω-3 PUFAs EPA and DHA, 

this ratio changes. With EPA and DHA as a substrate, the reaction specificity is still on the side 
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of the 15-LO product, however, to a lower percentage (EPA: 84%:16%, DHA: 60%:40%) (10). In 

contrast, 15-LO-2 exhibits a singular reaction specificity yielding the 15-LO products almost 

exclusively for all previously named PUFAs. Furthermore, 15-LO-2 is expressed in various human 

tissues and, in contrast to 15-LO-1, is constitutively expressed in human macrophages (98).  

Furthermore, 12-LO, 15-LO-1, and 15-LO-2 are expressed in several cancer tissues and cell lines. 

However, compared to 5-LO, their role in cancer pathophysiology is even more elusive and 

researched to a lesser extent (98–100).  

1.1.3 Formation of lipoxygenase-dependent oxylipins 

Bioactive oxylipins are a vast class of important signaling molecules that modulate many 

molecular and cellular processes in tissue homeostasis and pathology. One important group of 

oxylipins are eicosanoids which function as mediators of inflammation, immune responses, pain, 

and many more physiological and pathophysiological processes. The term “eicosanoids” 

describes products of ARA or other C20 fatty acids, therefore not including eicosanoid-like 

products of longer fatty acids, e.g., DHA. The most prominent subgroups of eicosanoids are 

leukotrienes, prostaglandins, thromboxanes, epoxyeicosatrienoic acids, lipoxins, and resolvins. 

However, certain resolvins can also be formed from DHA. The lipid mediator class of specialized 

pro-resolving mediators (SPMs) includes lipoxins and resolvins formed from ARA, DHA, and EPA. 

The following sub-sections will discuss the process and regulation of predominantly 5-LO-

dependent oxylipin formation.  

1.1.3.1 The leukotriene cascade 

5-LO is the central enzyme in leukotriene biosynthesis. As already described in 1.1.1.1 and 

1.1.1.2, 5-LO expression is tightly regulated. However, 5-LO product formation is also strongly 

regulated, and proper 5-LO-dependent lipid mediator formation requires the interplay of several 

proteins and enzymes. In sequential reactions, ARA is released from the nuclear membrane by 

type A phospholipases and passed by FLAP to 5-LO. In a two-step dioxygenation, 5-LO initially 

forms the intermediate 5-hydroperoxyeicosatetraenoic acid (5-H(p)ETE) which is then 

subsequently metabolized into the unstable epoxide leukotriene A4 (LTA4). The intermediate 5- 

5-H(p)ETE can also be reduced to 5-HETE via glutathione peroxidases (GPx). Depending on the 

cellular components, LTA4 can be converted to leukotriene B4 (LTB4) via leukotriene A4 hydrolase 

(LTA4H) or to cysteinyl LTs via cysteinyl leukotriene C4 synthase (LTC4S) (Figure 1.4) (13). 

However, those processes are not bound to occur inside one cell but can be shared between two 

cells due to transcellular metabolism (101–103). In fact, the transcellular metabolism of LTA4 

plays an important role in LT formation despite its unstable nature (104). Additionally, LTA4 can 

be transformed to 6-trans LTB4, 6-trans-12-epi LTB4, 5(S),6(S)-DiHETE 

(dihydroxyeicosatetraenoic acid), or 5(S),6(R)-DiHETE via non enzymatic hydrolysis (69).  

cPLA2 

The production of eicosanoids, in general, is highly dependent on substrate availability. In a 

physiological context, PUFAs are released by phospholipases which hydrolyze phospholipids 

from membranes (Figure 1.4). There, ARA, DHA, and EPA can be bound at the sn-2 position of 

phospholipids (105). These PUFAs can be released via hydrolysis of the ester bond at the sn-2 
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position by group A2 phospholipases (PLAs) (106). The three most important human PLA2s 

include cPLA2α (group IVA), a high molecular weight PLA2 that is Ca2+-dependent; sPLA2 (group 

IIA), a secreted low molecular weight PLA2 which is Ca2+ dependent as well; and iPLA2 (group 

VIA), a Ca2+-independent PLA2 (107). They show unique substrate specificity on the sn-2 acyl 

chain towards ARA, EPA, and DHA. cPLA2α was shown to be the most important enzyme for ARA 

release and, therefore, is a key component within the leukotriene cascade. The action of cPLA2 

depends on the enzyme's translocation, which is mediated by an increased intracellular Ca2+ 

concentration (108). Furthermore, cPLA2 activity is known to be phosphorylation-dependent 

(109). Recently, it has been shown that cPLA2 is not suited to process phosphatidylcholine (PC), 

phosphatidylglycerol (PG), or phosphatidylethanolamine (PE) 16:0-22:6 phospholipids but is 

capable of processing PE 16:0-20:5 phospholipids. Therefore, the release of DHA must be 

dependent on another PLA2. However, iPLA2 showed a preference for PE 16:0-20:5 compared to 

PE 16:0-22:4 and PE 16:0-20:5, indicating a preference of iPLA2 for EPA compared to ARA and 

DHA. Finally, sPLA2 prefers PC and PG 16:0-22:6 compared to PC and PG 16:0-20:4. Same 

results were found for PE 16:0-22:6, indicating a preference of sPLA2 for DHA compared to ARA 

and EPA (110).  

 

Figure 1.4: Schematic overview of the suggested biosynthetic pathway of arachidonic acid-derived leukotrienes. 

Scheme adapted from (69) and (13). 

FLAP 

The 5-lipoxygenase activating protein (FLAP) is another important member of the LT cascade. 

FLAP, which has no enzymatic activity, is an 18 kDa integral membrane protein, predominantly 

localized at the nuclear envelope and the endoplasmic reticulum (75, 111). It belongs to the 

membrane-associated proteins in the eicosanoid and glutathione metabolism (MAPEG) family. 

FLAP can form homotrimers within the nuclear membrane, but it was also found to be associated 
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with LTC4S, another member of the MAPEG family (Figure 1.5) (112, 113). FLAP was shown to 

bind ARA, and in a FLAP/5-LO complex, it presents ARA to 5-LO (Figure 1.4) (114). In this 

context, Cys159, Cys300, Cys416, and Cys418 of 5-LO were identified to be essential for this 

interaction (115). 5-LO activity is rigorously depended on FLAP in intact cells. In cell-free assays 

and cellular homogenate preparations with the addition of an exogenous substrate, 5-LO is also 

active in absence of FLAP (116, 117). However, FLAP enhanced the reaction efficiency of 5-LO 

toward LTA4 formation (118). Interestingly, it was indicated that the cellular localization of the 

FLAP/5-LO complex dictates 5-LO product formation. If the complex is located at the outer nuclear 

membrane, the formation of LTC4 via LTC4S is preferred. This is supported by a study that showed 

the localization of endogenous and overexpressed LTC4S on the outer nuclear membrane (119). 

In contrast, if the complex is located at the inner nuclear membrane, the formation of LTB4 via 

LTA4H is favored (113). This is supported by a study showing the co-localization of LTA4H and 5-

LO in the nuclei of alveolar macrophages (120). Finally, it was shown that besides LT formation, 

FLAP is also crucial for the formation of lipoxins and resolvins (69, 121). 

LTA4H and LTC4S 

As already indicated, LTA4H and LTC4S are the main enzymes metabolizing LTA4 to either LTB4 

or LTC4. LTA4H is a 69 kDa soluble metalloenzyme containing zinc within the catalytic domain. 

Besides its epoxide hydrolase function, which hydrolyzes LTA4 to LTB4, it also possesses an 

amino tripeptidase activity (122–124). This function was shown to cleave the chemoattractant 

matrikine Pro-Gly-Pro (PGP) (125). Therefore, LTA4H can fulfill two opposing functions during an 

inflammatory response. Unlike 5-LO, LTA4H is ubiquitously expressed at various levels (126). 

However, the enzyme is highly selective towards LTA4 and undergoes suicide inactivation during 

catalysis (127, 128). In contrast, LTC4S is a highly unstable 18 kDa glutathione S-transferase, 

which catalyzes the conjugation of LTA4 with glutathione (GSH), yielding in LTC4 (126). Like 

FLAP, LTC4S forms homotrimers (129). Unlike LTA4H, LTC4S is not ubiquitously expressed but 

predominantly found in hematopoietic cells, which express 5-LO (130, 131). Like LTA4H, LTC4S 

was shown to be highly substrate-specific towards LTA4. However, 5-oxo-ETE (5-oxo-

eicosatetraenoic acid) (Figure 1.4) can be metabolized via LTC4S to form the GHS adduct 5-oxo-

7-glutathionyl-8,11,14-eicosatrienoic acid (132). Recently, it was shown that LTC4S activity is 

regulated by phosphorylation via ribosomal protein S6 kinase (p70S6K) (133, 134). 
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1.1.3.2 Regulation of 5-LO activity 

As described in 1.1.1.3, 5-LO bears various binding and interaction sites and is a highly mobile 

enzyme. Therefore, its enzymatic activity is regulated and influenced by members of the LT 

cascade and various other allosteric regulators or enzyme scaffolds. The following subchapter 

will, therefore, focus on the regulation of 5-LO activity. Figure 1.5 summarizes the translocation, 

activation, and regulation of 5-LO and the leukotriene biosynthetic complex. 

Calcium 

In contrast to other LOs, Ca2+ is one of the essential factors for 5-LO. Within the cellular context, 

5-LO is activated by Ca2+ resulting in a rise of the enzymes Vmax, shortening of the enzyme's lag 

phase, and increased 5-LO product formation (135). As indicated in 1.1.1.3, Ca2+ binds within the 

C2-like domain of 5-LO (2 mol Ca2+ per mol 5-LO) and increases its hydrophobicity (136). The 

reversible binding of Ca2+ enhances the 5-LO membrane interaction, leading to an increase in 

product formation (Figure 1.5). However, this could only be observed in the presence of scaffold 

proteins or factors like membrane components, e.g., PC (62). It was further shown that Ca2+ could 

be substituted with Mg2+ but higher ion concentrations were necessary to mediate the same effect 

(137). Despite the described dependency of 5-LO on Ca2+, the enzyme shows basal activity in 

absence of Ca2+ (138). High concentrations of ARA (>20 μM) with or without PC also activate 5-

LO and increase product formation. Ca2+ was also shown to induce 5-LO translocation towards 

the nuclear membrane (139). Furthermore, agents mobilizing intracellular Ca2+ such as calcium 

ionophore (A23187), N-formylmethionine-leucyl-phenylalanine (fMLP), LTB4, or cytokines can 

induce this translocation and stimulate 5-LO product formation (140–143).  

 

Figure 1.5: Schematic overview of 5-LO regulation, translocation, and assembly of the leukotriene biosynthetic 

complex.  

Scheme adapted from (19) and (126). 
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ATP 

Another regulating factor of 5-LO activity is ATP. It enhances 5-LO activity in the presence and 

absence of Ca2+ (144, 145). However, ATP is not involved in the enzymatic reaction and is not 

hydrolyzed during 5-LO’s catalytic cycle (146). Nevertheless, it was shown that ATP is directly 

bound to 5-LO (1 mol ATP per mol 5-LO) and, therefore, allosterically activates 5-LO (147). 

Besides ATP, adenosine diphosphate (ADP), adenosine monophosphate (AMP), and uridine 

triphosphate (UTP) were shown to stimulate 5-LO activity as well; however, to a lesser extent 

than ATP (58).  

Phosphorylation and localization 

Both phosphorylation and localization affect the 5-LO’s activity and product formation. As 

described in 1.1.1.3, 5-LO can change its localization depending on the phosphorylation status. 

Summarized, the association of 5-LO with a membrane after activation generally increases 5-LO 

product formation. Therefore, PKA-mediated phosphorylation at Ser523, which mediates a 

permanent cytosolic localization of 5-LO, and MAPK/MK2-mediated phosphorylation at Ser271, 

which mediates nuclear localization of 5-LO inhibit the enzyme's activity (77). However, 

phosphorylation at Ser271 only impairs 5-LO activity if the enzyme is not challenged with calcium 

ionophore (81). Even though the phosphorylation of Ser663 could not be confirmed by MALDI-

MS analysis (1.1.1.3), mutation of stable-LOX at Ser663 to Asp, which mimics phosphorylation at 

amino acid 663, was shown to shift 5-LOs activity towards a 15-LO activity. Incubation of stable-

LOX and stable-Asp663-LOX yielded in LxA4 formation. Therefore, phosphorylation was indicated 

to play a role in regulating inflammation (148). However, those results were questioned within a 

study using wt 5-LO orthologs of different vertebrates (human, mouse, zebrafish). The study 

showed that the Ser- to Asp exchange at position 663 hardly impacts the 5-LO reaction specificity, 

wherefore 15-H(p)ETE was only detectable in trace amounts (149). Therefore, the previously 

indicated role of the phosphorylation at Ser663 in regulating inflammation within the physiological 

context is questionable.  

Protein-protein interaction partners 

Besides FLAP, 5-LO was shown to interact with the human filamentous actin-binding coactosin-

like protein and the multidomain RNA helicase/RNase III Dicer (150).  

The binding of 5-LO and CLP (1 mol CLP per mol 5-LO) was found to influence 5-LO activity. 

CLP was shown to bind F-actin and colocalize with actin stress fibers (151). Both 5-LO and CLP 

translocate toward the nuclear envelope after stimulation (152, 153). Therefore, it was 

hypothesized that 5-LO translocation might be realized through binding with CLP and 

transportation along F-actin. However, binding sites of CLP with F-actin and 5-LO were found 

close, indicating possible overlapping binding sites (154). Until now, a F-actin-CLP-5-LO complex 

has not been verified. Nevertheless, inhibition of 5-LO using hyperforin was shown to interrupt 

CLP-5-LO binding in vitro, which compromised 5-LO translocation in human PMNL (155). CLP-

5-LO interaction increased 5-LO activity in the absence and presence of PC but only in the 

presence of Ca2+. In particular, CLP binding to 5-LO promotes the formation of LTA4 (152, 153). 

Albeit, the binding of CLP and 5-LO was shown to be independent of Ca2+ but might stabilize 5-

LO by preventing turn-over inactivation (156).  

The interaction of Dicer with 5-LO was found to support Ca2+-mediated 5-LO activity, but not to 

the same extent as PC and CLP (90).  
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Intracellular redox tone 

The most crucial factor for 5-LO activity is the redox state of its central catalytic iron. For enzymatic 

activity the active ferric state is required which is regulated by the intracellular redox tone of the 

cell (Figure 1.1 and Figure 1.5). The redox tone depends on lipid hydroperoxide levels and 

glutathione peroxidase activity. Lipid hydroperoxides (e.g., 5-, 12- and 15-H(p)ETE or 13-

H(p)ODE (hydroperoxyoctadecadienoic acid)) promote 5-LO activity by shortening the enzyme's 

lag phase (157–159). However, high hydroperoxide levels inhibit the enzyme by irreversible 

turnover-dependent inactivation (160). Inorganic hydroperoxides were not capable of activating 

5-LO in homogenates of PMNL but activated 5-LO in B-cells (158, 161). 

Reducing conditions (e.g., dithiothreitol (DTT), high thiol concentrations) and glutathione 

peroxidases (GPx) suppress 5-LO activity (159, 162). GPxs reduce lipid hydroperoxides and, 

therefore, 5-LO activity. However, Ca2+ was shown to counteract GPx-mediated inactivation of 5-

LO (117). Due to the binding of Ca2+ with the C2-like domain of 5-LO, lower hydroperoxide 

concentrations are sufficient to activate 5-LO activity (163). A similar effect was shown for 1-

oleoyl-2-acetyl-sn-glycerol (OAG) (61). 

Cellular membranes, phospholipids, and diacylglycerides  

As already indicated by discussing the influence of Ca2+ on 5-LO, 5-LO associates with 

membranes via its C2-like domain. Interaction of purified 5-LO with membrane fractions was 

shown, which could be substituted with synthetic PC vesicles but not with PE, phosphatidylinositol 

(PPI), phosphatidylserine (PS), or DAG vesicles (164). Here, amino acids Trp13, Trp75, and 

Trp102 of 5-LO interact with PC. However, priming of PMNL with OAG and stimulation with fMLP 

induced 5-LO-dependent product formation. In contrast, EAG did not influence 5-LO product 

formation under the same conditions, with or without exogenous ARA (165). Furthermore, 

inhibition of DAG formation potently inhibited 5-LO product formation in PMNL, even after 

stimulation with calcium ionophore. This indicated a DAG formation-dependent 5-LO activation 

(166). 

1.1.3.3 Formation of other oxylipins derived from 5-, 12-, and 15-lipoxygenases 

Despite the classical 5-LO leukotriene formation route, 5-LO is also involved in the biosynthesis 

of other oxylipins. There, 5-LO metabolizes lipoxygenase products from 12- and 15-LO or vice 

versa. Like 5-LO, 12- and 15-LO insert molecular oxygen into ARA, DHA, and EPA according to 

the respective position of their oxygenation site within arachidonic acid (see 1.1).  

Therefore, ARA turnover by 12- and 15-LO leads to 12- and 15-HETE or, more specifically, their 

hydroperoxide intermediates. 15-HETE can be metabolized by 5-LO, and 5-HETE can be 

metabolized by 15-LO, both yielding in 5(S),15(S)-DiHETE. This dihydroxylated fatty acid 

derivative can then be further metabolized to trihydroxylated fatty acids like lipoxin A4 (LxA4), 

15(R)-LxA4, and 6(S)-LxA4. The same metabolites can be formed by metabolization of LTA4 via 

12-LO (167). Nevertheless, not all described routes are equally efficient (168). Furthermore, 15-

HETE can be metabolized to 5(S),14(R),15(S)-triHETE (LxB4); however, this requires several 

steps, including a second oxygenation step by 5-LO followed by hydrolysis of the formed 15(S)-

hydroxy-5(6)-epoxy-ETE, presumably through epoxide hydrolases (169).  

Besides the indicated routes displayed in Figure 1.6, ARA can be metabolized by cytochrome 

P450 (CYP450) and acetylated cyclooxygenase 2 (COX-2), yielding 15(R)-HETE, which was 
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further described to be metabolized via 5-LO yielding in the trihydroxilated fatty acids 15-epi-LxA4 

and 15-epi-LxB4 (170). COX-2 can be acetylated at Ser530 by acetylsalicylic acid and, due to the 

acetylation, can only produce 15-(R) prostaglandins (171). Nitrosylation of COX-2 by statins was 

described to show the same effect (172).  

 

Figure 1.6: Schematic formation paths for ARA-derived LTs and SPMs.  

Annotated enzymes are indicative. Some oxylipins can also be formed by other paths and via autoxidation. Note: Not 

all depicted paths are efficient. Figure adapted from (69) and (168). 

As indicated, all described LOs were shown to turn over the ω-3 fatty acid DHA as well, yielding 

in the respective D-series resolvins. 5-LO metabolizes DHA to the hydroperoxide intermediates 

of 4-HDHA and 7-HDHA, while 15-LO-1 forms the hydroperoxide intermediates of 17-HDHA and 

14-HDHA. These monohydroxylated derivatives are further metabolized to the dihydroxylated 

derivatives 4(S),17(S)H(p)DHA (by 15-LO via 4-H(p)DHA)) or 7(S),17(S)H(p)DHA (by 15-LO or 

5-LO via 7-H(p)DHA or 17-H(p)DHA)). 14-H(p)DHA can be converted to 13,14-epoxy-maresin 

which can be further metabolized to the dihydroxylated maresin-1 (MaR1) (173). Resolvin D5 is 

formed by the conversion of 7(S),17(S)-H(p)DHA. However, 7(S),17(S)-H(p)DHA can also be 

converted to the trihydroxylated derivatives resolvin D1 (RvD1) or resolvin D2 (RvD2). Resolvin 

D3 (RvD3) is formed from 4(S),17(S)-H(p)HDHA (174, 175). 

Besides the indicated formation routes in Figure 1.7, DHA can also be metabolized via acetylated 

COX-2 (176). The resulting R-stereoisomers are often referred to as aspirin-triggered resolvins. 

Maresin-2 (MaR2) can be formed via the soluble epoxide hydrolase (sEH), and protectin D1 (PD1, 

or neuroprotectin 1 (NPD1)) is formed by dual oxygenation of DHA via 15-LO (177, 178).  
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Figure 1.7: Schematic formation paths for DHA-derived oxylipins.  

Annotated enzymes are indicative. Some oxylipins can also be formed by other paths and via autoxidation. Note: Not 

all depicted paths are efficient. Figure adapted from (69) and (168). 

The turnover of the ω-3 fatty acid EPA by LOs yields 5-series leukotrienes, lipoxins, and E-series 

resolvins. Analog to 5-H(p)ETE, EPA can be transformed to 5-H(p)EPE via 5-LO, which can be 

metabolized to LTA5 and LTB5 in the following. Analogously to ARA-derived lipoxins, the 

intermediate LTA5 can be transformed via 12/15-LO to lipoxins LxB5, LxA5, and 6(S)-LxA5 (179). 

Besides 5-LO, 5-H(p)EPE can be metabolized via 15-LO-2, yielding the dihydroxylated derivative 

5(S),15(S)DiH(p)EPE, which can be further transformed to resolvin E4 (RvE4) (180). Turnover of 

5-H(p)EPE via acetylated COX-2 or CYP450 leads to 5(S),18(R)-DiH(p)EPE, which can be further 

transformed to resolvin E1 and E2 (RvE1, RvE2) (181). Those derivatives can also be formed by 

oxygenation of 18-(R)H(p)EPE yielding in 5(S),18(R)-DiH(p)EPE as well. Turnover of 18-

(R)H(p)EPE by 15-LO yields in resolvin E3 (RvE3) (182). However, the origin of 18(R)-HEPE in 

biological systems is not finally determined (183).  
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Figure 1.8: Schematic formation paths for EPA-derived LTs and SPMs.  

Annotated enzymes are indicative. Some oxylipins can also be formed by other paths and via autoxidation. Note: Not 

all depicted paths are efficient. Figure adapted from (69) and (168). 

All previously described derivatives are (if at all) predominantly detected in leukocytes, where the 

necessary enzymes are expressed in sufficient amounts. Besides 5-, 12-, 15-LO-1, and 15-LO-

2, FLAP was shown to be crucial for the formation of SPMs (69, 121). Furthermore, transcellular 

metabolism, including different cell types, was shown to produce SPMs in cellular models (184). 

Although various cells express the necessary enzymes, the formation of dihydroxylated and 

especially trihydroxilated derivates is generally very low compared to the simultaneously formed 

monohydroxylated pro-inflammatory lipid mediators, even under non-physiological conditions (42, 

69, 185). 

Of note, many mono- and dihydroxylated precursors can be formed via autoxidation, and several 

formation routes were found to be inefficient, especially the ones where 5-LO employs precursors 

formed by other LOs (168, 186). In addition, the analysis of SPMs conducted via LC-MS/MS 

analysis is very complex due to their low endogenous concentrations, structural analogy, and 

sensitivity to oxidation (172). 
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1.1.4 Physiological and pathophysiological role of 5-LO-dependent oxylipins 

A vast number of reports indicate the role of 5-LO-dependent fatty acid derivatives in a plethora 

of diseases and pathophysiological processes. However, LTs play a first and foremost role in the 

regulation of immune responses and tissue homeostasis. Therefore, they are often referred to as 

pro-inflammatory lipid mediators. SPMs were established as anti-inflammatory but were later 

termed pro-resolving since they were shown to stimulate and activate endogenous pathways that 

terminated inflammation (187). They mediate their actions through G-protein-coupled receptors 

(BLT1/2, CysLT1/2, ERV1, ALX, DRV1, DRV2, GPR37, and LGR6) placed within the cellular 

membrane of target cells. Leukotriene receptors (BLT1/2, CysLT1/2) and their ligand binding are 

generally better researched; therefore, their functions are less questioned (168, 188, 189). The 

following part will describe individual 5-LO-dependent mediators and receptors and their 

physiological and pathophysiological roles.  

 

Figure 1.9: Schematic time course of the inflammatory response and resolution.  

Figure adapted from (190) and (191). 

1.1.4.1 Leukotrienes 

As described, LTs are pro-inflammatory lipid mediators. They mediate pro-inflammatory actions, 

including the chemoattraction of leukocytes, inducing smooth muscle contractions, and increasing 

vascular permeability. Thereby, attracted PMNL can extravasate from the surrounding blood 

vessels invading the infected tissue (192) and oppose pathogens in the early inflammation phase 

through superoxide liberation and lysosomal enzyme release (193, 194). However, LTB4 is also 

produced and released by PMNL, increasing their phagocytotic activity and the formation of 

reactive oxygen species (ROS) (195). LTB4 also attracts monocytes, differentiating into 

macrophages within the invaded tissue (196). There, they are polarized to pro-inflammatory M1 

macrophages, which switch to resolution phase M2 macrophages in response to local mediators 

and efferocytosis (see Figure 1.9 for time course) (191). Furthermore, LTB4 also contributes to 
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the adaptive immune response by mediating the liberation of the immunoglobulins M, G, and E 

from B-lymphocytes (197, 198). 

LTB4 target cells, which express the respective receptor, are (besides leukocytes and 

lymphocytes) bronchial and vascular smooth muscle cells, endothelial cells, and peripheral 

sensory neurons (199). The effects of LTB4 are predominantly mediated through BLT1, which 

bears a 20-fold higher affinity towards LTB4 compared with the BLT2 receptor (200). BLT2 is 

ubiquitously expressed in various tissues and shows a high affinity for 12(S)-

hydroxyheptadecatrienoic acid (12-HHT), a byproduct of thromboxane synthesis, but it also 

interacts with 12- and 15-HETE (201–203). The exact physiological role of BLT2 is still elusive. 

However, BLT2 was implicated in playing a role in wound healing and protecting or providing anti-

inflammatory actions in dextran sodium sulfate (DSS)-induced colitis and allergic reactions (204–

206). Furthermore, BLT1 and BLT2 were found to form an antagonistic sensitizing system in 

peripheral sensory neurons. There, activation of BLT2 caused desensitization of TRPV1-

mediated calcium influx, indicating a possible role of BLT2 in the regulation of nociception (207). 

Besides the BLT receptors, LTB4 also interacts with the peroxisome proliferator-activated receptor 

α (PPARα), which regulates the biosynthesis of enzymes involved in the metabolism of PUFAs 

(208, 209). Therefore, the interaction of PPARα with LTB4 controls the duration of the 

inflammatory response by reducing the formation of LTB4 (208).  

In contrast, the LTB4-BLT1 axis is also linked with many chronic diseases, predominantly 

inflammatory disorders with dysregulated immune responses, including autoimmune diseases, 

allergic conditions, and local as well as systemic inflammatory diseases (199). Therefore, the list 

of diseases with a possible association to the LTB4-BLT1 axis is long: Asthma, allergic rhinitis, 

fibrotic diseases, pulmonary syndromes, arthritis, psoriasis, inflammatory bowel disease, 

rheumatoid arthritis, and cardiovascular diseases like atherosclerosis (to name a few). Only for 

some of the indicated diseases and conditions an association with the LTB4-BLT1 axis has been 

established in small-scale or nonrandomized, placebo-controlled trials (210). Of note, the 

approval of Zileuton (5-LO inhibitor) by the American Food and Drug Administration (FDA) (for 

the treatment of asthma) highlights the critical role of LTs in asthma and allergic rhinitis; however, 

the role of LTs in other diseases still needs further investigation employing larger, randomized, 

double-blind, placebo-controlled clinical trials (199). Unfortunately, the use of Zileuton is limited 

due to hepatotoxic effects (211). In addition to the diseases mentioned above, LTs were also 

connected to hallmark events of cancer, which will be discussed in 1.2.5. 

In contrast to LTB4, cysteinyl leukotrienes mediate their actions predominantly in the respiratory 

system. There, they mediate strong bronchoconstriction, increase vascular permeability, and 

prompt mucus secretion (212). Like LTB4, CysLTs attract leukocytes and exert their effects 

through GPCRs on the cell surface. CysLT1 is predominantly expressed in airway smooth muscle 

cells, vascular endothelial cells, and leukocytes (213). Therefore, CysLT1 mainly mediates the 

physiological functions of LTC4. CysLT2, on the other hand, is similar to BLT2 more evenly 

distributed across tissues. CysLT2 expression can be found beside leukocytes in cardiovascular, 

cerebral, and nervous tissues (212). CysLTs are predominantly known for their effects on the 

progression of asthma; however, they were also implicated in cardiovascular diseases 

(atherosclerosis, vascular inflammation) and CNS diseases (multiple sclerosis, Alzheimer's 

disease, Parkinson's disease, Huntington's disease). There are three approved CysLT1 receptor 

antagonists for the treatment of asthma: Zafirlukast, Montelukast, and Pranlukast (214). However, 
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the FDA recently (2020) required a boxed warning and a revision for the indication of Montelukast 

(the most prescribed CysLT1 antagonist for asthmatic patients) for allergic rhinitis due to the risk 

of neuropsychiatric events (215, 216). 

1.1.4.2 Specialized pro-resolving lipid mediators 

The resolution phase of inflammation is already initiated with the peak of PMNL infiltration (Figure 

1.9). Inflammation is considered a self-limiting, protective process to prevent unnecessary tissue 

damage and a chronic course of inflammation (217). Resolution of inflammation was considered 

a passive process for a long time, where pro-inflammatory cytokines and lipid mediators simply 

diffuse or dilute over time (218). With the identification and analysis of a new class of lipid 

mediators, SPMs, this passive-thought process was shown to be actively controlled and very 

complex. SPMs are, as described in 1.1.3, formed through the sequential oxygenation of different 

LOs. As only a few cells express several LOs, this process includes transcellular metabolism 

between different cell types. 

The release of SPMs positively modulates the resolution and termination of inflammation by, e.g., 

reducing the number of infiltrated PMNL on the active inflammation site (219). They are known to 

promote resolution by counteracting the formation of prostaglandins and leukotrienes through the 

regulation of COX-2 expression and interaction with the BLT1 receptor (220–222). However, 

RvD1 was shown to upregulate COX-2 expression (223). Furthermore, lipoxins were shown to 

induce the secretion of anti-inflammatory cytokines like IL-10, which promotes efferocytosis by 

macrophages (224). Moreover, SPMs were recently proposed as anticancer molecules suitable 

for controlling cancer-associated inflammation (225). However, evidence gained through animal 

and human studies is rare or lacking (226). 

Like LTs and CysLTs, SPMs mediate their resolution-promoting properties through GPCRs (188). 

However, some of the respective identified ligands for the receptors ERV1, ALX, DRV1, DRV2, 

GPR37, and LGR6 are discussed with dissent (168, 227, 228). Some of those receptors for pro-

resolving lipid mediators were even shown to promote pro-inflammatory effects as well, 

depending on the respective ligand (168). SPMs are promoted as promising new non-

immunosuppressive and non-opioid analgesic therapeutic options for many diseases (e.g., 

rheumatoid arthritis, chronic headaches, diabetic neuropathy) (229). SPMs were inversely 

associated with the pain score in arthritis patients, and several clinical studies link the 

supplementation with ω-3 PUFAs to reduced pain levels and higher SPM levels in various 

diseases (230–233). Unfortunately, many clinical studies investigating the effects of 

supplementation with ω-3 PUFAs do not analyze concentrations of pro-inflammatory LTs (234–

236).  

The utility of SPMs as mediators of active resolution of inflammation was questioned recently by 

a group of renowned scientists in the field (237). The reproducibility of SPM studies is difficult as 

there is no convention within the scientific community over measurement and detection criteria 

(238). Besides, lipid mediator profiles are sometimes presented as heatmaps, which only provide 

relative changes. Therefore, the often very low absolute concentrations are disregarded, and the 

presented result might be misleading (185). Furthermore, formation routes as well as receptor 

signaling are controversially discussed (168). Therefore, evidence proofing that pro-resolving lipid 
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mediators are formed in required concentrations to activate the proposed receptors during the 

resolution phase is missing (237).  

1.2 Cancer 

“Cancer” is the general term summarizing a large group of diseases centering on abnormal cell 

growth that has the potential to invade or spread from one distinct part to another in mammals. 

This includes all abnormal malignant neoplasms from different types of tissues. Cancer can be 

classified by the primary site (common by the general public) where the malignancy first 

developed and the type of tissue the cancer originates from (histological classification). The most 

common sites at which solid neoplastic malignancies develop are the skin, lungs, female breast, 

prostate, colon, rectum, cervix, and uterus. Those can be further subclassified by the type of cell 

they originate from, e.g., skin cancer can be classified into basal cell, squamous cell, and 

melanoma skin cancer (239). From the point of histology, hundreds of cancer types exist, which 

can be grouped into six major categories: Carcinoma, sarcoma, myeloma, leukemia, lymphoma, 

and mixed types. Carcinomas are the most common type, accounting for 80-90% of all cancer 

cases worldwide, and refer to malignant neoplasms of epithelial origin (240). Carcinomas can be 

further divided into adenocarcinomas (developed in organs or glands) and squamous cell 

carcinoma (originating in the squamous epithelium). Sarcomas originate from supportive and 

connective tissues like bones, muscles, fat, and tendons. The most common type of sarcoma is 

osteosarcoma (malignant neoplasm in the bone). Myeloma originates from plasma cells of the 

bone marrow. 

Leukemia or “blood cancers” are neoplasms of the bone marrow, resulting in high numbers of 

abnormal, not fully developed leukocytes. It includes four main types: Acute lymphoblastic 

leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic 

myeloid leukemia (CML) (241). Lymphomas originate from glands and nodes of the lymphatic 

system, including the spleen, tonsils, and thymus. Lymphomas can be subclassified into Hodgkin 

and non-Hodgkin lymphomas, distinguished by the presence or absence of giant cells derived 

from B lymphocytes (Reed-Sternberg cells) (242). As the name indicates, mixed-type cancers are 

neoplasm malignancies from different categories or subcategories. Examples are 

adenosquamous carcinoma or carcinosarcoma. A detailed standardized medical classification by 

type, localization, and histology is given in the ICD-O3 (International Classification of Diseases 

for Oncology) provided by the world health organization (WHO) (243). 

Cancer follows cardiovascular diseases as the leading cause of premature death in developed 

industrial countries. However, survival is worse in developing countries due to diminished 

treatment accessibility. In 2020, the number of estimated cancer cases exceeded the number of 

19 million people of both sexes worldwide. Sadly, more than 9 million cases of death caused by 

cancer were assumed. This already high cancer burden is expected to be about 28 million cases 

in 2040 (a 47% rise compared to 2020). Today, the leading cancer type is female breast cancer 

(11.7% of all new cases). However, the mortality rate for female breast cancer is lower (6.9% of 

all cancer-related deaths) compared to lung cancer (18%) and colorectal cancer (9.4%), as shown 

in Figure 1.10 (244). Those numbers show the urgent need for broad, applicable, and affordable 

cancer treatments, which challenges science due to the vast complexity of cancer phenotypes.  
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Figure 1.10: Global cancer statistics - incidence and mortality distribution by primary cancer sites in 2020.  

The figure is taken and modified from (244). 

1.2.1 Hallmarks of cancer 

Due to this vast complexity, Hanahan and Weinberg proposed in 2000 the simplification that cells 

must fulfill the so-called “hallmarks of cancer” to become a malignant neoplasm (245). Those 

hallmarks of cancer are, by today, eight biological capabilities that drain the vast complexity of 

cancer phenotypes into a set of underlying mechanisms and principles based on the fact that 

mammalian cells regulate their proliferation, differentiation, and cell death in similar ways. The six 

initially proposed hallmarks are: Self-sufficiency in growth signals, insensitivity to anti-growth 

signals, evading apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion, 

and metastasis (245). These were extended in 2011 by adding “avoiding immune destruction” 

and “deregulating cellular energetics” (summarized in Figure 1.11) (246). Even though the order 

and how those capabilities are obtained can differ vastly, achievement of all hallmarks is highly 

beneficial during tumorigenesis.  

The afore-named hallmarks alone fail to explain the complexities of malignant neoplasms and 

how they obtain the previously described functional traits and aberrant phenotypic capabilities 

during development. Therefore, Hanahan and Weinberg added the concept of enabling 

characteristics, which explains how malignant neoplasms can accomplish those functional traits. 

Today, two enabling characteristics are assumed, namely “tumor-promoting inflammation”, as 

well as “genome instability and mutation” (Figure 1.11). 
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Figure 1.11: Schematic overview of the hallmarks of cancer (blue) and enabling characteristics (red).  

Figure adapted from (246). 

Due to the high amount of cancer research worldwide, new aspects emerge; cancer hallmarks 

and enabling characteristics are regularly updated with new proposals to boost scientific 

discussion and further research in this field. Therefore, Hanahan proposed 2022 “unlocking 

phenotypic plasticity” and “senescent cells” as new hallmarks and added “non-mutational 

epigenetic reprogramming” and “polymorphic microbiomes” as new enabling characteristics 

(Figure 1.12). The hallmarks of cancer concept also considers that even though all capabilities 

are conceptually distinguishable, parts of their regulation overlap and interconnect by canonical 

oncogenes, e.g., KRAS, MYC, NOTCH, and TP53. This highlights the importance of oncogenic 

signaling pathways within tumorigenesis. 

 

Figure 1.12: Schematic overview of the emerging hallmarks and proposed enabling characteristics (2022). 

Figure adapted from (247). 
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1.2.2 Colorectal cancer 

Colorectal cancer (CRC) ranks as the third most common neoplasm malignancy (10% estimate), 

with the second highest mortality rate (9.6% estimate) worldwide (Figure 1.10). Incidences of 

CRC are high in industrially developed countries (244). However, numbers are increasing in 

developing countries due to westernization. CRC is usually asymptomatic; if symptoms like 

abdominal pain, anemia, or rectal bleeding occur, advanced stages have already been reached 

(248). CRC is most often malignant, very aggressive, and metastatic. Late diagnosis is assumed 

to be chiefly responsible for the high mortality rate. Most CRC cases are sporadic (70-80%), while 

a lower proportion has a hereditary component. A midget proportion of CRC cases is attributable 

to inflammatory bowel diseases. CRC is a heterogeneous disease that can be classified into 

consensus molecular subtypes (CMS1-4), predominantly originating from genetic instability (249).  

Therefore, most CRC subtypes are assumed to develop through the chromosomal (CIN) and 

microsatellite instability (MSI) pathway or the hypermethylation (CIMP, CpG island methylator 

phenotype) and mismatch repair pathway (MMR) (250).  

The CIN pathway proposes an accumulation of changes that facilitate tumor growth and 

eventually lead to invasive malignancies. The starting point is often the truncation of the APC 

gene, followed by mutations of KRAS, TP53, and PIK3CA. Due to mutations of the APC gene, 

the Wnt pathway is hyperactivated. CRC without APC mutations often shows mutations or 

epigenetic changes of other Wnt signaling components. In contrast, CRC resulting through the 

MSI pathway is caused by mutations in short tandem repeats. Compared to CIN, CRC emanation 

from MSI predicts a better outcome. The CIMP pathway proposes epigenetic silencing of MMR 

components mediated through CpG island hypermethylation in promoter regions of MMR genes. 

Activating BRAF mutations like BRAF V600 are unique features of CRC emanation from CIMP 

(249–251). 

1.2.3 Oncogenic signaling pathways  

Cellular signaling is the major communication process of cells — one of the main properties of 

life in pro- and eukaryotes (252). This signaling includes the detection and production of signaling 

molecules and the regulation of transcription in response. Signaling molecules (ligands) include 

monoamines, amino acids, proteins, glycoproteins, lipids, phospholipids, and gases (253–258). 

They can bind to surface receptors that detect the signaling molecules and start signal 

transduction, transmitted by a multi-step sequence. This sequence often includes signal 

amplification and is most commonly transmitted through protein phosphorylation mediated by 

protein kinases (259). Due to their cellular function, most canonical signaling pathways necessary 

for proper cellular function include proto-oncogenes (260). These proto-oncogenes usually 

regulate processes like cell growth and differentiation, but when mutated, they become overactive 

and are named oncogenes (261). However, activation can also be triggered through general 

dysregulation, chromosome abnormality, and chromosomal translocation (262, 263). Oncogenic 

mutations can also occur in tumor suppressor genes. Tumor suppressor genes usually inhibit the 

cell cycle and growth, but when mutated or lost, they concede unrestricted cell division and growth 

(264). Mutations can also affect DNA repair genes or DNA mismatch, which then leads to the 

accumulation of mutations in other genes (265).  
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Several critical signaling pathways and molecular networks that regulate essential processes like 

proliferation, survival, translation, differentiation, and apoptosis contain oncogenes and are 

therefore stated as oncogenic signaling pathways (266). They have been identified as frequently 

altered in cancer (267–269). However, not all genes are activated or mutated within those 

pathways with equal frequencies. Furthermore, specific pathways like the RTK-RAS, cell cycle, 

and PI3K (Phosphoinositide 3-kinase) pathway are altered at high frequencies among many 

neoplastic malignancies. However, other pathways are only altered in particular subsets of tumor 

types (270).  

 

Figure 1.13: Overview of oncogenic signaling pathways with frequent genetic alterations from the cancer genome atlas.  

Interactions of pathway members in ten selected pathways. Gene alteration frequencies of oncogenic activation (red) 

and tumor suppressor inactivation (blue) are indicated by color intensity. Somatic alterations (copy number changes, 

mutations, fusions/rearrangements, epigenetic silencing) are indicated using white dots on the left side of each gene 

symbol. Note: Interpathway interactions are not displayed. Figure is taken from (270). 
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The ten most altered signaling pathways in cancer include the RTK/RAS, Nrf2, PI3K, TGF-β, Wnt, 

Myc, p53, cell cycle, Hippo, and Notch pathways. They are summarized in Figure 13. Displayed 

are the simplified interactions of pathway members and their gene alteration frequencies. 

Oncogenic activation is displayed in red, and tumor suppressor inactivation is displayed in blue. 

Furthermore, somatic alterations (copy number changes, mutations, fusions/rearrangements, 

epigenetic silencing) are marked as white dots. The displayed curated pathways result from the 

analysis of 9,125 tumor samples from 33 cancer types (270).  

The RTK/RAS pathway bears the highest median alteration frequency across all cancer types 

(46% of samples). Tumor subtypes with the highest alterations in this pathway include Her2-

enriched breast cancer (82% altered), genomically stable (CIMP) colorectal cancer (88% altered), 

and melanoma (94% altered). Among the most altered genes are BRAF (7%) and KRAS (9%). In 

addition to the linear signaling of the RTK/RAS pathway, it is highly interconnected with the PI3K 

pathway. This connection comprises several positive and negative feedback loops (271). 

Regarding treatment, this complicates matters: E.g., inhibition of mTORC-1 (mammalian target of 

rapamycin complex 1) within the PI3K pathway via analogs of rapamycin (rapalogs) can lead to 

MAPK reactivation, leading to resistance against mTORC-1 inhibition (272). Besides this complex 

interference, several tumors often show multiple alterations that affect several pathways, and 

distinct pathways often occur co-altered. However, other tumors show mutual exclusive 

alterations (270). Especially the RAS, PI3K, p53, and cell cycle pathways exhibit multiple dynamic 

interactions, as explained in the example of mTORC-1 and MAPK, which can lead to a functional 

interference in multiple pathways, even though only one is altered (273). Alterations on RTK 

genes often promote the RAS or PI3K signaling, while the p53 and cell cycle pathways are often 

co-altered across multiple tumor types. Within the PI3K and cell cycle pathway, alterations are 

distributed over many genes, while alterations in the Wnt, Myc, and Nrf2 pathways are limited to 

only a few genes. Within the PI3K pathway, highly altered genes are PI3K and PTEN, most 

commonly found in breast cancer gastrointestinal and gynecological tumors (270). 

1.2.4 Tumor microenvironment 

Cancer cells are not solely regulated by their cellular signaling. Additionally, they highly interact 

with their surrounding microenvironment through cell-cell and cell-matrix interactions. Cancer 

cells can influence this microenvironment within their tumor mass by extracellular signals and vice 

versa (274). The tumor microenvironment (TME) varies between tumor types. However, most 

solid malignancies show hallmark compartments like stromal cells, blood vessels, immune cells, 

and extracellular matrix (ECM) (275).  

The ECM consists of a variety of non-cellular component groups like proteoglycans, 

polysaccharides, proteins, and scaffold tissue which constitute the microenvironment of cells in 

nearly all tissues and organs. Those groups include collagen, elastin, fibronectin, laminin, 

heparan and keratan sulfate, and hyaluronic acid (276). The ECM can be categorized into two 

primary forms, which differ by location, composition, and function (277). While the interstitial form 

is a matrix that forms a three-dimensional (3D) network interconnecting cells in the stroma, the 

other form is described by the pericellular basement membrane — related to neoplastic 

malignancies; this membrane forms a stiff physical barrier around the tumor stroma (276). In 

principle, various cells can form and deposit ECM components. However, fibroblasts are the major 
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ECM producers. Therefore, cancer cells recruit and activate stromal cells through pro-fibrotic 

growth factors and inflammatory factors like TGF-α, TGF-β, EGF, and PDGF. When recruited, 

stroma cells (fibroblasts, pericytes, mesenchymal stem cells) can differentiate into cancer-

associated fibroblasts (CAFs) by tumor-derived activation factors (278).  

The ECM can possess both tumor-promoting and -suppressing properties. Therefore, the ECM 

is constantly changed and remodeled during cancer progression to promote cancer growth and 

migration (279). 

A dedicated blood supply is essential for tumors, as access to oxygen and nutrients is crucial for 

growth, progression, and metastasis. Especially carcinomas depend on vascularization as their 

epithelial non-vascularized tissue origin prevents them from growing bigger than 1,000-2,000 μm 

(241). Therefore, cancer cells themselves induce angiogenesis by secreting various growth 

factors like vascular endothelial growth factor (VEGF) (242). Even after vascularization, solid 

neoplasm malignancies develop gradients of nutrients, oxygen, catabolites, pH value, soluble 

factors, and proliferative activity (Figure 13). The 3D structure of tumors often restricts anti-cancer 

therapy success due to a lack of drug penetration. Hypoxic areas emerge 100-200 μm away from 

functional blood vessels and cells from this area show only a low proliferation rate (243). In 

structures larger than 500 µm, nutrient deprivation, waste accumulation, and restriction in oxygen 

supply lead to a necrotic core region surrounded by a quiescent viable mantle encased by a 

proliferating outer rim (Figure 13). 

 

Figure 1.14: Schematic representation of the tumor microenvironment. 

Figure adapted from (280) and (281). 
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Tumors get infiltrated with various immune cells performing pro- and antitumorigenic functions. 

Generally, immune cells can be categorized as innate and adaptive. Innate immune cells include 

macrophages, neutrophils, and dendritic cells, which carry out the innate immune response (282). 

Especially macrophages carry significant functions against pathogens and tissue damage. These 

functions include phagocytosis, antigen-presentation, and secretion of inflammatory chemo- and 

cytokines (283). The spectrum of macrophage activation is highly complex and fluent; however, 

in a more straightforward approach, they can be categorized as M1 and M2 macrophages, having 

a share in either inflammation and immune defense or regeneration and tissue homeostasis (284). 

Macrophages are thought to be recruited by local tumor conditions after the secretion of chemo- 

and cytokines (e.g., CSF-1, IL-34, IL-6) from cancer cells as a response to hypoxia and necrosis. 

Chronic inflammation due to persistent infection is a common starting point in tumorigenesis of 

several types of cancer (e.g., colorectal cancer) (285). However, macrophages are predominantly 

found in the M2 state as tumor-associated macrophages (TAMs) secreting IL-6, IL-8, IL-10, TGF-

β, and VEGF within the TME (286).  

Neutrophils provide the first line of defense against a wide variety of pathogens. In the early onset 

of tumorigenesis, neutrophils are recruited to the TME. Concerning the TME, neutrophils provide 

pro- and antitumorigenic functions dependent on the tumor type and stage of tumor progression. 

However, many more macrophages are recruited to the tumor than neutrophils, and the 

neutrophilic infiltration of tumors is generally associated with a worsened prognosis (287). Early 

on, IL-8 secreted by cancer cells, as well as apoptosis and necrosis, attract neutrophils. In turn, 

these neutrophils promote apoptosis by releasing ROS. In later stages of tumor development, 

neutrophils stimulate angiogenesis, tumor progression, local invasion and promote tumor growth 

by modifying the ECM. 

Other immune cell subsets present in the TME are dendritic cells (DC), T-cells, B-cells, natural 

killer cells (NK), and other subsets of pathologically activated immature neutrophils and 

monocytes referred to as myeloid-derived suppressor cells (MDSCs) (288). MDSCs interact with 

T-cells, DCs, TAMs, B-cells, and NK cells. They participate in immune evasion, angiogenesis, 

and epithelial-mesenchymal transition (EMT). However, the suppression of immune cells is the 

most defining feature of MDSCs (289). 

Due to the vast complexity and the high number of different cancer types, the cancer-specific 

TMEs and their cellular and molecular signaling networks remain only partly understood. 
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1.2.4.1 Short excursion: three-dimensional in vitro cell culture 

As described in 1.2.4, solid malignancies are complex three-dimensional structures that develop 

heterogeneous gradients of nutrients, oxygen, pH value, soluble factors, catabolites, and 

proliferative activity. The 3D structure often restricts therapy success due to a lack of drug 

penetration. Therefore, culturing cells in a 3D context can provide several advantages compared 

to conventional two-dimensional cell culture (290–292). Spherical cancer cell models can be 

classified into four simplified groups, as proposed by Weiswald et al.: Multicellular tumor 

spheroids (MCTS), tumorspheres (abridged as CSC, since the model is predominantly used to 

study cancer stem cells), tissue-derived tumor spheres (TDTS), and organotypic multicellular 

spheroids (OMS) (293). MCTS are formed due to aggregation and compaction of cancer cell lines 

cultured under non-adherent or low-adherent conditions. CSC are cultured under similar 

conditions but are formed by clonal proliferation, usually in stem cell medium. Unlike this, TDTS 

are generated by the dissociation of tumor tissue followed by compaction during culture. OMS 

are cuttings from tumors cultured under non-adherent conditions, leading to rounding of the tissue 

(293). 

Although all models share a round 3D structure, they display different intrinsic features. Therefore, 

the respective model should be chosen depending on the cancer type of interest and the aim of 

the study. For example, MCTS can be formed from various cancer cell lines (89, 294). They offer 

high reproducibility and are easiest to use for high throughput applications. MCTS show a very 

dynamic growth rate, similar to solid malignancies in vivo. This is characterized by an early 

exponential phase, followed by a period of limited growth associated with an increase in necrotic 

and non-proliferating cells (295). In contrast, monolayer cultures only show exponential cell 

proliferation under standard culture conditions (290). Cells in MCTS are more differentiated and 

were shown to develop ECM-like structures on their surface composed of fibronectin, laminin, 

collagen, and glycosaminoglycans (296). Even though MCTS are an established and valuable 

tool for in vitro investigations in drug discovery, drug repositioning, tumor physiology, cell 

response to cancer therapy, and general biomedical research, the model is limited to mimicking 

solid avascular malignancies or microvascularized malignancies if co-cultured with endothelial 

cells (292, 294, 297).  

Nevertheless, the described physicochemical and growth properties are the primary advantage 

of MCTS. Thus, the complexity of the 3D cancer environment can be brought into the culture dish 

without the cost and accession limitations of animal models and human specimens. 
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1.2.5 The role of 5-LO and 5-LO dependent products in cancer 

Apart from its role in the pathophysiology of various diseases (described in 1.1.4), 5-LO and its 

metabolites are also implicated in the pathophysiology of several types of cancer. 5-LO and its 

metabolites play an important role in leukemic malignancies. Since the enzyme is predominantly 

expressed in leukocytes, this is not astonishing (85). However, expression of the enzyme and LT 

formation were also found in solid cancers. Malignant tissues from the prostate, pancreas, lung, 

bladder, colon, and brain – tissue origins that do not express 5-LO under physiological conditions 

(Human Protein Atlas proteinatlas.org) readily express the enzyme (298–300).  

5-LO-expressing tumors and cell lines show increased tumor growth, microvessel density, and 

metastasis (301–303). Therefore, 5-LO is implicated in several hallmark aspects of 

carcinogenesis, such as tumor cell proliferation, differentiation, apoptosis, migration, invasion, 

and angiogenesis. 5-LO expression was even outlined as a progressive biomarker for some 

cancer types (304, 305). However, high 5-LO expression in cancer tissues was also linked to poor 

prognosis concerning tumor progression, patient survival, and treatability (53, 306, 307).  

Adding 5-LO products like 5-HETE and LTB4 to cultured cancer cells induces mitogenic effects 

like cell proliferation and activation of anti-apoptotic signaling pathways. This was mediated 

through MAPK/AKT signaling in pancreas carcinoma cells (308, 309). Similar results were 

demonstrated for other cell lines (e.g., colon carcinoma, mammary carcinoma, gastric carcinoma) 

(310–312). The addition of 5-HETE, LTA4, and ARA regulates VEGF expression in malignant 

mesothelioma, highlighting the involvement of 5-LO products in angiogenesis (313). Furthermore, 

CysLTs were shown to promote tumor cell proliferation and survival (314). Especially for LTD4 

enhanced cell proliferation via PKCε dependent ERK activation in intestinal epithelial cells could 

be detected (315).  

As already mentioned above, 5-LO expression is, among other factors, associated with tumor-

promoting functions. Treatment of cultured cancer cells using 5-LO inhibitors was shown to 

mediate anti-proliferative and cytotoxic effects. The fatty acid competitive inhibitor AA-861 

attenuates the growth of human prostate, pancreas, breast, colon, esophageal, bladder, and 

myeloid cancer cell lines (316–321). However, those studies did not perform add-back 

experiments, demonstrating the reversibility of this effect by 5-LO products. Indirect inhibition of 

5-LO using the FLAP inhibitor MK-886 triggered cell death in prostate and gastric cancer cells 

(322–324). The FDA-approved 5-LO inhibitor Zileuton was shown to trigger apoptosis in 

pancreatic and cervical cancer cells (325, 326). Furthermore, this inhibitor exerted anti-angiogenic 

effects by inducing apoptosis in HUVEC cells (327). Moreover, Zileuton loaded polymer micelles 

reduced circulating breast cancer cells and intratumoral cancer stem cells in orthotopic breast 

cancer models and mice (328). 

Indeed, 5-LO inhibitors AA-861, MK-886, CJ-13,610, Rev-5901, and BWA4C can promote anti-

proliferative and cytotoxic effects in several cancer cell lines. However, this effect was 

independent of 5-LO expression since 5-LO negative cell lines like HeLa, Panc-1, and U937 

showed a concentration-dependent decrease in viability as well (329). Of note, the used 

concentrations capable of inducing anti-proliferative and cytotoxic effects were high (> 1 μM) in 

most studies (301).  
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However, 5-LO inhibitors have already been tested as potential cancer treatments in clinical trials. 

For example, NDGA completed a clinical phase II trial to treat prostate cancer. Nevertheless, it is 

essential to mention that the intended target of inhibition was not 5-LO but insulin-like growth 

factor receptor 1 (IGF-1R), and analysis showed no significant decline for the primary outcome 

measure (330). Likewise, in a clinical phase II trial, Zileuton was used to treat patients with head 

and neck or lung cancer suffering from bronchial dysplasia (331). The trial was completed in 2009; 

however, results have not been published by now (ClinicalTrials.gov Identifier: NCT00056004). 

Another clinical phase I trial aimed to treat advanced and/or metastatic solid tumors using the 

LTB4 antagonist LY293111, but again, results were never published (ClinicalTrials.gov Identifier: 

NCT00006375). However, the same inhibitor was used for two other clinical phase II studies in 

combination with gemcitabine or gemcitabine-cisplatin to treat advanced adenocarcinoma of the 

pancreas and first-line non-small-cell lung cancer. Results for both studies did not demonstrate 

any benefit of adding LY293111 to the gemcitabine or gemcitabine-cisplatin therapy (332, 333). 

Besides mediating anti-proliferative and cytotoxic effects in cancer cells, 5-LO inhibition was also 

shown to suppress vascular endothelial growth factor-induced angiogenesis in endothelial cells 

(334). 

Independent of potential inhibitor-dependent off-target effects, several studies were still able to 

demonstrate the pro-proliferative and viability-promoting role of 5-LO using knockdown and 

knockout approaches. For example, 5-LO knockdown in human malignant pleural mesothelial 

cells significantly decreased cell viability time-dependent compared to scrambled and untreated 

controls (313). In the pancreatic cancer cell line SW1990 and the cervical cancer cell lines CaLo 

and Caski, 5-LO knockdown led to growth suppression and apoptosis (335). Furthermore, 

knockdown in SW1990 cells inhibits the growth of transplanted pancreatic tumors in a xenograft 

mouse model (336). A complete 5-LO knockout in the colon cancer cell lines HT-29, HCT-116, 

and the osteosarcoma cell line U-2 OS failed to demonstrate a substantial influence on overall 

cell viability (72). 

Genetic deletion of 5-LO increased the numbers of tumor-infiltrating macrophages in Apc(Δ468) 

mice (polyposis model) and decreased neutrophil infiltration. Increased tumor-infiltrating 

macrophage density is linked to an improved prognosis in patients with colon cancer. This 

highlights the role of 5-LO in tumorigenesis and implicates 5-LO inhibitors as potential therapeutic 

agents for colorectal polyposis (337). In contrast, a global knockout mouse model where Lewis 

lung carcinoma cells were directly implanted into the lungs found increased primary tumor volume 

and liver metastases in 5-LO knockout mice. This implicated an antitumorigenic role for 5-LO 

products in the microenvironment during lung cancer progression (338). 

Besides 5-LO, the other enzymes, receptors, and proteins of the LT cascade are overexpressed 

in various cancer cell lines and tissues alongside elevated LT formation. For example, FLAP is 

overexpressed in some epithelial cancer cell lines (72, 339). Its expression in breast cancer and 

the ovarian cancer microenvironment is, like the expression of 5-LO, an indicator of a poor 

prognosis regarding patients' survival (340, 341). Some cancer cell lines and primary tissue 

samples were even shown to express the complete LT cascade (72, 342). Finally, the BLT2 and 

CysLT2 receptors were found to be expressed in colorectal, breast, gastric, bladder, and 

pancreatic cancers (343–347). 
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2 Previous work and aim of the study 

Previous findings leading to the presented study are, to a great extent, already published by 

Weisser et al. (72). In an initial screening of several tumor cell lines (pancreas: Capan-2, Panc-1; 

colon: HT-29, CaCo-2, HCT-116, SW1222; liver: HepG2; cervix: HeLa; prostate: LNCaP, DU-

145; lung: A549; bone: U-2 OS; kidney: A498) four 5-LO expressing cell lines were identified 

(Figure 2.1A). Those cells were further analyzed to compare the expression of enzymes of the LT 

cascade (LTC4S expression was only analyzed on mRNA level due to a lack of a validated 

antibody) (Figure 2.1B, C). The identified 5-LO expressing cell lines HT-29, HCT-116, U-2 OS, 

and Capan-2 also expressed all enzymes important for LT formation. Thus, these cell lines should 

be capable of forming LTs after stimulation. However, 5-LO activity was relatively low in intact 

tumor cells compared to PMNL, which are known to express high amounts of active 5-LO (Figure 

2.1E). Disruption of cellular integrity increased 5-LO product formation in U-2 OS and Capan-2 

cells but did not affect product formation in HT-29 and HCT-116 cells.  

 

Figure 2.1: Previous findings on 5-LO expression and activity in tumor cell lines.  

(A) 5-LO expression screening via Western blot analysis of various cancer cell lines. One representative blot from three 

individual experiments is shown. (B) Comparison of LT cascade enzyme and protein expression in 5-LO expressing 

cell lines via Western blot. One representative blot from three individual experiments is shown. (C) Comparison of 

LTC4S mRNA expression in 5-LO expressing cell lines. One representative gel from three individual experiments is 

shown. (D) Cellular 5-LO localization in 5-LO expressing cell lines analyzed via immunostaining and confocal 

microscopy analysis. Images were obtained using a Leica TCS-SP5 confocal microscope and analyzed using the LAS 

X software (both Leica, Wetzlar, Germany). (E) Comparison of 5-HETE and LTB4 formation in intact cells, cell 

homogenates, and S100 supernatants of human PMNL and 5-LO expressing tumor cell lines. For the formation of 5-

LO products, intact cells were stimulated with Ca2+ ionophore (A23187, 2.5 μM) in PBS/glucose 1 mg/mL (PBSG) buffer 

supplemented with 20 µM ARA and 1 mM Ca2+. Homogenates and S100 supernatants received 1 mM ATP instead of 

Ca2+ ionophore. Samples were incubated for 10 min at 37°C, and lipid mediator formation was analyzed via LC/MS-

MS. Presented are the mean + SD of 3–11 independent experiments. 

Intact: Intact cells; hom: Cell homogenates; M: Size marker; r5-LO: Recombinant human 5-LO; S100: 100,000 rcf 

supernatants. Figure is taken from (72). 
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Finally, the segregation of membrane fractions via ultracentrifugation further elevated 5-LO 

product formation in the 100,000 rcf supernatants of all tumor cell lines tested but not in PMNL. 

Nevertheless, only disruption of cellular integrity in Capan-2 cells led to 5-LO product formation 

comparable to human PMNL (Figure 2.1E). Since the cellular localization of 5-LO is essential for 

LT formation, this was analyzed in cells stained by immunofluorescence using confocal 

microscopy. While 5-LO was predominantly localized within the cytosol in HT-29 and HCT-116 

cells, the enzyme was evenly distributed between the cytosol and the nucleus in U-2 OS and 

Capan-2 cells (Figure 2.1D). This might explain the higher 5-LO product formation in U-2 OS and 

Capan-2 cells, combined with the higher 5-LO expression detected in those cells. However, this 

does not explain the elevated product formation in all tested tumor cell lines after the segregation 

of membrane fractions via ultracentrifugation. 

Cancer development and progression are strongly dependent on the TME. In the monolayer 

culture of cancer cell lines, cell-matrix and cell-cell interactions present in native tumors are 

absent. There, cells develop artificial polarity due to cytoskeletal rearrangements as a cause of 

layer growth. Furthermore, it is already known that several colon cancer cell lines dysregulate 

essential signaling pathways due to 3D growth (348).  

 

Figure 2.2: Previous findings on 5-LO expression, activity, and cytokine expression after MCTS formation.  

(A) Analysis of 5-LO expression in monolayer and MCTS-grown HT-29 and HCT-116 cells via Western blot. Monolayer 

cells were taken from the respective maintenance culture while splitting the cells. For MCTS formation, indicated cell 

amounts were seeded in agarose-coated 24-well plates or special low adherence 96-well plates. Then, cells were 

incubated for 7 days at 37°C, 5% CO2. (B) 5-HETE release from intact and (accutase) digested HT-29 and HCT-116 

MCTS (10,000 cells seeded in 96-well low adh. plates grown for 7 days) and respective monolayer controls. For the 

formation of 5-LO products, intact cells were stimulated with Ca2+ ionophore (A23187, 2.5 μM) in PBSG buffer 

supplemented with exogenous ARA (20 μM) and Ca2+ (1 mM). 5-HETE formation was determined by LC-MS/MS 

analysis and normalized to the total protein content for each sample. (C) VEGF and IL-8 release from MCTS compared 

to the respective monolayer control (in %) grown for 7 days. Cytokines were determined via cytometric bead array 

(CBA; VEGF, IL-8). Mean release in cell monolayers: HT-29 (VEGF, 5388 pg/106 cells; IL-8, 272 pg/106 cells; HCT-

116 (VEGF, 3830 pg/106 cells; IL-8, 50 pg/106 cells). Sph: Spheroids, low adh.: Low adherence, co: Control. 
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Therefore, 5-LO expression and activity were investigated after 3D growth of HT-29 and HCT-

116 cells as MCTS during a master's thesis (Göbel 2017). U-2 OS and Capan-2 cells were 

excluded from MCTS formation experiments. U-2 OS cells only formed very loose and fragile 

spheroids in pre-testing, and Capan-2 cells did not form spheroid at all, probably due to their low 

proliferation rate and strong mucus secretion. 

Compared to the respective monolayer-grown cells, culture of HT-29 and HCT-116 cells as MCTS 

for 7 days potently induced 5-LO expression (Figure 2.2A). However, the elevated 5-LO 

expression did not yield higher 5-HETE formation. Analysis of intact MCTS showed even 

diminished 5-HETE formation due to a lack of substrate availability attributable to the 3D structure 

(Figure 2.2B). MCTS of HT-29 and HCT-116 cells were further analyzed towards their VEGF and 

IL-8 expression, verifying that the initial seeding densities used resulted in MCTS sizes capable 

of forming oxygen and nutrient gradients (Figure 2.2C).  

Summarizing the previous work, it was found that several tumor cell lines express 5-LO even 

though healthy tissue samples of the same origin do not express this enzyme. However, 5-LO 

product formation seems impaired in the cancer cells, even though they express the complete LT 

formation machinery. It was shown that 5-LO influences gene regulation in tumor cells with only 

low LT formation; however, for some genes, this regulation seemed to be 5-LO activity-dependent 

(72). Furthermore, 5-LO expression was elevated due to MCTS formation, highlighting the 

importance of more physiological culture conditions. 

The described results led to the necessity of further investigations in order to understand the role 

of 5-LO in tumor cells. Therefore, the present study aimed to: 

• Investigate the shown 5-LO upregulation after MCTS formation under more reproducible 

conditions, including improved controls 

• Elucidate the underlying physicochemical parameters leading to 5-LO upregulation after 

MCTS formation 

• Explore the mechanisms leading to the MCTS formation-dependent 5-LO upregulation 

• Examine the cause of impaired 5-LO product formation in 5-LO-expressing tumor cells 
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3 Material and methods 

3.1 Materials 

3.1.1 Cell Culture 

Following reagents and sterile ready-to-use buffers were especially used for cell culture 

applications and therefore obtained in cell culture appropriate quality.  

All items in Table 1 were supplied from Thermo Fisher Scientific™ (Waltham, MA, USA), or their 

associated company Life Technologies™ (Carlsbad, CA, USA). 

Table 1: Reagents and ready-to-use buffers for cell culture applications. 

Reagents and ready-to-use buffers Specifications 

Dulbecco’s Modified Eagle Medium 

(DMEM), powder, high glucose, pyruvate 

L-glutamine, phenol red 

DMEM, high glucose L-glutamine, phenol red 

DMEM, high glucose no phenol red 

Dulbecco’s Phosphate-Buffered Saline 

(PBS) 

without CaCl2, without MgCl2 

L-Glutamine  200 mM 

Lipofectamine™ LTX Reagent with PLUS™ 

Reagent 

 

McCoy’s 5A (Modified) Medium, high 

glucose 

L-glutamine, bacto-peptone, phenol red 

Opti-MEM™ I Reduced Serum Medium L-glutamine, no phenol red 

Pen Strep 10,000 U/mL Penicillin, 10,000 µg/mL 

Streptomycin 

Puromycin dihydrochloride 10 mg/mL 

Roswell Park Memorial Institute medium 

(RPMI1640 Medium) 

L-glutamine, phenol red 

Sodium Pyruvate 100 mM 

StemPro™ Accutase™ Cell Dissociation 

Reagent 

 

Trypan Blue Solution 0.4% 

Trypsin-EDTA (TE)  0.5%, 10x 

diluted in 1x PBS (1:10) before use 

UltraPure™ Agarose Standard melting point 
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Reagents and ready-to-use buffers Specifications 

UltraPure™ Distilled Water DNase/RNase-Free 

 

Table 2: Fetal calf serum suppliers and used batches. 

Fetal calf serum (FCS) suppliers LOT 

Capricorn Scientific GmbH, Ebsdorfergrund, 

Germany 

CP16-1537 and CP19-2834 

Gibco, Life Technologies™, (Thermo Fisher 

Scientific) Carlsbad, CA, USA 

42Q4467K 

 

Table 3: Cell culture materials and special consumables. 

Cell culture materials and 

special consumables 

Specifications Distributor 

CELLSTAR® Cell culture 

dishes 

100/20 mm Greiner Bio-One 

International, 

Kremsmünster, Austria 

CELLSTAR® Cell culture flasks 650 mL, 175 cm2 Greiner Bio-One 

International, 

Kremsmünster, Austria 

CELLSTAR® Cell culture flasks 250 mL, 75 cm2 Greiner Bio-One 

International, 

Kremsmünster, Austria 

CELLSTAR® Cell culture flasks 50 mL, 25 cm2 Greiner Bio-One 

International, 

Kremsmünster, Austria 

CELLSTAR® Conical Bottom 

Tubes 

15 mL, 50 mL Greiner Bio-One 

International, 

Kremsmünster, Austria 

CELLSTAR® Microplates Cell-Repellent Surface, 

96-well, F-Bottom 

Greiner Bio-One 

International, 

Kremsmünster, Austria 

CELLSTAR® Multiwell plates  6-well, 12-well, 24-well, 

96-well 

Greiner Bio-One 

International, 

Kremsmünster, Austria 

Corning 96-well Spheroid 

Microplates 

 Corning Incorporated, New 

York, NY, USA 



Material and methods 38 
 

Cell culture materials and 

special consumables 

Specifications Distributor 

Corning® Cell Lifter 19 mm Corning Incorporated, New 

York, NY, USA 

Corning® Microplates 96-well, TC-treated flat 

clear bottom, black 

Corning Incorporated, New 

York, NY, USA 

Corning® Ultra-Low 

Attachment Spheroid 

Microplate 

96-well, clear, round 

bottom 

Corning Incorporated, New 

York, NY, USA 

Coverslips Menzel (24x55 mm)  Thermo Fisher Scientific, 

Waltham, MA, USA 

Cryo.s™ vials 2 mL, 12.5x48 mm, sterile Greiner Bio-One 

International, 

Kremsmünster, Austria 

EASYstrainer™ small, 20 µm Greiner Bio-One 

International, 

Kremsmünster, Austria 

FACS Tubes 12x75 mm, PS Ratiolab, Dreieich, Germany 

MicroAmp fast 96-well reaction 

plates 

 Applied Biosystems (Thermo 

Fisher Scientific), Waltham, 

MA, USA 

Rotilabo®-syringe filters PVDF, sterile, 0.45 µm 

pore size 

Carl Roth  

Superfrost™Plus Adhesion 

Microscope slides 

 Epredia Netherlands B.V., 

Breda, Netherlands 

TC Dish 100 Cell+ 100x20 mm, for 

challenging adherent cells 

SARSTEDT AG & Co., 

Nümbrecht, Germany 

Tissue-Tek® Cryomold® Disposable Vinyl 

Specimen Molds, 

15x15x5 mm 

VWR International, Radnor, 

PA, USA 

Trans-Blot Turbo RTA Mini 

0.2 µm Nitrocellulose Transfer 

Kit 

 Bio-Rad Laboratories, 

Hercules, CA, USA 
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3.1.2 Chemicals and reagents 

Table 4: General chemicals and reagents. 

General chemicals and reagents Distributor 

1,4-Diazabicyclo [2.2.2]octane (DABCO) Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

2-Propanol VWR International, Radnor, PA, USA 

4’,6-Diamidino-2-phenylindol (DAPI) Sigma-Aldrich, St. Louis, MO, USA 

Acetic acid PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Acrylamide 4K solution 30% (37.5:1) PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

APS (Ammonium peroxydisulphate) Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

BD FACSFlow™ BD Biosciences, Franklin Lakes, New 

Jersey, USA 

BHT (Butylated hydroxytoluene) Cayman Chemical Company, Ann Arbor, MI, 

USA 

BioWhittaker® Lymphocyte Separation 

Medium (LSM) 

LONZA, Walkersville, MD, USA 

Bromophenol blue Merck KGaA, Darmstadt, Germany 

Ca2+ Ionophore (A23187) Sigma-Aldrich, St. Louis, MO, USA 

Calcium chloride (CaCl2) dihydrate Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Chloroform PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Chloroquine diphosphate salt Sigma-Aldrich, St. Louis, MO, USA 

cOmplete™ Mini, EDTA-free Protease 

Inhibitor Cocktail 

Roche Diagnostics GmbH, Mannheim, 

Germany 

D-(+)-Glucose anhydrous Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Dextran from Leuconostoc spp. Sigma-Aldrich, St. Louis, MO, USA 

Dimethyl sulfoxide (DMSO) PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Entellan™ mounting medium Sigma-Aldrich, St. Louis, MO, USA 

Eosin Y solution, alcoholic Sigma-Aldrich, St. Louis, MO, USA 
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General chemicals and reagents Distributor 

Ethanol (EtOH) ROTIPURAN® Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Ethidium bromide solution (1%) Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Ethylenediaminetetraacetic acid (EDTA) Merck KGaA, Darmstadt, Germany 

Glycerol PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Glycine PanReac AppliChem ITW Reagents, 

Darmstadt, German 

Hematoxylin solution, Mayer’s Sigma-Aldrich, St. Louis, MO, USA 

HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) for buffer 

solutions 

PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Hydrochloric acid (HCl) 37% VWR International, Radnor Pennsylvania, 

USA 

Luria Broth Base (Miller's LB Broth Base)™ Thermo Fisher Scientific™, Waltham, MA, 

USA 

Methanol (MeOH) VWR International, Radnor Pennsylvania, 

USA 

N,N,N’,N’-Tetramethylethylenediamine 

(TEMED) 

PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

NP-40 (IGEPAL CA-630) Sigma-Aldrich, St. Louis, MO, USA 

Paraformaldehyde (PFA) Sigma-Aldrich, St. Louis, MO, USA 

PEG-8000 Sigma-Aldrich, St. Louis, MO, USA 

PhosSTOP, Phosphatase Inhibitor Cocktail Roche Diagnostics GmbH, Mannheim, 

Germany 

Polybrene infection/transfection reagent Sigma-Aldrich, St. Louis, MO, USA 

Polyethylenimine (PEI) branched Sigma-Aldrich, St. Louis, MO, USA 

Propidium Iodide (PI) Thermo Fisher Scientific, Waltham, MA, USA 

Sodium acetate (NaAc) Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Sodium chloride (NaCl) Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Sodium dodecyl sulfate (SDS) PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 



41 Material and methods 
 

General chemicals and reagents Distributor 

Sodium hydroxide (NaOH) pellets VWR International, Radnor, PA, USA 

TISSUE FREEZING MEDIUM® for 

cryosectioning 

Leica Biosystems Nussloch GmbH, 

Nussloch, Germany 

Tris(hydroxymethyl)aminomethane (Tris) PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Triton-X-100 PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

Tween® 20 PanReac AppliChem ITW Reagents, 

Darmstadt, Germany 

β-Mercaptoethanol Sigma-Aldrich, St. Louis, MO, USA 

 

Table 5: Used target inhibitors. 

Inhibitors Distributor 

Cobimetinib Cayman Chemical Company, Ann Arbor, MI, 

USA 

Dactolisib (NVP-BEZ235) Cayman Chemical Company, Ann Arbor, MI, 

USA 

HLM006474 Cayman Chemical Company, Ann Arbor, MI, 

USA 

LB42708 Cayman Chemical Company, Ann Arbor, MI, 

USA 

NSC 66811 Cayman Chemical Company, Ann Arbor, MI, 

USA 

Palbociclib MedChemExpress LLC, South Brunswick, 

NJ, USA 

PD184352 Cayman Chemical Company, Ann Arbor, MI, 

USA 

Pifithrin-α Cayman Chemical Company, Ann Arbor, MI, 

USA 

Ro-3306 MedChemExpress LLC, South Brunswick, 

NJ, USA 

SCH772984 Cayman Chemical Company, Ann Arbor, MI, 

USA 

Temsirolimus Cayman Chemical Company, Ann Arbor, MI, 

USA 
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Inhibitors Distributor 

Wortmannin Cayman Chemical Company, Ann Arbor, MI, 

USA 

Table 6: Kits, proteins, enzymes, and special consumables. 

Kits, proteins, and enzymes Distributor 

BSA (Bovine Serum Albumin) Sigma-Aldrich, St. Louis, MO, USA 

Cell proliferation reagent WST-1 Sigma-Aldrich, St. Louis, MO, USA 

DNA Gel Loading Dye (6x) Thermo Fisher Scientific, Waltham, MA, USA 

DNase I, RNase-free Thermo Fisher Scientific, Waltham, MA, USA 

EveryBlot blocking buffer Bio-Rad Laboratories, Hercules, CA, USA 

Gel Loading Dye, Purple (6X) New England BioLabs, Ipswich, MA, USA 

GeneRuler 1 kb DNA ladder Thermo Fisher Scientific, Waltham, MA, USA 

GeneRuler 100 bp DNA Ladder Thermo Fisher Scientific, Waltham, MA, USA 

GlycoBlue™ Coprecipitant Thermo Fisher Scientific, Waltham, MA, USA 

High-capacity RNA-to-cDNA™ Kit Thermo Fisher Scientific, Waltham, MA, USA 

NEBuilder® HiFi DNA Assembly New England BioLabs, Ipswich, MA, USA 

NucleoBond Xtra Maxi EF, Maxi kit for 

endotoxin-free plasmid DNA 

Macherey-Nagel, Düren, Germany 

NucleoSpin Plasmid, Mini kit for plasmid 

DNA 

Macherey-Nagel, Düren, Germany 

PageRuler™ Plus Prestained Protein Ladder Thermo Fisher Scientific, Waltham, MA, USA 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific, Waltham, MA, USA 

Power SYBR™ Green Master Mix Applied Biosystems, Thermo Fisher 

Scientific, Waltham, MA, USA 

Q5® High-Fidelity DNA Polymerase New England BioLabs, Ipswich, MA, USA 

Recombinant Human GM-CSF PeproTech, London, United Kingdom 

Recombinant Human IL-4 PeproTech, London, United Kingdom 

Recombinant Human INF-γ PeproTech, London, United Kingdom 

Recombinant Human M-CSF PeproTech, London, United Kingdom 

RiboRuler High Range RNA Ladder Thermo Fisher Scientific, Waltham, MA, USA 

RiboRuler High Range RNA Ladder Thermo Fisher Scientific, Waltham, MA, USA 

RNase A, DNase, and protease-free 

(10 mg/mL) 

Thermo Fisher Scientific, Waltham, MA, USA 
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Kits, proteins, and enzymes Distributor 

Roche Cytotoxicity Detection Kit (LDH) Sigma-Aldrich, St. Louis, MO, USA 

Spectra™ Multicolor High Range Protein 

Ladder 

Thermo Fisher Scientific, Waltham, MA, USA 

TRIzol™ Reagent Thermo Fisher Scientific, Waltham, MA, USA 

Table 7: Used fatty acids. 

Lipids Specification 

Arachidonic acid (ARA) Peroxide free 

Docosahexaenoic acid (DHA)  

Eicosapentaenoic acid (EPA) Peroxide free 

 

3.1.3 Antibodies 

Table 8: Primary antibodies. 

Primary antibodies Cat. No. Distributor 

5-LO 66326-1-lg, Proteintech, Rosemont, IL, USA 

5-LO ab169755 Abcam, Cambridge, United Kingdom 

5-LO (6A12)  in house produced 

b-Myb 711708 Thermo Fisher Scientific, Waltham, MA, 

USA  

Cleaved Caspase 3 9664S Cell Signaling Technology, Danvers, MA, 

USA 

cPLA2α sc-438 Santa Cruz Biotechnology, Dallas, TX, 

USA 

ERK (p44/42) #9102 Cell Signaling Technology, Danvers, MA, 

USA 

FLAP ab53536 Abcam, Cambridge, United Kingdom 

Ki67 ab15580 Abcam, Cambridge, United Kingdom 

LTA4H sc-390567 Santa Cruz Biotechnology, Dallas, TX, 

USA 

MEK1  #2352 Cell Signaling Technology, Danvers, MA, 

USA 

mTOR PA5-34663 Thermo Fisher Scientific, Waltham, MA, 

USA  
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Primary antibodies Cat. No. Distributor 

mTOR ab134903 Abcam, Cambridge, United Kingdom 

p53 sc-126 Santa Cruz Biotechnology, Dallas, TX, 

USA 

p70S6K sc-8418 Santa Cruz Biotechnology, Dallas, TX, 

USA 

phospho-ERK sc-7383 Santa Cruz Biotechnology, Dallas, TX, 

USA 

phospho-p70S6K #9205 Cell Signaling Technology, Danvers, MA, 

USA 

PIK3CA MA5-14870 Thermo Fisher Scientific, Waltham, MA, 

USA 

PRKCζ sc-17781 Santa Cruz Biotechnology, Dallas, TX, 

USA 

Raptor sc-81537 Santa Cruz Biotechnology, Dallas, TX, 

USA 

Rictor sc-271081 Santa Cruz Biotechnology, Dallas, TX, 

USA 

α-Tubulin sc-5286 Santa Cruz Biotechnology, Dallas, TX, 

USA 

α-Tubulin ab176560 Abcam, Cambridge, United Kingdom 

 

Table 6: Secondary antibodies. 

Secondary antibodies Conjugate Distributor 

Donkey anti-Mouse IgG 

(H+L) Highly Cross-

Adsorbed Secondary 

Antibody 

Alexa Fluor™ Plus 488 Thermo Fisher Scientific, 

Waltham, MA, USA 

Donkey anti-Rabbit IgG 

(H+L) Highly Cross-

Adsorbed Secondary 

Antibody 

Alexa Fluor™ Plus 647 Thermo Fisher Scientific, 

Waltham, MA, USA 

IRDye® 680RD Donkey anti-

Mouse IgG (H + L) 

IRDye 680RD LI-COR Biosciences GmbH, 

Bad Homburg, Germany 

IRDye® 680RD Donkey anti-

Rabbit IgG (H + L) 

IRDye 680RD LI-COR Biosciences GmbH, 

Bad Homburg, Germany 
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IRDye® 800CW Donkey anti-

Mouse IgG (H + L) 

IRDye 800CW LI-COR Biosciences GmbH, 

Bad Homburg, Germany 

IRDye® 800CW Donkey anti-

Rabbit IgG (H + L) 

IRDye 800CW LI-COR Biosciences GmbH, 

Bad Homburg, Germany 

 

3.1.4 Buffers 

Table 9: Used buffer stocks, compositions, and dilutions. 

Buffers Buffer composition and dilution 

10x Running buffer for SDS-PAGE 0.25 M Tris, 1.92 M Glycerine, 35 mM SDS 

for use, 100 mL 10x buffer were diluted with 

900 mL ultrapure water 

10x Tris-buffered saline (TBS) 0.5 M Tris, 1 M NaCl 

pH was adjusted with HCl to 7.4. For use, 

100 mL 10x buffer was diluted with 900 mL 

ultrapure water 

12.5x Towbin transfer buffer for protein 

immunoblotting 

0.31 M Tris, 2.4 M Glycine 

for use, 80 mL buffer was diluted with 

720 mL ultrapure water and mixed with 

200 mL 100% MeOH 

4x Lenti-X-Concentrator 40% (W/V) PEG-8000, 1.2 M NaCl pH 7.2 

sterile filtered (0.2 µM) 

50x TAE buffer for agarose gels 2 M Tris, 1 M acetic acid, 50 mM EDTA 

CaCl2 0.4 M 

Mowiol mounting medium 6 g Glycerin, 2.4 g Mowiol 4-88, 6 mL 

ultrapure water, 12 mL Tris-HCl (pH 8.5), 

25 mg DABCO/mL  

PBS glucose (PBSG) buffer 20 mg/mL α-D-Glucose stock diluted to 

1 mg/mL for further use 

Trans-Blot Turbo transfer buffer 200 mL 5x buffer was diluted with 600 mL 

ultrapure water and 200 mL 100% EtOH 

RIPA lysis buffer 20 mM TRIS-HCl (pH 7.4), 150 mM NaCl, 

2 mM EDTA, 1% Triton-X-100, 0.5% NP-40  

5x loading buffer 250 mM TRIS-HCl (pH 6.8), 5 mM EDTA, 

50% Glycerol (v/v), 10% SDS (w/v), 0.05% 

(w/v) Bromophenol blue 
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3.1.5 Plasmids 

The following plasmids can be found at Addgene (Watertown, MA, USA). 

Table 10: Used plasmids and respective Addgene numbers.  

The following plasmids were obtained from Addgene or gifted from elsewhere but can be found at Addgene, including 

the respective maps.  

Plasmid Addgene number 

psPAX2 #12260 

p-CMV-VSV-G #8454 

pSBtet-GP #60495 

pSBbi-GP #60511 

The plasmid pcGlobin2-SB100X was kindly gifted by Prof. Dr. Zoltan Ivics (Paul-Ehrlich-Institut, 

Langen, Germany).  

3.1.6 Instruments and software 

3.1.6.1 Centrifuges 

• Sigma 3K30, Sigma Laborzentrifugen, Osterode, Germany; rotor type 12154-H 

• Heraeus Multifuge X3 FR, Thermo Fisher Scientific, Waltham, MA, USA; rotor type 

75003180 

• Centrifuge 5424 R, Eppendorf, Hamburg, Germany; rotor type FA-45-24-11 

• Beckmann Ultrazentrifuge Optima LE-80K; rotor type 70.1 Ti 

• Varifuge 3.0RS, Heraeus Sepatech, Hanau, Germany; rotor type #8080E 

• Heraeus 400R, Heraeus, Hanau, Germany; rotor type #8177 

• Sorval LYNX 4000, Thermo Fisher Scientific, Waltham, MA, USA; rotor type F14-14x50cv, 

F14-6x250y 
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3.1.6.2 Gel electrophoresis and transfer 

Agarose gel electrophoresis 

• MIDI 1 Electrophoresis Unit, Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

• Power PAC 300, Bio-Rad, Hercules, CA, USA 

 

Protein electrophoresis and transfer 

• Mini-PROTEAN Tetra Cell, Bio-Rad, Hercules, CA, USA 

• PowerPAC Basic Power Supply, Bio-Rad, Hercules, CA, USA 

• Mini Trans-Blot® Electrophoretic Transfer Cell, Bio-Rad, Hercules, CA, USA 

• Thermo cycler 

• peqSTAR 96 Universal Gradient, Peqlab Biotechnologie, Erlangen, Germany 

• Applied Biosystems™ Veriti™ 96-Well Thermal Cycler, Applied Biosystems™, Forster 

City, CA, USA 

• StepOnePlus™ Real-Time PCR System, Applied Biosystems™, Forster City, Ca, USA 

3.1.6.3 Microscopes 

All used microscopes and software for image analysis were obtained from Carl Zeiss, 

Oberkochen, Germany. 

• Axio Vert.A1 

• Zeiss LSM 780 AxioObserver.Z1 

• Zen black software 

• Zen blue software (version 2.6) 

• Zen core software (version 2.6) 

3.1.6.4 Flow cytometer 

• BD FACSuite™ software, Becton Dickinson BD Biosciences, Franklin Lakes; NJ, USA 

• BD FACSVerse™ flow cytometer, Becton Dickinson BD Biosciences, Franklin Lakes, NJ, 

USA 

• FlowJo V10.6 software, Becton Dickinson BD Biosciences, Ashland, OR, USA 
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3.1.6.5 Plate reader 

All plate readers and software for data acquisition and analysis were obtained from the Tecan 

Group, Männedorf, Switzerland 

• i-control™ software for Tecan microplate readers 

• infinite® M200 plate reader 

• Spark® multimode plate reader 

3.1.6.6 Others 

• Bandelin Sonopuls HD 200, BANDELIN electronic, Berlin, Germany 

• Biovision 1000/26mx, Vilber Lourmat, Marne-la-Vallée, France 

• NanoDrop™ 2000 spectrophotometer, Thermo Fisher Scientific, Waltham, MA, USA 

• Odyssey® 9120 infrared imaging system, LI-COR Biosciences, Lincoln, NE, USA 

• Cryostat, CryoStar™ NX50, Thermo Fisher Scientific, Waltham, MA, USA 
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3.2 Human cell culture  

3.2.1 Cell lines and general culture conditions 

All cell handling and experiments were performed under a laminar flow bench to ensure sterile 

conditions. Therefore, sterile materials and solutions were used. All cell lines were cultured in a 

humidified atmosphere of 5% CO2 at 37°C. Cultivation of cells was carried out in 75 cm2 or 

175 cm2 flasks, and cultures were split twice a week using 1x TE. Table 11 states all specifications 

and sources of the cell lines used. The listed general growth conditions also apply to all genetically 

altered cell lines generated for this thesis. 

3.2.2 Thawing of frozen cells 

Frozen cells (3-5x106) were thawed fast and directly diluted in 13 mL complete growth medium 

(CGM). After centrifugation (340 rcf, 5 min at RT), the supernatant was discarded, and the cell 

pellet was resuspended in 5 mL of fresh CGM. The cell suspension was transferred into a 25 cm2 

culture flask. CGM for HT-29, MCF-7, Capan-2, and Caco-2 cells was supplemented with an 

additional 10% of FCS. The medium was replaced after 20-24 h to discard nonadherent cells. 

3.2.3 Cryopreservation 

All parental or genetically altered cell lines were cryopreserved in their respective 

cryopreservation medium (CGM and 5% DMSO) using 3-5x106 cells/mL in 2 mL cryovials. The 

vials were placed in an isopropanol-containing cryo-freezing container (Mr. Frosty, Nalgene®, 

max. 18 vials) or within tissue paper coiled like a ball (max. 20 vials per ball, approximately 13 cm 

in diameter) to enable a temperature reduction of about 1°C per minute. 

3.2.4 Cellular morphology 

To determine morphological changes due to different treatments and to verify GFP expression 

after transfection experiments, cells were monitored using a Zeiss Axio Vert.A1 microscope with 

an Axiocam 305 color. For fluorescence excitation, LED modules with 385 nm, 470 nm, and 

590 nm were used. The Zeiss filter sets 49 (excitation: G365, beamsplitter: FT395, emission: 

BP445/50), 38 (excitation: BP470/40, beamsplitter: FT495, emission: BP525/50), and 64 

(excitation: BP587/25 (HE), beamsplitter: FT605 (HE), emission: BP647/70 (HE)) were used to 

avoid excitation of untargeted fluorophores. Pictures were analyzed and processed using the 

Zeiss Zen core software. 
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Table 11: Used cell lines and their respective specifications. 
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3.2.5 Isolation of human leukocytes from leukocyte concentrates 

Leukocyte concentrates and human plasma was obtained from the DRK blood donor service 

(Frankfurt am Main, Germany). Donors gave written consent for use in research. If living cells 

were required for further analysis after differentiation, testing certificates for HAV, HBV, HCV, 

HEV, HIV, and Lues were obtained.  

3.2.5.1 Heat inactivation of human plasma 

Human plasma (Industrieplasma C I0052) of identical blood groups was pooled and transferred 

into 50 mL tubes. After incubation at 56°C for 1 h in a water bath and centrifugation (872 rcf, 

30 min at RT), the heat-inactivated human serum was transferred to fresh 50 mL tubes and stored 

at - 20°C until further use.  

3.2.5.2 PBMC and PMNL separation by density gradient centrifugation 

The leukocyte concentrates were transferred to beakers (separated by donor) and diluted with 

PBS to 80 mL. Diluted leukocyte concentrates were transferred to 50 mL tubes and mixed with 

5 mL dextran solution (5% (w/v) dextran in PBS). After erythrocyte sedimentation for 30 min, the 

upper plasma phase was collected, and separated erythrocytes were discarded. The plasma 

fraction was slowly layered over 10 mL lymphocyte separation medium (LSM) and centrifuged 

(10 min, 1153 rcf, at RT) without deceleration. PBMCs formed a layer upon the LSM, and PMNL 

formed a pellet. 

3.2.5.3 Isolation and differentiation of monocytes from isolated PBMCs 

PBMC layers from each donor were transferred to 50 mL tubes, washed twice (10 min, 558 rcf, 

at RT), and the supernatants were discarded. For seeding, isolated and washed PBMCs were 

resuspended in 40 mL of warm wash medium (WM, RPMI 1680 supplemented with 5% PS). Cell 

suspensions of each donor were transferred into 100 mm Cell+ dishes (5 mL per dish, 8 dishes 

per donor) and diluted with 5 mL WM. After 1-2 h at 37°C, 5% CO2, non-adherent cells were 

discarded, and each dish was washed harshly using 5 mL warm WM twice. 
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Table 12: Monocyte differentiation and polarization conditions. 

 

For differentiation of isolated monocytes to M1 or M2 macrophages, cells were incubated with 

culture medium (CM, RPMI 1680 supplemented with 5% PS and 5% heat-inactivated human 

serum) and treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) or 

macrophage colony-stimulating factor (M-CSF). For polarization, interferon-gamma (INF-γ) or 

interleukin 4 (IL-4) was added to the culture for the final 48 h. Concentrations, conditions, and 

exact time points are further described in Table 12 and Figure 3.1. 

 

Figure 3.1: Workflow and time schedule for in vitro differentiation and polarization of human blood-derived monocytes 

to macrophages. 

 Differentiation Polarization 

Incubation times and wash 

conditions 

Differentiation for seven 

days. The medium was 

replaced 48 and 120 h after 

seeding. Cells were washed 

harshly using 5 mL WM 

before each medium change. 

Polarization within the last 

48 h of differentiation. 

M1 CM supplemented with 

10 ng/mL GM-CSF. 

CM supplemented 

additionally with 10 ng/mL 

INF-γ. 

M2 CM supplemented with 

10 ng/mL M-CSF. Treatment 

for seven days. 

CM supplemented 

additionally with 10 ng/mL IL-

4. 
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3.2.5.4 PMNL purification via hypotonic lysis 

PMNL pellets were washed with 10 mL PBS and centrifuged (558 rcf, 10 min, at RT) twice. Pellets 

were mixed with 5 mL ice-cold ultrapure water for 45 secs to remove remaining erythrocyte 

contaminations. Hypotonic lysis was stopped by adding 40 mL of ice-cold PBS. Donor samples 

were analyzed individually or were pooled (3-6 donors) via centrifugation (558 rcf, 10 min, at RT) 

and resuspended in 2-10 mL ice-cold PBSG buffer, depending on the number of donors pooled. 

Prior to further experiments, cell numbers were determined using a Burker chamber. 

3.2.6 Generation of stably transfected cell lines using the sleeping beauty system 

The sleeping beauty system was used to generate stably transfected cell lines with various 

reporter constructs and target proteins. The parental plasmids pSBbi-GP and pSBtet-GP were 

kindly provided by Erik Kowarz (350), and cloning for all constructs is described under 3.8. 

3.2.6.1 General procedure and antibiotic selection  

For each construct, HT-29 (0.5-0.7x106) or HCT-116 (0.5-0.65x106) cells were seeded into 6-well 

plates using 3 mL CGM per well. Cells were left to adhere for 24 h in a humidified atmosphere (at 

37°C, with 5% CO2). For transfection, the medium was changed to 2 mL OptiMEM with no 

additional supplements. Transfection was performed using the Lipofectamine™ LTX Reagent 

according to the manufacturer’s protocol. 24 h after transfection medium was changed to CGM. 

48 h after transfection, the medium was changed to CGM supplemented with 3 μg/mL puromycin, 

and antibiotic selection was performed for nine days. The medium was changed every other day.  

Transfection with pSBGP reporter constructs 

DNA mixes were prepared in 325 μL OptiMEM containing different DNA concentrations 

depending on the cell line (see Table 13) and PLUS™ Reagent. LTX mixes were prepared in 

OptiMEM containing 0.125 μL LTX reagent per μL OptiMEM (DNA/LTX ratio 1:5) for HT-29 and 

0.05 μL (DNA/LTX ratio 1:3) LTX reagent per μL OptiMEM for HCT-116 cells. 160 μL DNA mix 

was added dropwise to 160 μL LTX mix to prepare DNA-LTX mixes. DNA-LTX mixes were 

incubated for 30 min at RT before transfection. 300 μL transfection mixes (containing 3.75 μg 

total DNA for HT-29 and 2.5 μg total DNA for HCT-116 cells) were added dropwise to the cells.  
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Table 13: DNA mix composition for transfection of pSBGP reporter constructs 

 HT-29 HCT-116 

pSBGP vector 7.72 μg 5.15 μg 

pcGlobin2-SB100x 0.41 μg 0.27 μg 

Total DNA 8.13 μg 5.42 μg 

PLUS™ Reagent 8.13 μL 5.42 μL 

 

Transfection with pSBbi and pSBtet constructs 

DNA mixes were prepared in 325 μL OptiMEM containing 5.42 μg total DNA (0.27 μg pcGlobin2-

SB100x, 5.15 μg pSBGP vector) and 5.42 μL PLUS™ Reagent. LTX mixes were prepared in 

OptiMEM containing 0.125 μL LTX reagent per μL OptiMEM (DNA/LTX ratio 1:5) for HT-29 and 

0.05 μL (DNA/LTX ratio 1:3) LTX reagent per μL OptiMEM for HCT-116 cells. 160 μL DNA mix 

was added dropwise to 160 μL LTX mix to prepare DNA-LTX mixes. DNA-LTX mixes were 

incubated for 30 min before transfection. 300 μL of transfection mixes (containing 2.5 μg total 

DNA) were added dropwise to the cells. 

3.2.7 Generation of stable knockdown cell lines using lentiviral transduction 

To generate stable knockdown cell lines for various targets, several MISSION shRNA bacterial 

clones and a non-mammalian pLKO.1-puro shRNA control vector (SHC002, 5’-CCG GCA ACA 

AGA TGA AGA GCA CCA ACT CGA GTT GGT GCT CTT CAT CTT GTT GTT TTT-3’) were 

purchased from Sigma-Aldrich Inc., Missouri, USA. Bacterial culture, transformation, and vector 

preparations are described under 3.8. Table 14 lists the respective target genes, the clone IDs, 

and their respective specifications. The packaging vector psPAX2 was obtained via Addgene as 

a gift from Didier Trono, and the envelope vector pCMV-VSV-G was obtained via Addgene as a 

gift from Bob Weinberg. 

Table 14: Used shRNA plasmids and specifications (insert sequence). 

Target 

gene 

Clone ID TRCN Insert sequence 5`-3` Region Internal name 

MAP2K1 NM_002

755.2-

2032s1c

1 

0000199799 CCG GCC CAT ATC 

CAA GTA CCA ATG 

CCT CGA GGC ATT 

GGT ACT TGG ATA 

TGG GTT TTT TG 

3´UTR pLKO.1-

puro_shMAP2K

1 

MTOR NM_004

958.2-

4662s1c

1 

0000038678 CCG GGC ATG GAA 

GAA TAC ACC TGT 

ACT CGA GTA CAG 

GTG TAT TCT TCC ATG 

CTT TTT G 

CDS pLKO.1-

puro_shMTOR 

MYB NM_005

375.2-

0000288599 CCG GCC AGA TTG 

TAA ATG CTC ATT TCT 

3´UTR pLKO.1-

puro_shMYB 
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2596s21

c1 

CGA GAA ATG AGC 

ATT TAC AAT CTG GTT 

TTT G 

MYBL2 NM_002

466.2-

2515s1c

1 

0000020519 CCG GGC TAA CAA 

CAA AGT TCC ACT TCT 

CGA GAA GTG GAA 

CTT TGT TGT TAG CTT 

TTT 

3´UTR pLKO.1-

puro_shMYBL2 

PIK3CA NM_006

218.2-

3471s1c

1 

0000196582 CCG GGC ATT AGA 

ATT TAC AGC AAG 

ACT CGA GTC TTG 

CTG TAA ATT CTA ATG 

CTT TTT TG 

3´UTR pLKO.1-

puro_shPIK3CA 

PRKCZ NM_002

744.x-

1806s1c

1 

0000001218 CCG GCG CGT GAT 

TGA CCC TTT AAC TCT 

CGA GAG TTA AAG 

GGT CAA TCA CGC 

GTT TTT 

3´UTR pLKO.1-

puro_shPRKCZ 

RICTOR NM_152

756.2-

2620s1c

1 

0000074291 CCG GCG TCG GAG 

TAA CCA AAG ATT ACT 

CGA GTA ATC TTT 

GGT TAC TCC GAC 

GTT TTT G 

CDS pLKO.1-

puro_shRICTO

R 

RPTOR NM_020

761.1-

4325s1c

1 

0000039770 CCG GCG ACT ACT 

ACA TCT CCG TGT 

ACT CGA GTA CAC 

GGA GAT GTA GTA 

GTC GTT TTT G 

CDS pLKO.1-

puro_shRPTOR 

 

Table 15: Used shRNA plasmids and specifications (target sequence*). 

Target 

gene 

Clone ID TRCN Target sequence 5’-3’* Region Internal name 

PIK3CB NM_006219 0000010025 CGA CAA GAC TGC 

CGA GAG ATT 

CDS pLKO.1-

puro_shPIK3CB 

PIK3CD NM_005026 0000033276 GAC CCA GAA GTG 

AAC GAC TTT 

CDS pLKO.1-

puro_shPIK3CD 

PIK3CG NM_002649 0000199330 CTC CAG ATC TAC TGC 

GGT AAA 

CDS pLKO.1-

puro_shPIK3CG 

*Merck changed the provided information and only furnished the target sequence instead of the 

insert sequence. 
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3.2.7.1 Generation of virus particles 

For each shRNA vector, 4x106 Lenti-X™ 293T cells were seeded into 100 mm Petri dishes using 

10 mL CGM per dish. Cells were left to adhere for 24 h in a humidified atmosphere at 37°C, with 

5% CO2. Cells were then transported to the S2 lab using a safety transport box. The medium of 

each dish was changed to 10 mL CGM supplemented with 25 µM chloroquine. Dishes were 

placed back in a humidified atmosphere at 37°C, 5% CO2, while transfection mixes were 

prepared. Transfection mixes were prepared by dripping 500 µL PEI mix (500 µL OptiMEM 

containing 88 µg PEI) into 500 µL of the respective DNA mix (478 µL OptiMEM + respective 

vector; amounts are listed in Table 16). After inversion, transfection mixes were incubated for 

15 min at RT. Afterward, transfection mixes were added dropwise to the chloroquine-treated cells.  

Lenti-X™ 293T cells were incubated with their respective transfection mixes for 17 h in a 

humidified atmosphere at 37°C, with 5% CO2. 

Table 16: Used vectors for lentiviral particle generation and their respective specifications. 

Vector [bp] [pmol]/[µg] 

DNA 

[µg] [pmol] ratio 

pLKO.1-

puro_shRNA 

7086 0.214 10 2 

psPAX2 10709 0.141 7.5 1 

pCMV-VSV-G 6507 0.233 4.5 1 

 

After this duration, the medium of all dishes was changed to 10 mL CGM without other 

supplements, and cells were incubated for another 48 h. Next, the supernatants of each dish were 

collected and individually filtered using a 0.45 µm PVDF filter. 3 volumes of clarified supernatant 

(9 mL) were mixed with 1 volume (3 mL) 4x Lenti-X-Concentrator within 15 mL tubes and gently 

inverted. After incubation for 30 min at 4°C, the virulent supernatants were centrifuged (1,500°rcf, 

for 45°min at 4°C). Supernatants were discarded, and the remaining pelleted virus particles were 

resuspended in 1 mL OptiMEM, further referred to as transduction mixes. 

3.2.7.2 Lentiviral transduction and antibiotic selection 

HT-29 and HCT-116 cells were seeded into 6-well plates 24 h before lentiviral transduction. 

Therefore, 0.307x106 HT-29 and 0.3x106 HCT-116 cells were seeded in 3 mL of the respective 

CGM. Before transduction, 6-well plates were transported to the S2 area, and the medium was 

changed to 1 mL RGM supplemented with 8 μg/mL polybrene per well. 500 μL of prepared 

transduction mixes were added dropwise for each cell line. Transduced cells were then incubated 

for 24 h in a humidified atmosphere at 37°C, with 5% CO2. 

After that, the medium was changed to the respective CGM for 48 h. Then, cells were washed, 

and the medium was changed every two days to CGM supplemented with 3 μg/mL puromycin for 

antibiotic selection. Cells were cultured for 11 days after transduction within the S2 area to ensure 

the complete depletion of lentiviral particles. Depending on their growth, cells were transferred 
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into 75 cm2 flasks within this duration, but medium change and puromycin treatment were carried 

out nevertheless.  

Cells were transferred into the S1 area after the indicated time for further experiments and 

cryopreservation. 

3.3 Cell culture experiments 

3.3.1 Monolayer culture experiments 

For monolayer culture experiments (used for protein and RNA analysis), different culture dish 

sizes and, therefore, seeding cell numbers were used. Table 17 states the used dish sizes, 

medium volumes, and the respective cell seeding density. If the seeding/synchronization 

procedure is not mentioned for an experiment within the results section, cells were directly 

collected from the maintenance culture during cell splitting.  

Table 17: Culture dishes and cell seeding densities. 

Cultures dish Cell number [x106] Medium [mL] 

6-well (RNA) 0.4 2 

100 mm dish (Protein) 3 10 

 

3.3.1.1 Reversible cell cycle synchronization via serum deprivation 

For serum-induced cell cycle synchronization, cells were seeded in a reduced growth medium 

(RGM) containing only 0.5% FCS. After 22-24 h medium was changed to CGM for 2 h to release 

cells from cell cycle arrest prior to treatment. Figure 3.2 summarizes the general cell culture 

workflow, including cell cycle synchronization and further treatment. 

 

Figure 3.2: General cell culture workflow for cell cycle synchronization and following treatment. 



Material and methods 58 
 

3.3.1.2 Inhibitor treatment 

For inhibitor treatment experiments, cells were seeded according to 3.3.1. After cell cycle 

synchronization, as described in 3.3.1.1 medium was changed to the respective CGM, according 

to Figure 3.2. 2 h after this, cells were treated with DMSO as the vehicle control or the indicated 

inhibitors for 24 h.  

3.3.1.3 High cellular density 

For high cellular density experiments, different amounts of cells were seeded into 6-well (mRNA) 

or 100 mm dishes (protein, cell cycle). Table 18 provides the respective cell numbers and 

volumes. For better reproducibility, cells were seeded in RGM for reversible cell cycle 

synchronization, as described in 3.3.1.1. After 24 h, the medium was changed to CGM according 

to Figure 3.2, and cells were incubated for 24 h at 37°C, 5% CO2. 

Table 18: Cell seeding densities for high cellular density experiments. 

Seeding density (6-

well) x106 

[mL] (6-well) Seeding density 

(100 mm) x106 

[mL] (100 mm) 

0.4 2 2.4 12 

0.8 2 4.7 12 

1 2 5.9 12 

2 2 11.8 12 

3 2 17.7 12 

3.3.1.4 Low extracellular pH 

For pH treatment experiments, cells were seeded according to 3.3.1. After 24 h, the medium was 

changed to pH-adjusted CGM prepared according to Table 19, and cells were incubated for 24 

or 48 h. Cells treated with standard CGM (DMEM for both cell lines, since no McCoys 5A powder 

medium is available) or prepared CGM with an adjusted pH of 7.4 served as controls. 

Table 19: Composition of pH-adjusted DMEM medium 

pH Composition Supplements 

pH 7.4 6.69 g powdered DMEM, 

2.98 g HEPES, and 3.78 g 

PIPES dissolved in a final 

volume of 500 mL ultra-pure 

water. pH was first adjusted to 

8.5 to dissolve PIPES using 

NaOH, then adjusted to the 

indicated pH using HCl 

10% FCS,1% PS, 1% sodium 

pyruvate 
pH 6.8 

pH 6.5 
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3.3.2 Multi-cellular tumor spheroid culture 

For MCTS formation, 0.05x106 cells were seeded into low adherence 96-well plates (CellCarrier 

Spheroid ULA microplate, Perkin Elmer, Waltham, MA, USA) using 200 μL CGM or into agarose 

coated 24-well plates (1% ultra-pure agarose in PBS, 300 μL) using 700 μL CGM. Spheroids were 

allowed to grow for 4 or 7 days. The respective monolayer controls were prepared as described 

in 3.3.1, with a medium change after 24 h, and were harvested after 48 h. 4-day and 7-day 

monolayer cells were seeded in 12-well plates at a density of 0.05x106 per well in 2 mL CGM, 

with no medium change during their culture. 

For cell cycle analysis experiments, 4-day and 7-day monolayer cells were seeded in 100 mm 

dishes, using 0.81x106 cells in 10 mL CGM, with no medium change during their culture. 

3.3.3 General cell harvest procedure 

3.3.3.1 RNA samples 

If cells were cultured for RNA extraction and further analysis, the culture medium was discarded 

after the indicated incubation time. Then, the wells were washed once using 2 mL ice-cold PBS. 

Afterward, cells were lyzed as described in 3.4.1. 

3.3.3.2 Protein samples 

If cells were cultured for protein analysis, the culture medium was discarded after the indicated 

incubation time, and the dishes (100 mm) were washed once using 10 mL ice-cold PBS. 

Afterward, cells were scraped off the plate using a cell lifter while overlayed with 10 mL of ice-

cold PBS. The cell suspension was transferred to 50 mL tubes previously placed on ice. Dishes 

were washed with another 10 mL of ice-cold PBS. After centrifugation (340 rcf, 5 min, 4°C), the 

supernatant was discarded, and the remaining pellet was resuspended in 1 mL ice-cold PBS. The 

cell suspension was transferred into a 1.5 mL tube. After centrifugation (357 rcf, 5 min, 4°C), the 

supernatant was again discarded, and the remaining cell pellet was lyzed, as described in 3.5.1. 

The same procedure was performed for MCTS. However, spheroids were collected with their 

CGM from the wells; therefore, an extra centrifugation step (340 rcf, 5 min, 4°C) was performed 

before washing the spheroids. 

If cells were cultured in well-formats smaller than 100 mm, cells were detached using TE. 

Therefore, wells were washed with appropriate amounts of warm PBS and detached using 0.5 mL 

warm TE per well (12-well plate, 1 mL per well for 6-well plates). After 5-10 min, the reaction was 

stopped using 1.5-2 mL CGM. Cell suspensions were pooled, and supernatants were discarded 

after centrifugation (340 rcf, 5 min, RT). The remaining Pellet was washed once using 10 mL of 

ice-cold PBS. After centrifugation (340 rcf, 5 min, 4°C), the supernatant was discarded, and the 

remaining pellet was resuspended in 1 mL ice-cold PBS. The cell suspension was transferred 

into a 1.5 mL tube. After centrifugation (357 rcf, 5 min, 4°C), the supernatant was again discarded, 

and the remaining cell pellet was lyzed, as described in 3.5.1. 
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3.3.3.3 Intact cells 

If cells were cultured for lipid mediator analysis, cells were detached using TE. Therefore, cells 

were washed with 5 mL warm PBS and detached using 3 mL warm TE. After 5-10 min, the 

reaction was stopped using 7 mL CGM. After centrifugation (340 rcf, 5 min, RT), the supernatant 

was discarded. The remaining pellet was washed once using 10 mL of ice-cold PBS. After 

centrifugation (340 rcf, 5 min, 4°C), the supernatant was discarded again, and the remaining 

pellet was resuspended in ice-cold PBSG. 

3.3.4 Cell viability and cytotoxicity 

3.3.4.1 General cell culture procedure for viability and cytotoxicity assays 

The influence of used inhibitors on cell proliferation and cytotoxicity was determined by WST-1 

and LDH assay. Therefore, 0.03x106 HT-29 and 0.03x106 HCT-116 cells per well were seeded 

into 96-well plates using 100 μL RGM. For LDH assays, medium without phenol red and pyruvate 

was used. After 22 h medium was changed to CGM for 2 h. Then, the medium was changed to 

100 μL CGM containing DMSO or inhibitors. Cells were treated with medium containing 1% 

Triton-X-100 to determine the maximal LDH activity for the respective cell line. 

WST-1 cell proliferation assay 

For determination of cell proliferation, cells treated with inhibitors for 24 h were incubated with 

10 μL WST-1 reagent for 1 h at 37°C. Absorbance was measured at 450 nm/690 nm using the 

infinite M200 plate reader. 

LDH cytotoxicity assay 

For determination of cytotoxicity, 100 μL supernatant of cells treated with inhibitors for 24 h were 

transferred into a new 96-well plate. Supernatants were then mixed with 100 μL reaction mixture 

(according to the manufacturer’s protocol) and incubated for 30 min, protected from light. 

Absorbance was measured at 490 nm/620 nm using the infinite M200 plate reader. In order to 

determine the percentage of cytotoxicity, the average absorbance values of the triplicates were 

calculated, and the average absorbance of the background control was subtracted from each 

sample. Then, samples were normalized to the Triton-X-100 control, and values were multiplied 

by 100. 

3.3.5 Cell cycle analysis 

3.3.5.1 General cell culture procedure and harvest for cell cycle analysis 

For cell cycle analysis after serum starvation, cells were harvested after 22 h. Cells for cell cycle 

analysis after inhibitor treatment were subjected to a medium change using 10 mL CGM. Samples 

were treated after 2 h for a period of 24 h using 10 µL DMSO or the indicated inhibitors. 

After serum starvation or inhibitor treatment, cells were washed using 10 mL PBS and harvested 

using 3 mL TE per 100 mm dish. The reaction was stopped using 7 mL of fresh CGM. The 

resuspended cells were separated using a 20 µm cell strainer and placed into a 15 mL tube. After 

counting, cells were centrifuged (340 rcf, 5 min at RT). The supernatant was discarded, and the 
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pellet was resuspended in 5 mL PBS. Following another centrifugation step, cells were 

resuspended according to 4x106 cells/mL and placed on ice. 

3.3.5.2 Fixation and staining 

For fixation, 500 µL of the prepared cell suspensions were added dropwise to 4.5 mL ice-cold 

EtOH while vortexing to avoid clumping. Afterward, the tubes were placed at -20°C overnight. 

Before staining, fixed cells were centrifuged (873 rcf, 5 min at RT) and washed using 10 mL ice-

cold PBS twice. The cell pellet was resuspended in 500 µL staining buffer (PBS + 0.1% Triton-X-

100, 0.2 mg/mL RNAse A, 0.02 mg/mL PI) and placed into FACS tubes. Staining was performed 

for 30 min at RT, light protected. Afterward, samples were stored at 4°C. 

3.3.5.3 Flow cytometer measurements and analysis 

Samples were measured using a FACSVerse flow cytometer. Samples were vortexed properly 

before measurement. BD FACSFlow™ was used as sheath fluid. The percentages of G0/G1, S, 

and G2/M cells were calculated using FlowJo (V10.6) software. Before applying the cell cycle 

analysis tool, sample sets were gated, plotting PI-A vs. PI-W to determine single cells. 
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3.4 Investigations on RNA level 

3.4.1 RNA extraction and purification 

Total RNA was extracted from cells using TRIzol reagent. Therefore, 1-10x106 cells were lyzed 

in 1 mL TRIzol. After at least 24 h at -80°C, RNA was extracted with chloroform, according to the 

manufacturer’s protocol. For precipitation, 1 µL GlycoBlue™ coprecipitant was used per sample. 

Extracted RNA pellets were resuspended in 20-30 µL warm RNase/DNase-free water. RNA 

concentrations and purity were determined using a NanoDrop™ 2000 spectrophotometer based 

on the absorbance ratios A260/280 and A260/230. 

3.4.2 DNAse I digestion and RNA precipitation 

Extracted RNA was digested with DNase I, according to the manufacturer’s protocol. Digested 

preparations (11 µL per sample) were mixed with 55 µL 100% EtOH, 1.1 µL 3 M NaAc, and 0.5 µL 

GlycoBlue™ coprecipitant for precipitation. Mixes were scaled up if necessary, and samples were 

stored at -80°C overnight. Samples were incubated for 10 min on ice prior to centrifugation for 

30 min, 12,000 rcf, 4°C. Pellets were washed with 500 µL ice-cold RNase-free 70% EtOH twice. 

Finally, purified RNA pellets were resuspended in 20 µL warm RNase/DNase-free water. RNA 

concentrations and purity were determined using a NanoDrop™ 2000 spectrophotometer based 

on the absorbance ratios A260/280 and A260/230. 

3.4.3 RNA integrity 

To make sure that the RNA purification led to intact RNA, the integrity was determined. Therefore, 

1 μg RNA in a total volume of 2 μL was mixed with 2 μL of 2x RNA loading dye. Samples, as well 

as RiboRuler High Range RNA Ladder, were incubated for 10 min at 70°C. Samples were 

separated by gel electrophoresis (1% agarose gel, Ethidium bromide 0.001%, TAE buffer) for 

45 min at 100 V. Bands were visualized on a Biovision 1000/26mx system, and 28s/18s rRNA 

ratios were checked. 

3.4.4 cDNA synthesis 

cDNA was prepared using DNAse I digested purified RNA (2 µg). Therefore, the High-Capacity 

RNA-to-cDNA™ Kit was used according to the manufacturer’s protocol. Samples were diluted 

afterward according to 10 ng/µL RNA equivalents (1:10). 

3.4.5 qPCR analysis 

Relative quantification of mRNA content was performed by qPCR analysis using 20 ng (if not 

indicated otherwise) cDNA (RNA equivalent) with the Power SYBR™ Green PCR Master Mix on 

a StepOnePlus System. Reactions were performed in a final volume of 20 µL. Reaction mix 

compositions are described in Table 20. Sample measurements were performed in triplicates for 

every individual experiment. Table 21 states the exact PCR temperature and time parameters 

applied. A list with all specific primer target sequences is provided in Table 22. 
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Table 20: qPCR reaction mix composition. 

Master mix components for one reaction [µL] 

Power SYBR™ Green 10 

H2O 7.88 

Forward primer [100 pmol/µL stock] 0.06 

Reverse primer [100 pmol/µL stock] 0.06 

 

Table 21: qPCR program sequence and parameters. 

Sequence Temperature [°C] Time 

Initial denaturation 95 10 min 

40 cycles 95 

60 

15 sec 

1 min 

Melt curve 95 

60 

0.3 steps up to 95 

15 sec 

1 min 

 

Table 22: qPCR Primer and respective nucleotide accession numbers (NM). 

Gene Forward primer 5´-3  ́ Reverse primer 5´-3 NM Product 

size 

[bp] 

ACTB AGA GCT ACG AGC 

TGC CTG AC 

AGC ACT GTG TTG 

GCG TAC AG 

NM_001101.5 184 

ALOX5 CCC GGG AGA TGA 

GAA CCC TA 

CCA GCA GCT TGA 

AAA TGG GG 

NM_000698.5 200 

BAX CCC GAG AGG TCT 

TTT TCC GAG 

CCA GCC CAT GAT 

GGT TCT GAT 

NM_001291430.2 155 

E2F1 GAG GAG ACC GTA 

GGT GGG AT 

GGA CAA CAG CGG 

TTC TTG C 

NM_005225.3 183 

E2F2 GAG TCA GAG GAT 

GGG GTC CT 

AAA CAT TCC CCT 

GCC TAC CC 

NM_004091.4 156 

E2F3 GGA GCT AGG AGA 

AAG CGG TC 

TGA GGG AGA TTT 

TGG AGT TTT TGG 

NM_001949.5 115 

E2F4 TGC AGA TGC TTT GCT 

GGA GAT 

CCA GCA GAA CCT 

CAA TGG GA 

NM_001950.4 148 
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Gene Forward primer 5´-3  ́ Reverse primer 5´-3 NM Product 

size 

[bp] 

E2F5 GTT CTG GAT CTC AAA 

GCG GC 

CAG CAC CTA CAC 

CTT TCC ACT 

NM_001951.4 141 

FOXO1 TCG TCA TAA TCT GTC 

CCT ACA CA 

CGG CTT CGG CTC 

TTA GCA AA 

NM_002015.4 168 

FOXO3 CGG ACA AAC GGC 

TCA CTC T 

GGA CCC GCA TGA 

ATC GAC TAT 

NM_001455.4 150 

MYB GCA GGT GCT ACC 

AAC ACA GA 

CGA GGC GCT TTC 

TTC AGA TA 

NM_001130173.2 175 

MYBL2 CCA GCC ACT TCC 

CTA ACC G 

CAG TGT CCA CTG 

CTT TGT GC 

NM_002466.4 152 

MYC GTC AAG AGG CGA 

ACA CAC AAC 

TTG GAC GGA CAG 

GAT GTA TGC 

NM_002467.6 162 

SP1 AGT TCC AGA CCG 

TTG ATG GG 

GTT TGC ACC TGG 

TAT GAT CTG T 

NM_138473.3 101 

TP53 CTG GAT TGG CAG 

CCA GAC T 

TCC GGG GAC AGC 

ATC AAA TC 

NM_000546.6 180 

LTC4S GTC TAC CGA GCC 

CAG GTG AA 

GCG TAG CCC TGG 

AAG TAG C 

NM_145867.1 149 

ALOX15 GGG GCA AGG AGA 

CAG AAC TC 

GCG CTA ACA AGG 

GAA CCT GA 

NM_001140.5 167 

ALOX15B CTA CAG GCT GGC 

TCT GCT TT 

GGA TCA GGA CAG 

GGT TGA GA 

NM_001039130.2 199 

PIK3CB TAT TTG GAC TTT GCG 

ACA AAG ACT 

TCG AAC GTA CTG 

GTC TGG TAG 

NM_006219.3 190 

PIK3CD AAG GAG GAG AAT 

CAG AGC GTT 

GAA GAG CGG CTC 

ATA CTG GG 

NM_005026.5 138 

PIK3CG GGC GAA ACG CCC 

ATC AAA AA 

GAC TCC CGT GCA 

GTC ATC C 

NM_002649.3 150 

PTGS1 TCT TGC TGT TCC TGC 

TCC TG 

CAC AGG CCA GGG 

ATG GTG 

NM_000962.4 196 

PTGS2 CTC CCT TGG GTG 

TCA AAG GTA AA 

GGC CCT CGC TTA 

TGA TCT GT 

NM_000963.4 172 
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3.5 Investigations on protein level 

3.5.1 Cell lysis 

All samples (except PMNL) for Western blot analysis were lyzed in 100-200 μL (dependent on 

the used cell number) of RIPA lysis buffer. Before use, the lysis buffer was supplemented with 

fresh protease (cOmplete™ Mini) and phosphatase (PhosSTOP™) inhibitors, as described in the 

manufacturer’s protocols. Lysates were kept on ice for 10 min before storing the samples 

overnight or until further use at -80°C. After thawing on ice, lysates were sonicated (MS72, 

Bandelin Sonopuls HD 200) three times for 10 sec at the lowest pulse rate to remove DNA jelly. 

The remaining debris was removed through centrifugation (10,000 rcf, for 10 min at 4°C). 

Supernatants were transferred into new 1.5 mL tubes, and pellets were discarded. Lysates were 

stored at -20°C. 

Freshly isolated PMNL were lyzed in 200 µL hot (95°C) SDS lysis buffer. Before use, the lysis 

buffer was supplemented with fresh protease (cOmplete™ Mini 2x) and phosphatase 

(PhosSTOP™) inhibitors, as described in the manufacturer’s protocols. After lysis, samples were 

incubated for 10 min at 95°C. Then, lysates were sonicated (MS72, Bandelin Sonopuls HD 200) 

three times for 10 sec at the lowest pulse rate to remove DNA jelly. The remaining debris was 

removed through centrifugation (10,000 rcf, for 10 min at 4°C). Supernatants were transferred 

into new 1.5 mL tubes, and pellets were discarded. Lysates were stored at -80°C. Samples were 

further processed for SDS-PAGE and Western blot analysis on the same day. 

3.5.2 Determination of protein concentration 

Protein concentrations were quantified using the Pierce™ BCA Protein Assay Kit according to the 

manufacturer’s protocol. Absorbance was measured with an infinite M200 multiplate reader at 

562 nm. Concentrations were calculated by preparing a dilution series of BSA with each assay to 

fit a standard curve. 

3.5.3 SDS-PAGE 

For SDS-PAGE, protein samples were diluted and mixed with 5x loading dye and boiled at 96°C 

for 5 min. Identical total protein amounts per lane (30-60 μg in 10-30 μL) were separated using 

10% self-cast (1 mm or 1.5 mm) or 4-15% (1 mm) pre-cast gels. PageRuler™ Plus Prestained 

Protein Ladder or Spectra™ Multicolor High Range Protein Ladder were used as molecular weight 

markers. Gels were run using ice-cold 1x running buffer, applying the parameters listed in Table 

23. 
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Table 23: Used SDS-PAGE parameters. 

Gel Parameters 

10% 10 min, 100 V 

~45 min, 200 V 

4-15% 45 min, 200 V 

3.5.4 Protein immunoblotting 

Western blot transfer to nitrocellulose membranes (0.2 µm) was performed employing the classic 

wet tank method or a semi-dry method using the Trans-Blot Turbo transfer system. Therefore, 

ice-cold 1x Towbin transfer buffer or 1x Trans-Blot Turbo buffer was used. Transfer stacks were 

packed according to the manufacturer’s protocol. Used parameters for protein transfer to 

nitrocellulose membranes are provided in Table 24. 

Table 24: Used protein immunoblot methods and parameters. 

Method Parameters 

Wet tank blotting 100 V, 85 min, ice-cold buffer 

Semi-dry (TransBlot Turbo) Mixed MW, 2 gels, 1 mm: 2.5 A, up to 25 V, 

7 min (12 min if 1.5 mm gels were used) 

High MW, 2 gels. 1 mm: 2.5 A, up to 25 V, 

10 min 

After blotting, membranes were blocked with EveryBlot Blocking Buffer for 1 h at RT. Then, 

membranes were incubated with primary antibodies directed against the respective target 

proteins, as stated in Table 25. Membranes were washed with TBST (3x) at RT. Afterward, 

membranes were incubated with the respective fluorescence-conjugated secondary antibodies 

(diluted 1:15,000) for 1 h at RT. After washing with TBST (3x) and TBS (1x), the protein antibody 

complexes were visualized using the Odyssey Infrared Imaging System, and immune reactive 

bands were quantified with the Image Studio 5.2 software. 
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Table 25: Used primary antibodies, dilutions, and incubation conditions. 

Antibody Species Dilution Incubation 

condition 

5-LO (abcam) rabbit 1:1,000 4°C, overnight 

5-LO (ProteinTech) mouse 1:2,000 4°C, overnight or 3 h, 

RT 

b-Myb rabbit 1:500 4°C, overnight 

cPLA2ɑ rabbit 1:500 4°C, overnight 

ERK 1/2 rabbit 1:1,000 4°C, overnight 

FLAP goat 1:500 4°C, overnight 

LTA4H mouse 1:500 3 h, RT 

MEK-1  mouse 1:2,000 3 h, RT 

mTOR rabbit 1:1,000 4°C, overnight 

p110α rabbit 1:1,000 3 h, RT 

p53 mouse 1:1,000 4°C, overnight 

p70S6K mouse 1:500 4°C, overnight 

Phospho-ERK1/2 mouse 1:200 4°C, overnight 

Phospho-p70S6K rabbit 1:1,000 4°C, overnight 

PRKCζ mouse 1:400 3 h, RT 

Raptor mouse 1:400 3 h, RT 

Rictor mouse 1:400 3 h, RT 

α-Tubulin 

(SantaCruz) 

mouse 1:1,000 1 h, RT 

α-Tubulin (abcam) rabbit 1:5,000 1 h, RT 
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3.5.5 Histological and immunofluorescent staining of MCTS cryosections 

3.5.5.1 Spheroid embedding and cryosectioning 

For embedding spheroids prior to cryosectioning, half of a 96-well plate (per cell line, per time 

point) was transferred into a 50 mL tube. After settling the spheroids, the supernatant was 

discarded, and the spheroids were transferred into 1.5 mL tubes. Spheroids were washed with 

1 mL ice-cold PBS and fixated with 1 mL 4% paraformaldehyde (PFA) solution in PBS for 30 min 

(800 rpm, at RT, Eppendorf Thermomixer). Afterward, spheroids were washed with 1 mL ice-cold 

PBS and placed in a serial dilution of PBS buffered sucrose solution (10%, 20%, 30%, at 28°C, 

800 rpm, Eppendorf Thermomixer). Solutions were replaced every 30 min.  

Embedding was carried out in Tissue-Tek® Cryomold® embedding molds. Spheroids were 

placed at the center of an embedding mold, and the remaining sucrose solution was carefully 

removed. The embedding mold was slowly filled with tissue freezing medium and immediately 

placed onto a metal block precooled to -80°C. When fully frozen, samples were stored at -80°C.  

Before sectioning, preparations were tempered at -20°C. For sectioning, a CryoStar cryostat 

microtome was used. Mold-embedded samples were attached to a cryostat specimen chuck 

using tissue-freezing medium. After 5-10 min, the probed specimen chuck was fastened to the 

cryostat, and sections of 14 μm were prepared. Specimens were mounted on Superfrost®Plus 

adhesive microscope slides. Afterward, samples were dried for 2 h at room temperature before 

storage at -80°C. 

3.5.5.2 Histological sample preparation 

For histological sample preparation of spheroid cryosections, stored slides were thawed at RT for 

10 min. Adhesive tissue freezing medium was removed by rinsing the slides with PBS. Then, the 

slides were incubated for 30 sec in Mayer´s Hematoxylin. After washing with PBS, nuclei were 

blued in Scott’s tap water solution for 20 sec. Samples were then dehydrated in 70% and 95% 

EtOH for 30 sec, successively. For counterstaining, slides were incubated in alcoholic eosin for 

30 sec. Before mounting, samples were washed through 2 changes of 95% EtOH and 3 changes 

of 100% EtOH before clearing through three changes of xylene. Finally, slides were mounted with 

coverslips using ~200 μL of Entellan rapid mounting medium. After 30 min, samples were sealed 

using clear lacquer. 

3.5.5.3 Immunofluorescent sample preparation 

For immunofluorescent sample preparation of spheroid cryosections, stored slides were thawed 

at RT for 10 min. Adhesive tissue freezing medium was removed by rinsing the slides intensively 

with ice-cold PBS for 10 min. Samples were blocked using 1% BSA with 2.2% glycine in PBS for 

1 h at RT. Then, a Super PAP Pen was used to circle the specimens on the slides to reduce the 

amount of primary and secondary antibody solution necessary for staining. Samples were stained 

with primary antibodies (see Table 26) diluted in PBSB (PBS containing 1% BSA) for 3 h at RT 

or overnight at 4°C. After intensive rinsing with PBS, samples were incubated with secondary 

antibodies diluted in PBSB (1:2,000) for 1 h at RT (light protected). Samples were rinsed 
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intensively with PBS, and counterstaining was performed using DAPI diluted in PBS (1:1,000) for 

1 h at RT (light protected). Stained slides were mounted using 150-200 µL Mowiol mounting 

medium with Menzel coverslips. Mounted samples were left to dry overnight at RT and sealed 

using clear nail polish.  

Prepared samples were imaged on a Zeiss 780 AxioObserver.Z1 laser-scanning confocal 

microscope, equipped with an Argon laser and a He/Ne 633 nm laser, using a Zeiss Plan-Neofluar 

40x/1.3 NA oil lens. The same pinhole size was applied for all measurements. In separate tracks, 

samples were excited with 405, 488, and 633 nm lasers. 3 x 3 or 4 x 4 tile scans were acquired 

using GaAsP and PMT detectors. A line average of 8 was applied to all channels. Pictures were 

analyzed and processed using the Zeiss Zen blue software. Identical linear histogram 

adjustments were applied to each channel to adjust brightness and contrast. 5-LO knockout cells 

and secondary antibody control stainings were used to adjust optimal gain and digital offset 

parameters for each measurement.  

Table 26: Primary antibodies used for indirect immunofluorescent confocal microscopy. 

Antibody Species Dilution Incubation 

condition 

5-LO (ProteinTech) mouse 1:50 4°C, overnight 

Ki67 rabbit 1:1,000 4°C, overnight 

Cleaved Caspase-3 rabbit 1:400 4°C, overnight 
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3.6 Lipid mediator analysis 

3.6.1 5-LO activity assay 

For lipid mediator formation in intact untreated or inhibitor-treated HT-29 and HCT-116 cells, cells 

were prepared according to Figure 3.2. After harvest, cells were washed and resuspended in ice-

cold PBSG buffer (according to 10x106 cells/mL). 

For lipid mediator formation in intact human PMNL, cells were prepared as described in 3.2.5.4. 

Cells were resuspended in ice-cold PBSG buffer. The concentration was dependent on the 

respective experiment (typically 5x106 or 10x106 cells/mL). 

For lipid mediator formation in intact human macrophages, cells were prepared as described in 

3.2.5.3. Cells were resuspended in ice-cold PBSG buffer. Here, four 100 mm dishes of each donor 

were harvested, and cells were washed. After centrifugation (314 rcf, 5 min, 4°C), cells were 

resuspended in 1 mL ice-cold PBSG buffer. Since macrophage cell numbers were highly donor-

dependent, total protein amounts for each sample were analyzed, and lipid mediator formation 

was normalized to total protein content. The same procedure was performed if tumor cells and 

human PMNL were compared with human macrophages.  

Lipid mediator formation was initiated by stimulation with 2.5 µM Ca2+ ionophore (A23187) or 5 µM 

S1P and 20 µM ARA or a mixture of 6 µM ARA, DHA, and EPA. After 10 min, the reactions were 

stopped by the addition of 1 mL ice-cold methanol. Supernatants were separated by 

centrifugation (872 rcf, 10 min, 4°C) and stored at -80°C until further analysis. 

A mixture of PBSG buffer and 100% MeOH (1:2) was prepared as a surrogate matrix for dilution 

purposes during lipid mediator extraction.  

3.6.2 Liquid chromatography electrospray ionization MS/MS analysis 

Lipid mediators were analyzed by liquid chromatography-electrospray ionization tandem mass 

spectrometry (LC-ESI-MS/MS). Therefore, 200 μL assay supernatant (or 10 µL sample diluted to 

200 µL with surrogate matrix) was spiked with 20 μL MeOH, 20 μL methanolic IS working solution, 

and 100 µL 0.15 M EDTA solution. Mixtures were extracted twice using 600 μL ethyl acetate in 

amber tubes. Organic phases were combined after extraction, following centrifugation (3 min at 

20,000 rcf), and were evaporated at 45°C under a gentle stream of nitrogen in amber glass vials. 

Extracted samples were reconstituted in 50 μL MeOH/water (70:30, v/v) containing 0.0001% 

BHT. Reconstituted samples were transferred into inserts and injected into the LC-MS system. 

Calibration standards and quality control samples were prepared by spiking 200 µL surrogate 

matrix with 20 μL of the methanolic standard working solution and processed as described for the 

samples. 

The LC-MS system consisted of a triple quadrupole mass spectrometer QTRAP 6500+ (Sciex, 

Darmstadt, Germany) equipped with a Turbo V Ion Spray source operated in negative 

electrospray ionization mode and an Agilent 1290 Infinity LC-system with binary HPLC pump, 

column oven and autosampler (Agilent, Waldbronn, Germany). The chromatographic separation 

was performed using an Acquity UPLC BEH C18 2.1x100 mm column and VanGuard Pre-Column 

2.1 × 5 mm (both with a particle size of 1.7 μm, from Waters, Eschborn, Germany) for reversed-
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phase separation of 34 analytes. A Lux Amylose-1® column (250 × 4.6 mm, 3 μm, 1,000 Å, from 

Phenomenex, Aschaffenburg, Germany) was used for chiral separation of 15R/S-HETE and 

17R/S-HDHA. Analytes were eluted with gradient elution using water (solvent A) and acetonitrile 

(solvent B) containing 0.0025% formic acid, respectively. More information about calibration 

ranges, gradient programs, and mass spectrometric parameters can be found in the appendix. 

Data acquisition was performed using Analyst Software 1.7.1 (Sciex, Darmstadt, Germany), and 

quantification was executed using MultiQuant Software 3.0.3 (Sciex, Darmstadt, Germany), 

employing the internal standard method (isotope dilution mass spectrometry). Calibration curves 

were calculated by linear regression with 1/x weighting. 

LM extraction and analysis were performed by the Gurke/Thomas laboratory at the Institute of 

Clinical Pharmacology (Pharmazentrum Frankfurt, ZAFES, Goethe-University). 

 

3.7 Reporter gene experiments 

For reporter gene assays, an in-house produced substrate buffer was developed, and results 

were normalized to cellular GFP expression.  

Therefore, 0.03x106 cells (stably transfected HT-29 or HCT-116 reporter cells) were seeded into 

black 96-well µCLEAR® plates using 100 µL RGM per well. For faster and stronger adherence, 

plates were centrifuged (300 rcf, 5 min, RT). After 22 h, 100 µL CGM with 17.5% FCS was added 

to each well to achieve the final FCS concentration of CGM. After 2 h of incubation (37°C, 5% 

CO2), the medium was changed to CGM containing the respective inhibitors or the vehicle control 

(DMSO). After 24 h of inhibitor incubation (37°C, 5% CO2), GFP expression and firefly luciferase 

(Fluc) activity were measured using the Spark multimode plate reader. Therefore, the medium 

was removed, and cells were washed with 100 µL warm PBS once. The GFP signal was 

measured in 75 µL warm PBS (Ex 485(20)/Em 520(10), optimal gain). To measure Fluc activity, 

75 µL substrate buffer (Table 27) per well was added, and plates were agitated at low speed for 

20 min at RT, light protected. Then, 140 µL of each well was transferred into white LUMITRAC 

96-well plates, and the Fluc activity was measured (1,000 ms integration time). For analysis, the 

ratio of measured Fluc activity and the GFP expression signal was determined. Results were then 

normalized to the respective vehicle control. 

Table 27: Substrate buffer composition for reporter gene assay. 

Component Concentration 

HEPES pH 7.8 74.9 mM 

DTT 49.9 mM 

MgSO4 4 mM 

AMP 895 μM 

EDTA 785 μM 



Material and methods 72 
 

Component Concentration 

ATP 488 μM 

D-luciferin 469 μM 

NaS2O4 287 μM 

Coenzyme A 135 μM 

Tween20 0.33% 

Triton-X-100 1% 

 

3.8 Cloning 

Respective maps of all plasmids prepared, as well as a list of all primers used for cloning, can be 

found in the appendix. Table 28 states all prepared plasmids.  

A human cDNA clone of ‘homo sapiens b-Myb’ was purchased from BioCat GmbH, Heidelberg, 

Germany. 

Table 28: Prepared plasmids with used backbones and inserts. 

Plasmid name Backbone Description 

pSBbiGP_MYBL2 pSBbiGP MYBL2 gene 

pSBGP_LUC pSBGP_LUC pSBtet-GP, promoterless, carries the firefly 

luciferase gene 

pSBGP_BaxLUC pSBGP_LUC Bax promoter construct 

pSBGP_p53LUC pSBGP_LUC p53 promoter construct 

pSBGP_pN0LUC pSBGP_LUC pN0 promoter construct 

pSBGP_pN10LUC pSBGP_LUC pN10 promoter construct 

pSBGP_pN10p53LUC pSBGP_LUC pN10p53 promoter construct 

pSBGP_pN6LUC pSBGP_LUC pN6 promoter construct 

pSBGP_pN6ΔMYBLUC pSBGP_LUC pN6 promoter construct, deleted MYB 

binding site 

pSBGP_SV40_5LOcds 

1600delLUC 

pSBGP_LUC SV40 promoter, shortened 5LO gene (1600 

nts deleted from 3' end), fusion protein with 

firefly luciferase 

pSBGP_SV40_5LOcds 

1600delmutMYBLUC 

pSBGP_LUC SV40 promoter, shortened 5LO gene (1600 

nts deleted from 3' end, mutated cds MYB 
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Plasmid name Backbone Description 

binding side) fusion protein with firefly 

luciferase 

pSBGP_SV40_5LOcds 

1699delLUC 

pSBGP_LUC SV40 promoter, shortened 5LO gene (1699 

nts deleted from 3' end) fusion protein with 

firefly luciferase 

pSBGP_SV40LUC pSBGP_LUC SV40 promoter construct, control 

pSBtetGP_LV pSBtetGP non-coding sequence in MCS 

pSBtetGP_MYBL2 pSBtetGP MYBL2 gene 

3.8.1 Methods for DNA preparation 

3.8.1.1 Polymerase chain reaction 

Polymerase chain reactions (PCRs) were carried out using the Q5® High-Fidelity DNA 

Polymerase. Reaction mixes were prepared according to the manufacturer’s protocol. Table 29 

states the exact PCR temperature and time parameters applied. 

Table 29: Standard protocol for PCR reactions using Q5® High-Fidelity DNA Polymerase. 

 Temperature [°C] Time 

Initial denaturation 98°C 30 sec 

30 cycles  98°C 

61°C 

72°C 

10 sec 

20 sec 

30-50 sec/kb 

Final elongation 72°C 2 min 

Storage 4°C ∞ 

 

Used primers were designed with an annealing temperature of approximately 56°C calculated 

using the ‘Oligo Calc webtool’. PCR products were purified using the GeneJET PCR purification 

kit (if only the desired product emerged) or by agarose gel electrophoresis (see DNA isolation and 

purification) and the GeneJET Gel Extraction Kit. Both GeneJET PCR and GeneJET Gel 

Extraction and Purification Kits were used according to the manufacturer’s protocol. 

3.8.1.2 Restriction digest 

Restriction digests were performed using restriction enzymes from NEB. In general, 1 μg DNA 

was digested in a 50 μL reaction, using one or two restriction enzymes with 1x Cutsmart buffer. 

Restriction digests were performed at 37°C for either 1 h or 15 min if ‘time-safer qualified’ 

enzymes were used. Depending on the respective enzyme, reaction mixtures were heat 
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inactivated at 65°C for 15 min or at 80°C for 20 min. If the digestion reaction was used for plasmid 

linearization, the product was purified using the GeneJET PCR Purification Kit according to the 

manufacturer’s protocol. If a specific DNA fragment was needed, digested samples were 

separated by gel electrophoresis, and fragments were purified using the GeneJET Gel Extraction 

Kit. 

3.8.1.3 DNA isolation and purification 

Agarose concentration was adapted depending on the size of the expected product according to 

the manufacturer’s protocol. For quantitative separation, the sample was taken and mixed with 

the respective amount of 6x DNA loading dye. Analytical gel electrophoresis was performed using 

only 5 µl of the respective sample mixed with 1 µl of 6x DNA loading dye. Agarose gel 

electrophoresis was performed in 1x TAE at 120 V for 25 min if only one fragment or fragments 

with large size differences (>1 kb) were analyzed. If separation of fragments with similar sizes 

was necessary, gels were run at 100 V for 45 min. 

For the isolation of DNA fragments, bands were visualized at 312 nm using a UV-transilluminator. 

Samples were cut from the gel and transferred to 2 mL reaction tubes. Gel pieces were purified 

using the GeneJET Gel Extraction Kit according to the manufacturer’s protocol. 

3.8.1.4 Ligation and assembly of multiple DNA fragments 

DNA fragments digested as described in 3.8.1.2 were ligated using T4 DNA Ligase (New England 

Biolabs). A molar ratio of 1:3 (vector to insert) was used for most reactions (calculated using the 

NEBioCalculator online tool). Ligation reactions (standard composition is shown in Table 30) were 

performed for 30 min at RT, followed by inactivation for 10 min at 65°C. Then, the reaction mix 

was placed on ice until transformation into E. coli was performed. 

Table 30: Standard ligation composition. 

Components Final amount 

T4 DNA ligase buffer (10x) 1x 

Vector DNA 50-100 ng 

Insert 1 3x molar amount of vector DNA 

Insert 2 (optional) 3x molar amount of vector DNA 

T4 DNA ligase 1 μL 

H2O to 20 μL 

For more complex cloning projects that could not be accomplished as described before, the 

NEBuilder® HiFi DNA Assembly Master Mix was used according to the manufacturer’s protocol. 

This allowed the combination of up to five DNA fragments simultaneously. Vector DNA was 

linearized by PCR or by restriction digest, while inserts were prepared by PCR. Respective 

adjacent fragments were prepared to share a homologous region of about 20 bp. DNA fragments 

were combined by incubation for 15-60 min at 50°C following the manufacturer's manual.  
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3.8.2 Plasmid preparation 

3.8.2.1 Transformation in E. coli and antibiotic selection 

DNA was transformed into DH5a competent cells for vector amplification. Competent cells were 

thawed on ice for approximately 10 min. 50 µl of DH5α cells were incubated with 1 µl of DNA (50-

100 ng) on ice for 30 min. After this, a heat shock was performed at 42°C for 45 s in a 

thermocycler, and cells were put on ice for 1 min afterward. Then, 500 µl SOC medium was 

added, and the transformed cells were incubated for 1 h at 37°C, 350 rpm. For antibiotic selection, 

cells were centrifuged (1,000 rcf, 2 min, RT), and the supernatant was discarded by inverting the 

tubes. The pellet was resuspended in the small amount of remaining supernatant, and 20 µl cell 

suspension was transferred on LB-agar plates containing the respective selection antibiotic. 

Plated agar plates were incubated at 37°C overnight until colony formation was visible. Colonized 

plates were stored at 4°C for up to one month.  

Storage of transformed E. coli 

E. coli cells were stored as glycerol stocks at -80°C. Glycerol stocks were prepared by diluting 

800 µl of an overnight culture (in LB-medium containing the respective selection antibiotics) with 

250 µl of 87% glycerol in cryovials. The tubes were directly stored at -80°C without any pre-cooling 

steps. 

3.8.2.2 Vector DNA preparation 

The amplification of vector DNA was either done in mini cultures (8 mL LB-medium) for newly 

assembled constructs or as maxi cultures (500 mL LB-medium) for already sequenced plasmids. 

MiniPrep amplifications were performed in LB-medium containing the respective selection 

antibiotic, inoculated with a clone from a selection LB-agar plate, and incubated at 37°C, 180 rpm 

overnight. MaxiPrep amplifications were performed in LB-medium containing the respective 

selection antibiotic and inoculated either with a clone from an LB-agar selection plate or with 

500 µL transformation mix of an already sequenced plasmid. Incubation conditions were the same 

as described for small-scale amplifications. 

Cells were harvested for either 10 min, 4°C, 4,000 rcf (MiniPrep) or 20 min, 4°C, 4,000 rcf 

(MaxiPrep). The amplified DNA was isolated from the cell pellets using either a MiniPrepKit 

(MiniPrep) or a MaxiPrepKit (MaxiPrep), according to the manufacturer’s manual. 

DNA concentrations were determined using a NanoDrop™ 2000 spectrophotometer. 

3.8.2.3 DNA sequencing 

Verification of new plasmids or sequence confirmation of bought plasmids was achieved using 

Sanger sequencing (Microsynth AG, Schweiz). Therefore, 1,000 ng DNA were used. 
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3.9 Statistical analysis 

Statistical analysis was performed using GraphPad Prism7 (San Diego, CA, USA). Used statistic 

tests are described in each figure legend for the respective data set. Data are presented as mean 

+ SEM.  
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4 Results 

4.1 Expression of enzymes of the leukotriene cascade in MCTS of HT-

29 and HCT-116 CRC cells  

Tumor cells underlie various physicochemical parameters in vivo, which are not adequately 

mirrored during conventional monolayer culture. Thus, MCTS of the colorectal cancer cell lines 

HT-29 and HCT-116 were analyzed regarding their profile of enzymes of the leukotriene cascade. 

As described in chapter 2, this was already performed partly during a preliminary master’s thesis 

in 2017. However, this time the aim was to examine if 5-LO expression is already upregulated 

within a shorter incubation period and to implement and investigate better-suited monolayer 

controls than cells taken from the respective maintenance culture. The cell lines U-2 OS and 

Capan-2 were excluded for MCTS formation from this study even though their 5-LO expression 

was the highest among the tested cell lines (Figure 2.1A). This decision was made due to the 

very loose spheroid formation seen for U-2 OS cells and insufficient formation of Capan-2 

spheroids. 

For MCTS formation, HT-29 and HCT-116 cells were seeded in special low adherence 96-well- 

or 24-well plates coated with ultra-pure agarose. Identical cell numbers were seeded for MCTS 

and monolayer controls. Due to their higher proliferation rate in monolayer culture, monolayer 

controls were seeded in 12-well plates instead. After growth for 4 or 7 days, spheroids and 

monolayers were harvested. During this incubation period, the medium was neither renewed nor 

changed. Hence, another monolayer control (co) was prepared to display optimal growth 

conditions. For this purpose, cells were seeded and harvested after 48 h with an approximate 

confluency of 70-80%. Medium was changed 24 h after seeding. All samples were analyzed via 

Western blotting towards the protein expression of 5-LO, cPLA2α, LTA4H, and FLAP (Figure 4.1). 

MCTS formation already induced 5-LO expression significantly after 4 days. This induction was 

comparable to the results obtained after 7 days of culture independent of the method used for 

spheroid formation (densitometric data for 5-LO, cPLA2α, LTA4H, and FLAP are displayed in App. 

Figure 7.1). 

Interestingly, monolayer growth for 4 and 7 days also induced 5-LO expression in HT-29 (after 7 

days) and HCT-116 cells (after 4 and 7 days). An inverse expression pattern was found for 

cPLA2α. Here, spheroid formation and monolayer growth for 7 days led to a downregulation of the 

protein expression. LTA4H expression was strongly influenced by MCTS formation as well. No 

basal expression was found for HT-29 cells, but MCTS formation strongly induced LTA4H 

expression. In HCT-116 cells, moderate LTA4H expression was measurable; however, expression 

was again induced by MCTS formation and monolayer growth for 7 days. The expression of FLAP 

was not influenced under all tested conditions.  
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Figure 4.1: Protein expression of 5-LO and other members of the LT cascade in MCTS.  

Protein expression of 5-LO, cPLA2α, LTA4H, and FLAP in HT-29 (A) and HCT-116 (B) cells analyzed via Western blot. 

MCTS were either grown for 4 or 7 days in 96-well low adherence plates or 24-well plates coated with ultra-pure agarose 

(1%). Respective monolayer controls were seeded in 12-well plates. Identical cell amounts (0.05x106 cells/well) were 

used. The subconfluent monolayer controls (co) were seeded in 100 mm dishes (3x106 cells per dish), received a 

medium change after 24 h, and were harvested after 48 h. Same monolayer controls are displayed on the low-

adherence and agarose spheroid blots. One representative blot out of 3 is shown.  

Additionally, mRNA expression of ALOX5, LTC4S, and ALOX15 was investigated via qPCR 

analysis. Results obtained for 5-LO protein expression could be confirmed on mRNA level; 

however, induction of ALOX5 after MCTS formation and growth for 7 days was more pronounced 

in HCT-116 cells. Investigation of LTC4S expression revealed the same pattern as for ALOX5. 

LTC4S induction after MCTS formation and 7-day monolayer growth was more pronounced in 

HT-29 cells (up to 20-fold) than in HCT-116 cells (up to 3-fold). Unfortunately, the lack of a suitable 

antibody made it impossible to investigate LTC4S protein expression. Notably, basal LTC4S 

expression was lower in HT-29 and HCT-116 monolayers than ALOX5 expression (Figure 4.2B). 

To summarize, MCTS and monolayer growth for 4 or 7 days influenced the expression of 

members of the LT cascade potently, independent of the used MCTS formation method.  

Interestingly, MCTS formation and 7-day monolayer growth induced ALOX15 mRNA expression 

in both cell lines as well. However, basal ALOX15 expression in monolayer-grown cells, as 

already seen for LTC4S, was relatively low compared to ALOX5 expression (Figure 4.2B). 

Nevertheless, basal ALOX15 mRNA expression was more pronounced in HCT-116 cells 
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compared to HT-29 cells. Additionally, mRNA expression of PTGS1 and PTGS2 was analyzed 

(App. Figure 7.2). Like ALOX5, PTGS1 expression was upregulated due to MCTS formation and 

monolayer growth for 7 days. PTGS2 expression was predominantly upregulated after MCTS 

formation after 4 and 7 days. Basal PTGS1 expression was higher compared to PTGS2 

expression in both investigated cell lines. However, the expression of PTGS1 and PTGS2 was 

more pronounced in HT-29 cells compared to HCT-116 cells. 

 

Figure 4.2: mRNA expression of ALOX5, LTC4S, and ALOX15 in MCTS.  

MCTS were either grown for 4 or 7 days in 96-well low adherence plates or 24-well plates coated with ultra-pure agarose 

(1%). Respective monolayer controls were seeded in 12-well plates. Same cell amounts (0.05x106 cells/well) were 

used. The subconfluent monolayer controls (co) were seeded in 6-well plates (0.4x106 cells per well), received a 

medium change after 24 h, and were harvested after 48 h. (A) Gene expression determined via qPCR analysis was 

normalized to the housekeeping gene ACTB and the respective monolayer control (2-ΔΔCT method). (B) Comparison of 

monolayer gene expression normalized to ACTB (2-ΔCT). Results are depicted as mean + SEM from 3 independent 

experiments. Asterisks indicate significant changes vs. co determined by unpaired two-tailed student’s t-test with 

Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001).  
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4.1.1 Characterization of established MCTS and monolayer models 

For further characterization, pictures of monolayers and MCTS were taken and analyzed. After 4 

days of growth, both cell lines showed compact MCTS formation independent of the preparation 

method (Figure 4.3). However, growth for 7 days did not significantly increase the spheroid size 

any further. Comparing MCTS from both cell lines, HCT-116 cells formed generally bigger 

spheroids (Figure 4.4A). 

 

Figure 4.3: Monolayer and MCTS appearance after 4 and 7 days of growth.  

Transmitted light microscope pictures of HT-29 (A) and HCT-116 (B) MCTS and monolayers. MCTS were either grown 

for 4 or 7 days in 96-well low adherence plates or 24-well plates coated with ultra-pure agarose (1%). Respective 

monolayer controls were seeded in 12-well plates. Identical cell numbers (0.05x106 cells/well) were seeded. Pictures 

were taken employing a light microscope (monolayers, scale bar: 100 µm; MCTS, scale bar: 200 µm). One 

representative picture out of 3 is shown.  
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Furthermore, no significant differences in MCTS size after 4 and 7 days could be observed 

comparing both formation methods. Nevertheless, spheroid formation and especially compaction 

progressed faster using the 96-well low adherence plates compared to 24-well agarose-coated 

plates (Figure 4.4B). Monolayers of both cell lines cultured for 7 days were visibly overgrown. 

Culture for 4 days led to a confluency of ~70-80% for both cell lines, but cells formed very densely 

grown islets, especially in the case of HT-29 cells (Figure 4.3).  

 

Figure 4.4: Size profile of MCTS.  

Average diameters after 4 and 7 days (A) and during growth for 7 days (B). MCTS were either grown for 4 or 7 days in 

96-well low adherence plates or 24-well plates coated with ultra-pure agarose (1%). Identical cell numbers (0.05x106 

cells/well) were used. Pictures were taken employing a light microscope, and diameters were analyzed using the ZEN 

core 2.6 software. Results are depicted as mean + SEM from 6 (A) or 2-6 (B) independent experiments.  

For further characterization, 14 μm cryosections of MCTS were prepared and stained using 

hematoxylin and eosin. Because no significant size differences were noticed between both 

spheroid formation methods, only samples from the 96-well low adherence plates were prepared 

due to practicability. MCTS of both cell lines showed a thick outer rim region (Figure 4.5). Beyond, 

HT-29 MCTS showed a looser core region already recognizable after 4 days; however, this rim 

was more pronounced and delimited in spheroids grown for 7 days. Interestingly, MCTS of HCT-

116 cells showed a capsulated empty inner core region after growth for 4 days. This empty core 

region was even more prominent after 7 days. There, the core encapsulating rim seemed very 

unstable and was surrounded by a looser cell structure. The fissures visible in MCTS after 7 days 

in both cell lines are no characteristic features but artifacts originating from the cutting process. 
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Figure 4.5: Hematoxylin and eosin staining of MCTS cryosections.  

Cryosections (14 µm) of HT-29 and HCT-116 MCTS stained with hematoxylin (nuclei, purple/blue) and eosin (cytosol 

and ECM, pink). MCTS were grown for 4 or 7 days in 96-well low adherence plates. Identical cell numbers (0.05x106 

cells/well) were used. Pictures were taken employing a light microscope. One of 3 independent experiments is shown, 

respectively.  

To ensure better comparability of monolayer-grown cells and MCTS, no medium change was 

performed during the 4- and 7-days of culture. As a result, acidification of the medium was 

observed due to phenol red pH indication. Medium supernatants of cells cultured for 7 days were 

bright yellow, indicating a pH range of 6.0-6.5. Similar pH conditions were observed for medium 

supernatants of MCTS after 4 and 7 days for both cell lines. Medium supernatants of HCT-116 

monolayers cultured for 4 days also showed those pH conditions. In contrast, supernatants of HT-

29 monolayers cultured for 4 days were more orange, indicating a pH range of 6.5-7.0. The 

medium supernatant of the subconfluent monolayer controls showed an orange/red color, 

indicating a pH range of 7.0-7.5.  

As both cell lines were visibly overgrown after 7 days of culture and showed strong induction of 

5-LO expression, cell cycle analysis was performed. In line with the monolayer appearance, 

culture for 7 days triggered a G0/G1 cell cycle arrest in both cell lines (Figure 4.6). Interestingly 

the proportion of cells in G0/G1 was higher for HT-29 cells than for HCT-116 cells. However, the 

culture of HCT-116 cells for 4 days also triggered G0/G1 arrest, but the proportion of cells in the 

G0/G1 phase was lower compared to HCT-116 cells cultured for 7 days (Figure 4.6). The 

subconfluent monolayer control showed the lowest G0/G1 percentage for both cell lines. 

Interestingly, no difference was observable between the 4-day cultured monolayer and the 

subconfluent control for HT-29 cells despite the pronounced formation of tightly grown cell islets 

(Figure 4.6A). An example of the gating strategy applied to the obtained sample sets before cell 

cycle analysis can be found in App. Figure 7.3. 
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Figure 4.6: Cell cycle distribution of monolayers.  

HT-29 cells (A) and HCT-116 cells (B) were grown for 4 or 7 days (0.81x106 cells/100 mm dish) and compared to 

monolayer controls (co, 3x106 cells/100 mm dish), which were harvested after 48 h of culture and received a medium 

change after 24 h. Pictures were taken employing a light microscope. One representative picture out of 3 independent 

experiments is shown. Cells were analyzed via flow cytometry, and cell cycle analysis was performed using FlowJo 

software 10. Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant 

changes vs. co determined by two-way ANOVA coupled with Bonferroni post-test for multiple comparisons. * (P<0.05), 

** (P<0.01), *** (P<0.001). 
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4.2 Influence of extracellular acidic pH and cellular density on 5-LO 

expression 

Regarding the findings on 5-LO expression obtained for over-confluent and nearly-confluent 

monolayer cultured cells, the effects of extracellular acidic pH and high cellular density on 5-LO 

expression were investigated.  

Beforehand, reversible cell cycle synchronization via serum deprivation was established for HT-

29 and HCT-116 cells. As the obtained results implied a possible cell cycle dependency, this was 

necessary to ensure optimal conditions for subsequent experiments. Cell cycle synchronization 

can be reached by removing or depleting serum for ~ 24 h (exit into G0 quiescence). Then, serum 

is added to stimulate cell cycle entry (early G1 phase) (351). Therefore, cells were seeded either 

in their respective complete growth medium (CGM) or reduced growth medium (RGM) for cell 

cycle synchronization (see Figure 3.2 for workflow). After 22-24 h, cells were prepared for cell 

cycle analysis to review the synchronization. Furthermore, samples were collected to investigate 

the influence of reversible cell cycle synchronization on 5-LO expression. As expected, cell cycle 

synchronization inhibited cell proliferation and led to a shift toward G0/G1 in HT-29 and HCT-116 

cells. Importantly, 5-LO expression was not affected through synchronization (see App. Figure 

7.4). For further experiments, CGM was added for 2 h after synchronization before starting the 

experiment to stimulate cell cycle entry.  

In order to investigate the influence of extracellular acidic pH, cells were seeded in RGM and left 

to adhere for 22 h. Cells were then incubated with CGM for 2 h before they were washed and 

treated with the pH-adjusted medium. Using the normal ready-to-use CGM for pH adjustment was 

impossible since cell culture media usually contain a sodium bicarbonate buffer system, allowing 

physiological pH maintenance when cultured in a 5-10% CO2 environment. Therefore, DMEM 

powder in combination with a HEPES/PIPES buffer system was used. Unfortunately, no McCoys 

5A powdered medium was available; therefore, HT-29 cells were also treated using DMEM. 

Medium adjusted to pH 7.4 served as the control medium and was compared with medium 

adjusted to pH 6.5 and 6.8. Cells were incubated with the ready-to-use, commercially obtained 

DMEM medium (CGM) as an additional control. All used media were supplemented with 10% 

FCS, 1% PS, 1% pyruvate and prepared under sterile conditions.  

Treatment with acidified medium significantly induced ALOX5 expression in both cell lines (Figure 

4.7). In HT-29 cells, the induction was more pronounced after 24 h at pH 6.8 compared to pH 6.5. 

On the contrary, after 48 h, induction of ALOX5 was more pronounced for HT-29 cells treated 

with pH 6.5; however, the observed induction of ALOX5 at pH 6.8 was less pronounced compared 

to 24 h. Furthermore, the use of DMEM on HT-29 cells influenced ALOX5 expression and led to 

a reduction of expression compared to the control (Figure 4.7A). For HCT-116 cells, treatment 

with pH 6.5 led to a less pronounced ALOX5 induction than treatment with pH 6.8 after 24 h. 

However, both effects were nearly abolished after 48 h. 

Next, the influence of cellular density on 5-LO expression was investigated. Therefore, cells were 

seeded in RGM using different cell densities (cells/cm2). After 24 h medium was changed to CGM, 

and cells were incubated for 24 h. 
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Figure 4.7: mRNA expression of ALOX5 after treatment with acidified CGM medium.  

HT-29 (A) and HCT-116 cells (B) were seeded in 6-well plates using RGM (0.4x106 cells/well). After 22 h, medium was 

changed to CGM for 2 h. Then, cells were washed and incubated for 24 h or 48 h using pH-adjusted medium. For 

comparison, cells were also incubated with commercially obtained ready-to-use medium (CGM) and self-prepared 

medium adjusted to pH 7.4 served as a control. ALOX5 expression was determined via qPCR analysis. Expression 

was normalized to the housekeeping gene ACTB and the respective adjusted pH 7.4 control (2-ΔΔCT method). Results 

are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes vs. pH 7.4 control 

determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

 

Figure 4.8: mRNA expression of ALOX5 after growth in different cellular densities.  

HT-29 (A) and HCT-116 (B) cells were seeded into 6-well plates using RGM. After 24 h, medium was changed to CGM. 

Cells were harvested after another 24 h. ALOX5 expression was determined via qPCR analysis. Expression was 

normalized to the housekeeping gene ACTB and the respective 70-80% confluency control (0.042x106 cells/cm2 

seeding density, 2-ΔΔCT method). Results are depicted as mean + SEM from 3 independent experiments. Asterisks 

indicate significant changes vs. pH 7.4 controls determined by unpaired two-tailed student’s t-test with Welch’s 

correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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ALOX5 mRNA expression was examined first. For this purpose, cells grown in a density of 

0.042x106 cells/cm2 (equal to 0.4x106 cells/well on a 6-well plate) served as a subconfluent 

monolayer control (70-80% confluency). For both cell lines, increasing cellular density led to an 

induction of ALOX5 expression (Figure 4.8). However, results were only significant in HT-29 cells 

seeded at 0.21x106 and 0.31x106 cells/cm2 (Figure 4.8A). It is essential to mention that despite 

the medium change after 24 h, acidification of the medium supernatant in the high-density 

samples was visible. Since the induction of ALOX5 due to high cellular density was more 

pronounced for both cell lines compared to treatment with acidified CGM, the expression of 5-LO 

was also investigated on protein level. In both cell lines, an increase in 5-LO expression was 

observed via Western blot analysis due to increased cellular density (Figure 4.9A). 

Since high cellular density mediated through cell-cell contact can trigger cell cycle arrest in the 

early G1 phase, cell cycle analysis was performed as well. Surprisingly, high cellular density did 

not trigger cell cycle arrest in HT-29 cells but led to a significant and density-dependent shift 

towards the G0/G1 phase in HCT-116 cells (Figure 4.9B). 

 

Figure 4.9: 5-LO protein expression and cell cycle distribution in monolayer grown cells seeded in different densities.  

HT-29 and HCT-116 cells were seeded into 100 mm plates in RGM. After 24 h, medium was changed to CGM. Cells 

were harvested after another 24 h. (A) Protein expression of 5-LO in HT-29 and HCT-116 cells. One representative 

Western blot out of 3 is shown. (B) Cell cycle distribution in HT-29 and HCT-116 cells grown in different densities. 

Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes vs. the 

70-80% confluency control (0.042x106 cells/cm2) determined by two-way ANOVA coupled with Dunnett's post-test for 

multiple comparisons. * (P<0.05), ** (P<0.01), *** (P<0.001). 

  



87 Results 
 

4.3 Influence of pro-proliferative and survival pathways on 5-LO 

expression 

Since 3D culture of HT-29 and HCT-116 induced 5-LO expression (4.1), another aim of this work 

was to elucidate pathways that might be involved in this regulation. Recently, Riedl et al. 

demonstrated that 3D growth of HT-29 and HCT-116 CRC cells attenuates AKT-mTOR-S6K and 

MEK-1/ERK signaling (348). Both pathways are commonly altered signaling routes regulating cell 

growth, proliferation, survival, and metabolism in CRC. Their dysregulation has also been 

implicated in CRC progression (352). Therefore, the effects of pharmacological inhibition and 

knockdown of these pathways on 5-LO expression were investigated. Furthermore, the possible 

involvement of p53 was investigated since 5-LO is a direct p53 target gene that is upregulated in 

HCT-116 cells after treatment with genotoxic compounds (32). 

4.3.1 Compound-mediated pathway inhibition 

To investigate the involvement of the PI3K/mTOR and MEK/ERK axis in the regulation of 5-LO 

expression, HT-29 and HCT-116 monolayer grown cells were treated with several inhibitors 

targeting multiple members of both signaling cascades. As established in Chapter 4.2, cell cycle 

synchronization via serum starvation was performed prior to the inhibitor treatment (see Figure 

3.2 for workflow). Treatment with the pan-PI3K inhibitor Wortmannin (1 µM), the mTOR inhibitor 

Temsirolimus (3 µM), and the dual pan-PI3K and mTOR inhibitor Dactolisib (3 µM) led to a 

significant induction (1.2-1.9-fold) of 5-LO protein expression in HT-29 cells (see App. Figure 7.5 

for structures of the respective inhibitors). 

 

Figure 4.10: 5-LO protein expression after 24 h of treatment with inhibitors of the PI3K/mTOR and MEK/ERK pathway 

in monolayer grown cells.  

HT-29 (A) and HCT-116 (B) cells were seeded (3x106 cells/100 mm dish) and cell cycle was synchronized by serum 

starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated for 

24 h with the indicated inhibitors Wortmannin (Wo) 1 µM; Temsirolimus (Tem) 3 µM; Dactolisib (Dac) 3 µM, Erlotinib 

(Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. The 

vehicle control (co) received DMSO instead. Densitometric values were determined and values were normalized to the 

loading control ɑ-tubulin followed by normalization to the DMSO vehicle control (co). Results are depicted as mean + 

SEM from 3 independent experiments. Asterisks indicate significant changes vs. DMSO vehicle control determined by 

unpaired two-tailed student’s t-test with Welch’s correction * (P<0.05), ** (P<0.01), *** (P<0.001). 
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Interestingly, pan-PI3K/mTOR inhibition failed to induce 5-LO protein expression in HCT-116 cells 

(Figure 4.10). Targeting of the EGF receptor using Erlotinib (5 µM) and inhibition of Ras 

farnesylation essential for Ras activation using LB42708 (1 µM) did not alter 5-LO protein 

expression significantly in any of the cell lines. In contrast, inhibition of MEK1/2 using PD184352 

(1 µM), MEK-1 using Cobimetinib (0.5 µM), and ERK-1/2 using SCH772984 (1 µM) induced 5-LO 

protein expression in both cell lines significantly. However, the induction of 5-LO expression was 

more pronounced for HT-29 cells (2.5-2.8-fold) than for HCT-116 cells (1.6-2.1-fold). 

Obtained data for ALOX5 mRNA expression support the results for 5-LO protein expression. 

However, induction of ALOX5 mRNA was even more pronounced than 5-LO protein expression. 

Of note, treatment of HCT-116 cells with Dactolisib led to an elevated but not significantly altered 

ALOX5 mRNA expression (2.6-fold, Figure 4.11B). 

 

Figure 4.11: mRNA expression of ALOX5 after 24 h of treatment with inhibitors of the PI3K/mTOR and MEK/ERK 

pathway in monolayer grown cells.  

HT-29 (A) and HCT-116 (B) cells were seeded (0.4x106 cells/well, 6-well plate) and cell cycle was synchronized by 

serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated 

for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM, Erlotinib (Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 

1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. The vehicle control received DMSO instead. ALOX5 

expression was determined via qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the 

respective vehicle control (2-ΔΔCT method). Results are depicted as mean + SEM from 3 independent experiments. 

Asterisks indicate significant changes vs. DMSO controls determined by unpaired two-tailed student’s t-test with 

Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

To assure that the obtained results for induction of 5-LO expression after treatment with inhibitors 

of the PI3K/mTOR and MEK/ERK pathway are independent of compound cytotoxicity, WST-1 cell 

viability and LDH cytotoxicity assays were performed (Figure 4.12). Therefore, indicated 

compounds were tested in three different concentrations after cell cycle synchronization. 

Reduced viability or proliferation was detected after treatment with the PI3K/mTOR inhibitors 

Wortmannin in HCT-116 cells (75% viability compared to the DMSO-treated control) and 

Dactolisib in both cell lines (55% viability). Furthermore, the viability or proliferation of both cell 

lines was affected after treatment with the highest tested concentration of Erlotinib (10 µM, 80% 

viability). Further decreases in cell viability or proliferation were detected after MER/ERK inhibition 

using Cobimetinib and SCH772984 in both cell lines but were only significant in HCT-116 cells.  
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Importantly, concentrations used to investigate mRNA and protein expression influenced cell 

viability or proliferation only in the case of Dactolisib (3 µM, both cell lines ~ 55%) and Cobimetinib 

(0.5 µM, both cell lines ~ 75%). No elevated cytotoxicity (>10%) was detected in both cell lines 

with any tested inhibitor concentration compared to the respective DMSO treated (0%) and Triton-

X-100 (100%) control. 

 

Figure 4.12: Cell viability and cytotoxicity after 24 h of treatment with inhibitors of the PI3K/mTOR and MEK/ERK 

pathway in monolayer grown cells.  

HT-29 and HCT-116 cells were seeded in 96-well plates (0.03x106 cells/well) using RGM for cell cycle synchronization. 

After 22 h medium was changed to CGM for 2 h and cells were treated for 24 h with the indicated inhibitors Wortmannin 

(Wo), Temsirolimus (Tem), Dactolisib (Dac), Erlotinib (Erlo), LB42708 (LB), PD184352 (PD), Cobimetinib (Cobi), 

SCH772984 (SCH). The vehicle control received DMSO instead. Cell viability was determined using a WST-1 assay 

(A). Results were normalized to the respective DMSO control (100%). Compound cytotoxicity was determined using 

an LDH assay (B). To determine the percentage of cytotoxicity, average absorbance of the respective background 

control was subtracted from each sample. Then, samples were normalized to the Triton-X-100 control (100%) and the 

respective DMSO control (0%). Results shown are depicted as mean + SEM from 3 independent experiments. Asterisks 

indicate significant changes vs. controls determined by unpaired two-tailed student’s t-test with Welch’s correction. * 

(P<0.05), ** (P<0.01), *** (P<0.001). 

Since some of the tested inhibitors were described to induce G0/G1 cell cycle arrest in a variety 

of cancer cell lines (353, 354), cell cycle analysis of treated HT-29 and HCT-116 cells was 

performed as well. After cell cycle synchronization and treatment for 24 h using the established 

workflow (Figure 3.2), inhibition of PI3K/mTOR using Dactolisib and inhibition of MEK/ERK using 

PD184352, Cobimetinib, and SCH772984 significantly shifted the cell population of both cell lines 
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towards the G0/G1 phase compared to the respective DMSO control (co). Interestingly, treatment 

of HT-29 cells using Wortmannin and Temsirolimus, which both slightly altered 5-LO protein 

expression in this cell line (Figure 4.10A), did not affect the cell population in G0/G1. However, 

treatment with Wortmannin increased the proportion of cells in the S phase and decreased the 

proportion of cells in the G2/M phase. Treatment of HT-29 cells with LB42708 even decreased 

the proportion of cells in G0/G1 phase and increased the cell population in S phase. In contrast, 

treatment of HCT-116 cells with Wortmannin and Temsirolimus reduced the proportion of cells in 

S phase and increased the cellular population in G2/M phase. Same results were obtained after 

treatment of HCT-116 cells with LB42708. In general, HCT-116 control cells showed a lower 

proportion of cells in the G0/G1 phase compared to the HT-29 control (35% HCT-116, 42% HT-

29).  

 

Figure 4.13: Cell cycle analysis after 24 h of treatment with inhibitors of the PI3K/mTOR and MEK/ERK pathway in 

monolayer grown cells. 

HT-29 (A) and HCT-116 (B) cells were seeded (3x106 cells/100 mm plate) and cell cycle was synchronized by serum 

starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated for 

24 h with the indicated inhibitors Wortmannin (Wo) 1 µM; Temsirolimus (Tem) 3 µM; Dactolisib (Dac) 3 µM, Erlotinib 

(Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. The 

vehicle control (co) received DMSO instead. Asterisks indicate significant changes vs. DMSO vehicle co determined 

by two-way ANOVA coupled with Dunnett's post-test for multiple comparisons. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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4.3.2 Phosphorylation status of p70S6K and ERK after MCTS formation 

Because Riedl et al. used HT-29 and HCT-116 cells but deployed different incubation parameters 

(low cell number per well 0.03x106, short incubation time of 48 h), it was important to examine the 

phosphorylation state of ERK and p70S6K for the investigated MCTS in this study. Therefore, the 

sample set of MCTS and controls of both cell lines (introduced in 4.1.1) were investigated for ERK 

phosphorylation at Tyr202/204 mediated via MEK and p70S6K phosphorylation at Thr389 

mediated via mTOR, as well as the individual target expression. Here, only samples from the low 

attachment plate formation method were investigated since no noticeable differences were 

observed between both methods for the previously shown experiments. As expected, MCTS 

formation for 4 and 7 days reduced the phosphorylation of ERK significantly in HT-29 cells 

compared to the control (co) (Figure 4.14A). Interestingly, monolayer culture for 4 days without 

any medium changes even elevated the phosphorylation of ERK in those cells. Surprisingly, the 

analyzed sample set for HCT-116 cells showed a reversed pattern for the ERK phosphorylation 

(Figure 4.14C). The control and 4-day monolayer showed a comparable low ERK 

phosphorylation, whereas the 7-day monolayer incubations and MCTS formation for 4 and 7 days 

strongly induced ERK phosphorylation. Similar results were obtained regarding the p70S6K 

phosphorylation for the HCT-116 sample set (Figure 4.14D).  

For HT-29 cells in general, detecting pp70S6K was difficult since no phosphorylation was 

detectable on 2 of 3 Western blots. Therefore, this was not further analyzed. However, the 

expression of p70S6K itself was affected by growth of MCTS for 7 days and growth of monolayer 

controls for 7 days (Figure 4.14B). 
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Figure 4.14: Phosphorylation state of ERK and p70S6K in MCTS.  

Protein expression of pERK (Tyr202/204) and total ERK, as well as pp70S6K (Thr389) and total p70S6K analyzed via 

Western blot. MCTS were either grown for 4 or 7 days in 96-well low adherence plates. Respective monolayer controls 

were seeded in 12-well plates. Identical cell numbers (0.05x106 cells/well) were used. The subconfluent monolayer 

controls (co) were seeded in 100 mm dishes (3x106 cells per dish), received a medium change after 24 h, and were 

harvested after 48 h. One representative blot out of 3 is shown. Densitometric values were determined, coefficients 

calculated and normalized to the respective subconfluent monolayer control (co). ɑ-Tubulin served as a loading control. 

Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes vs. co. 

determined by unpaired two-tailed student’s t-test with Welch’s correction * (P<0.05), ** (P<0.01), *** (P<0.001). 
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4.3.3 Influence of p53 

Gilbert et al. were able to demonstrate that ALOX5 is a direct p53 target gene. This was 

investigated in several cancer cell lines expressing wt p53, which were treated with genotoxic 

agents (32). Therefore, it was important to investigate if the observed 5-LO upregulation after 

treatment with PI3K/mTOR and MEK/ERK inhibitors might be p53 dependent.  

Therefore, TP53 and BAX expression was investigated via qPCR after 24 h of treatment with 

inhibitors of the PI3K/mTOR and MEK/ERK pathway in HCT-116 cells expressing the p53 wt. 

Treatment with the previously tested inhibitors, except for Erlotinib, led to a significant but low 

induction of TP53 expression (Figure 4.15A). However, the treatment did not significantly affect 

the expression of BAX, a direct p53 target gene (353) (Figure 4.15B).  

 

Figure 4.15: mRNA expression of TP53 and BAX after 24 h of treatment with inhibitors of the PI3K/mTOR and 

MEK/ERK pathway in HCT-116 cells.  

Cells were seeded (0.4x106 cells/well, 6-well plate) and cell cycle synchronized by serum starvation using RGM 22 h 

before treatment. Then, medium was changed to CGM for 2 h and cells were treated for 24 h with the indicated 

inhibitors Dactolisib (Dac) 3 µM, Erlotinib (Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 

0.5 µM; SCH772984 (SCH) 1 µM. The vehicle control received DMSO instead. TP53 (A) and BAX (B) expression were 

determined via qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the respective vehicle 

control (2-ΔΔCT method). Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate 

significant changes vs. DMSO co determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), 

** (P<0.01), *** (P<0.001). 

To assess if the observed induction of TP53 expression is the reason behind the induced 5-LO 

expression due to PI3K/mTOR and MEK/ERK inhibition, HCT-116 cells were treated with the p53 

inhibitor Pifithrin-α (30 µM) and the MDM2 antagonist NSC 66811 (5 µM). But, both compounds 

failed to affect 5-LO protein expression. However, combined treatment of Dactolisib or 

Cobimetinib with Pifithrin-α further increased 5-LO protein expression compared with the 

respective controls (Figure 4.16A). Notably, treatment with Pifithrin-α affected the viability (75%) 

of HCT-116 cells and showed cytotoxic effects (35%), whereas NSC 66811 did not affect the 

viability but also mediated cytotoxic effects (35%) (Figure 4.16B, C).  
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Figure 4.16: 5-LO protein expression, viability, and cytotoxicity after 24 h of treatment with inhibitors of the PI3K/mTOR, 

MEK/ERK, and p53 pathways in monolayer grown HCT-116 cells. 

Cells were seeded (3x106 cells/100 mm plate (A); 0.03x106 cells/well, 96-well plate) and cell cycle was synchronized 

by serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were 

treated for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM; Cobimetinib (Cobi), 0.5 µM; NSC 66811 (NSC) 

5 µM, and Pifithrin-α (Pifi) 30 µM. The vehicle control received DMSO instead. (A) 5-LO protein expression in treated 

HCT-116 cells determined via Western blot analysis. Densitometric values were determined and values were 

normalized to the loading control ɑ-tubulin followed by normalization to the DMSO vehicle control (co). Cell viability 

was determined using a WST-1 assay (B). Results were normalized to the respective DMSO control (100%). Compound 

cytotoxicity was determined using an LDH assay (C). To determine the percentage of cytotoxicity, average absorbance 

of the respective background control was subtracted from each sample. Then, samples were normalized to the Triton-

X-100 control (100%) and the respective DMSO control (0%). Asterisks indicate significant changes vs. DMSO vehicle 

co determined by unpaired two-tailed student’s t-test with Welch’s correction (A) or two-way ANOVA coupled with 

Dunnett's post-test for multiple comparisons (B, C). * (P<0.05), ** (P<0.01), *** (P<0.001). 

Next, HCT-116 cells carrying a p53 knockout (HCT-116 p53 -/-) (344) were treated with selected 

PI3K/mTOR and MEK/ERK inhibitors. As already shown for the parental cell line HCT-116, the 

MEK/ERK inhibitors induced ALOX5 mRNA expression (Figure 4.11B). Although this induction is 

comparable between the parental and p53 knockout cell line, the basal ALOX5 mRNA expression 

is lower in p53 -/- cells. 

Therefore, it was no surprise that 5-LO protein expression was not detectable in HCT-116 p53 -

/- cells even after treatment with PI3K/mTOR and MEK/ERK inhibitors (Figure 4.17A). Beyond 
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that, those inhibitors still induced a significant G0/G1 cell cycle shift after treatment for 24 h 

(Figure 4.17C). The proportion of cells in the G0/G1 phase was generally lower in HCT-116 p53 

-/- cells compared to their parental wt cells (cf. Figure 4.13B). 

 

Figure 4.17: 5-LO protein and mRNA expression as well as cell cycle analysis after 24 h of treatment with inhibitors of 

the PI3K/mTOR and MEK/ERK pathways in monolayer grown HCT-116 p53 -/- cells. 

Cells were seeded (3x106 cells/100 mm plate (A, C); 0.4x106 cells/well, 6-well plate) and cell cycle was synchronized 

by serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were 

treated for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; 

SCH772984 (SCH) 1 µM; LB42708 (LB) 1 µM. The vehicle control received DMSO instead. (A) 5-LO and p53 protein 

expression in treated HCT-116 p53 -/- cells determined via Western blot analysis. HCT-116 wt p53 expressing cells 

and recombinant purified 5-LO (r5-LO) served as a control. (B) ALOX5 mRNA expression was determined via qPCR 

analysis. Expression was normalized to the housekeeping gene ACTB and the respective vehicle control (2-ΔΔCT 

method). (C) Cell cycle analysis after inhibitor treatment of HCT-116 p53 -/- cells. Asterisks indicate significant changes 

vs. DMSO vehicle co determined by unpaired two-tailed student’s t-test with Welch’s correction (B) or two-way ANOVA 

coupled with Dunnett's post-test for multiple comparisons (C). * (P<0.05), ** (P<0.01), *** (P<0.001). 

Cellular viability and compound cytotoxicity were also tested for HCT-116 p53 -/- cells, but only 

treatment with Dactolisib influenced the cellular viability/proliferation (40%). At the same time, this 

did not mediate cytotoxic effects (App. Figure 7.6A, B). Finally, it was tested if the 3D culture of 

HCT-116 p53 -/- cells would induce 5-LO protein expression, but as shown for the PI3K/mTOR 

and MEK/ERK inhibitors, no 5-LO protein expression was detectable (App. Figure 7.6C). 
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4.3.4 Knockdown of PI3K/mTOR and MEK/ERK pathway members 

As inhibition of the PI3K/mTOR and MEK/ERK pathways led to pronounced 5-LO protein 

expression in both investigated cell lines, several stable knockdowns of members of both 

signaling pathways were established in HT-29 and HCT-116 cells. By this, the involved central 

members of both pathways should be identified and the previously presented result should be 

further validated. The used specific shRNA sequences were directed against the different 

isoforms of the catalytic subunit of PI3K, namely p110α (PIK3CA), p110β (PIK3CB), p110δ 

(PIK3CD), p110γ (PIK3CG), as well as Rictor (RICTOR), Raptor (RPTOR), mTOR (MTOR), MEK-

1 (MAP2K1), and PKCζ (PRKCZ).  

 

Figure 4.18: mRNA expression of ALOX5 and knockdown efficiencies after stable knockdown of the PI3K catalytic 

subunits PI3KCB, PI3KCD, and PI3KCG in HT-29 and HCT-116 cells. 

Cells were seeded (0.4x106 cells/well, 6-well plate) in CGM and cultured for 48 h with a medium change after 24 h. 

ALOX5 mRNA expression and target knockdown efficiencies of PI3KCB (A), PI3KCD (B), and PI3KCG (C) were 

determined via qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the respective control 

cell line (co) expressing a non-mammalian shRNA (2-ΔΔCT method). Asterisks indicate significant changes vs. DMSO 

vehicle co determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** 

(P<0.001). 
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A stable knockdown of the respective targets was introduced using a vector-based shRNA 

expression in combination with lentiviral transduction. Due to the number of targets, a stable 

lentiviral-based procedure was preferred over a transient procedure regarding cell yield and cost-

benefit efficiency. A non-mammalian shRNA vector was used for the respective control cells (co). 

 

Figure 4.19: 5-LO and knockdown target protein expression after stable knockdown of members from the PI3K/mTOR 

and MEK/ERK cascades in HT-29 cells.  

5-LO and (A) Rictor, (B) Raptor, (C) mTOR, (D) p110α, MEK-1 (E), and PKCζ (F) expression in stable knockdown cells 

determined via Western blot. Knockdown efficiencies are depicted as mean ± SD and were determined via 

densitometric analysis of the respective knockdown target in non-mammalian shRNA expressing control cells (co) and 

respective knockdown cells. Densitometric values were normalized to the loading control ɑ-tubulin followed by 

normalization to the non-mammalian shRNA expressing control (co). Results are depicted as mean + SEM from 3 

independent experiments. One representative blot is shown. Asterisks indicate significant changes vs. control 

determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

Acquisition of knockdown efficiencies and analysis of 5-LO expression was performed via 

Western blot analysis (p110α, Rictor, Raptor, mTOR, MEK-1, PKCζ) or qPCR analysis if a specific 

antibody was not available (p110β, p110δ, p110γ) (Figure 4.18, Figure 4.19, Figure 4.20). After 

transduction, antibiotic selection and culture expansion, most of the established knockdown cell 

lines and the controls showed comparable morphology and growth properties. However, 
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knockdown of p110α and PKCζ in HT-29 cells and knockdown of PKCζ in HCT-116 cells impaired 

growth of the respective cell lines compared to the established control cell lines.  

 

Figure 4.20: 5-LO and knockdown target protein expression after stable knockdown of members from the PI3K/mTOR 

and MEK/ERK cascades in HCT-116 cells.  

5-LO and (A) Rictor, (B) Raptor, (C) mTOR, (D) p110α, MEK-1 (E), and PKCζ (F) expression in stable knockdown cells 

determined via Western blot. Knockdown efficiencies are depicted as mean ± SD and were determined via 

densitometric analysis of the respective knockdown target in non-mammalian shRNA expressing control cells (co) and 

respective knockdown cells. Densitometric values were normalized to the loading control ɑ-tubulin followed by 

normalization to the non-mammalian shRNA expressing control (co). Results are depicted as mean + SEM from 3 

independent experiments. One representative blot is shown. Asterisks indicate significant changes vs. control 

determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

Furthermore, knockdown of Rictor in HCT-116 cells led to a more fibroblastic phenotype of the 

cells (see App. Figure 7.7B). Acceptable knockdown efficiencies (>50%) were reached for most 

targets. However, the determination of Rictor knockdown efficiencies was difficult due to the 

pronounced cleavage of Rictor in both control cell lines (App. Figure 7.7A). Furthermore, 

knockdown of PKCζ yielded only a poor knockdown efficiency in both established cell lines 

(<40%) (Figure 4.19F, Figure 4.20F). 
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Surprisingly, knockdown of the mTOR kinase could not significantly induce 5-LO protein 

expression. The biological replicates showed a high variation of 5-LO expression compared to 

the respective control in both cell lines (Figure 4.19C, Figure 4.20C). Similar results were obtained 

from the analysis of HCT-116 Raptor KD cells (Figure 4.20B). In contrast, HT-29 Raptor KD cells 

showed no considerable change in 5-LO expression (Figure 4.19B). Contrary to this, knockdown 

of Rictor significantly induced 5-LO expression in both established cell lines (Figure 4.19A, Figure 

4.20A). Surprisingly, knockdown of the catalytic subunit p110α of PI3K led to a significant 

downregulation of 5-LO protein expression in HT-29 and HCT-116 p110α KD cells (Figure 4.19D, 

Figure 4.20D). Knockdown of the other subunits PI3KCB and PI3KCD did not influence 5-LO 

expression in both cell lines (Figure 4.18A, B). However, knockdown of PI3KCG in HT-29 cells 

reduced 5-LO expression significantly as well (Figure 4.18C). HCT-116 cells generally showed 

no expression of this catalytic subunit (Figure 4.18C). 

Knockdown of MEK-1 did not alter 5-LO expression in both established cell lines. Finally, the 

inefficient knockdown of PKCζ did not alter 5-LO expression in HCT-116 cells; however, a non-

significant attenuation of 5-LO expression in the respective HT-29 cell line was detectable.  

 

4.3.5 Investigations on the coherence between cell cycle regulation and 5-LO 
expression  

As the results shown and described in the previous chapters indicated a coherence of the 

observed enhanced 5-LO expression with shifts towards the G0/G1 cell cycle phase, the 

expression of cell cycle regulated and regulating genes was investigated in several sample sets.  

Therefore, the mRNA expression of several transcription factors which play central roles during 

cell cycle progression was examined. This group of transcription factors includes the forkhead 

box protein O (FOXO) 1 and 3, c-Myc (MYC), specificity protein 1 (SP1), as well as members of 

the DREAM (dimerization partner, RB-like, E2F, and multivulval class B) complex like E2F1-5 

(E2F), c-Myb (MYB), and b-Myb (MYBL2). Initially, samples of cells treated with inhibitors of the 

PI3K/mTOR and MEK-1/ERK signaling were examined. As shown in Figure 4.11, treatment with 

those compounds led to elevated ALOX5 mRNA expression in HT-29 and HCT-116 cells.  

In HT-29 cells (Figure 4.21A), dual PI3K/mTOR inhibition using Dactolisib (3 µM, Dac) 

significantly induced the expression of FOXO1 and FOXO3. In contrast, E2F1-3 levels were 

significantly decreased. The expression of MYC, SP1 (Figure 4.21A), E2F4, and E2F5 (App. 

Figure 7.8) was unaffected. Treatment of HT-29 cells with Erlotinib (5 µM, Erlo) or LB42708 (1 µM, 

LB) did not lead to relevant changes in the expression of any tested gene. However, MEK/ERK 

inhibition using PD184352 (1 µM, PD), Cobimetinib (0.5 µM, Cobi), or SCH772984 (1 µM, SCH) 

led to a firm (Cobi, SCH) and significant induction of FOXO3 expression, as well as to significantly 

elevated expression levels of SP1 (Cobi, SCH). In contrast, expression of MYC and E2F1 was 

significantly decreased after treatment with Cobimetinib or SCH772984 (Figure 4.21A).  
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Figure 4.21: mRNA expression of cell cycle relevant transcription factors after 24 h of treatment with inhibitors of the 

PI3K/mTOR and MEK/ERK pathway in monolayer grown cells.  

HT-29 (A) and HCT-116 (B) cells were seeded (0.4x106 cells/well, 6-well plate) and cell cycle was synchronized by 

serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated 

for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM, Erlotinib (Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 

1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. The vehicle control received DMSO instead. mRNA 

expression was determined via qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the 

respective vehicle control (2-ΔΔCT method). Results are depicted as mean + SEM from 3 independent experiments. 

Asterisks indicate significant changes vs. DMSO control determined by unpaired two-tailed student’s t-test with Welch’s 

correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

As observed for HT-29 cells, treatment of HCT-116 cells using Dactolisib (3 µM) significantly 

induced the expression of FOXO1 and FOXO3 but was more pronounced (2.5-3.5-fold). 

Treatment of HCT-116 cells with Erlotinib (5 µM) or LB42708 (1 µM) did not lead to relevant 

changes in the expression of any tested gene; nevertheless, treatment sparsely but significantly 
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reduced the expression of E2F2 (Erlo), E2F3, and E2F4 (Figure 4.21B, App. Figure 7.8B). 

MEK/ERK inhibition by Cobimetinib or SCH772984 treatment led to a significant upregulation of 

FOXO1 and SP1 as well as a significant downregulation of E2F1 in HCT-116 comparable to HT-

29 cells. Furthermore, FOXO3 was also significantly upregulated but to a lesser extent. While 

E2F2 and E2F3 expression levels were slightly decreased in HT-29 cells, effects were significant 

in HCT-116 cells. Interestingly, the treatment did not affect MYC expression in HCT-116 cells, 

although a strong downregulation was observed in HT-29 cells. 

In addition, the mRNA expression of MYB and MYBL2 was investigated (Figure 4.22). In HT-29 

cells, MYBL2 levels were significantly reduced following treatment with Dactolisib, Cobimetinib, 

and SCH772984, while Erlotinib, LB42708, and PD184352 treatment did not led to any significant 

changes in expression (Figure 4.22A). Interestingly, only treatment with Dactolisib was able to 

reduce MYB expression significantly. Treatment of HT-29 cells using MEK/ERK inhibitors even 

elevated the MYB expression. As seen for MYBL2, treatment using Erlotinib and LB42708 did not 

influence MYB expression (Figure 4.22A). 

 

Figure 4.22: mRNA expression of MYBL2 and MYB after 24 h of treatment with inhibitors of the PI3K/mTOR and 

MEK/ERK pathway in monolayer grown cells.  

HT-29 (A) and HCT-116 (B) cells were seeded (0.4x106 cells/well, 6-well plate) and cell cycle was synchronized by 

serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated 

for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM; Erlotinib (Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 

1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. The vehicle control received DMSO instead. mRNA 

expression was determined via qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the 

respective vehicle control (2-ΔΔCT method). Results are depicted as mean + SEM from 3 independent experiments. 

Asterisks indicate significant changes vs. DMSO co determined by unpaired two-tailed student’s t-test with Welch’s 

correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

In HCT-116 cells, all inhibitors but LB42708 led to significantly reduced mRNA expression of 

MYBL2 but with more pronounced effects seen after treatment with PI3K/mTOR and MEK/ERK 

inhibitors (Figure 4.22B). While MYBL2 expression levels were altered to a similar extent in both 

cell lines, MYB expression after treatment varied. In contrast to HT-29 cells, MYB expression was 
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increased in HCT-116 cells following Dactolisib treatment and significantly reduced after 

treatment with Erlotinib, Cobimetinib, and SCH772984. Treatment with LB42708 and PD184532 

had no relevant effects (Figure 4.22B). 

Since treatment with MEK/ERK inhibitors also led to an elevated ALOX5 expression in HCT-116 

p53 -/- cells (Figure 4.17B), expression of E2F1, MYBL2, MYB, and SP1 was investigated as well. 

Compared to the parental cell line HCT-116, most inhibitor treatments failed to influence the 

expression of respective genes. However, treatment of HCT-116 p53 -/- cells with the ERK 

inhibitor SCH772984 (1 µM) led to comparable but less significant results as seen for HCT-116 

wt cells (App. Figure 7.9). 

 

Figure 4.23: mRNA expression of E2F1, MYBL2, MYB, and SP1 in MCTS.  

MCTS were either grown for 4 or 7 days in 96-well low adherence plates. Respective monolayer controls were seeded 

in 12-well plates. Same cell amounts (0.05x106 cells/well) were used. The subconfluent monolayer controls (co) were 

seeded in 6-well plates (0.4x106 cells per well), received a medium change after 24 h, and were harvested after 48 h. 

Respective gene expression was determined via qPCR in HT-29 (A) and HCT-116 (B). Analysis was normalized to the 

housekeeping gene ACTB and the respective monolayer control (2-ΔΔCT method). Results are depicted as mean + SEM 

from 3 independent experiments. Asterisks indicate significant changes vs. co determined by unpaired two-tailed 

student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 

Next, mRNA expression of selected transcription factors was investigated in MCTS of HT-29 and 

HCT-116 cells (Figure 4.23). E2F1 expression was significantly reduced after 7 days of growth in 

MCTS and monolayer controls in HT-29 cells, whereas in HCT-116 cells only the 7-day monolayer 

controls were affected. A reduction in mRNA expression was also observable for MYBL2 after 7 

days of monolayer growth and in MCTS grown for 4 and 7 days in both cell lines. While the 

decrease in MYBL2 expression was significant in HCT-116, mRNA levels in HT-29 cells were 

affected to a lesser extent and only significant for the 7-day monolayer control. Interestingly, MYB 

expression in HCT-116 was significantly downregulated under all conditions, whereas especially 

MCTS formation led to elevated MYB levels in HT-29 cells. Finally, SP1 levels were slightly 
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reduced in 4-day monolayer controls of HT-29 and HCT-116 cells, but elevated in MCTS and 7-

day monolayer controls. 

A correlation of varying cellular seeding densities on the mRNA expression of E2F1, MYBL2, 

MYB, and SP1 was also investigated, and the results are shown in Figure 4.24. E2F1 and MYBL2 

expression levels indicated an inverse correlation with the seeding density in HT-29 and HCT-

116 cells. Interestingly, lower seeding densities caused slightly elevated mRNA expression levels 

of E2F1 and MYBL2 compared to the low-density control (0.04x106 cells/cm2). However, the 

reduced expression of both targets was only significant for the highest cellular seeding density in 

HCT-116 cells (Figure 4.24B). An opposite expression trend was observed for the expression of 

SP1 in both cell lines. While the lowest seeding density only led to slightly increased mRNA 

expression levels in both cell lines, this effect was further enhanced with the cell number. In 

contrast to E2F1, MYBL2, and SP1, the expression of MYB was differently affected in each cell 

line, as already seen for other treatments and conditions. In HT-29 cells, MYB expression was 

not altered below a density of 0.21x106 cells/cm2, but increasing cell density led to an elevated 

MYB expression (Figure 4.24A). In HCT-116 cells, the MYB expression was generally reduced, 

but this reduction was more pronounced and only significant at the highest tested seeding density 

(Figure 4.24B). 

 

Figure 4.24: mRNA expression of E2F1, MYBL2, MYB, and SP1 after growth in different cellular densities.  

HT-29 (A) and HCT-116 (B) cells were seeded into 6-well plates using RGM in the indicated seeding densities. After 

24 h medium was changed to CGM. Cells were harvested after another 24 h. mRNA expression was determined via 

qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the respective 70-80% confluency 

control (0.04x106 cells/cm2, 2-ΔΔCT method). Results are depicted as mean + SEM from 3 independent experiments. 

Asterisks indicate significant changes vs. 0.04x106 cells/cm2 co determined by unpaired two-tailed student’s t-test with 

Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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4.3.5.1 Influence of CDK1, CDK4/6 and E2F inhibition on 5-LO protein expression 

Since the qPCR analysis of several sample sets revealed a downregulation of the transcription 

factors E2F1 and MYBL2 in both cell lines under conditions that were previously demonstrated to 

upregulate 5-LO expression, the influence of pharmacological cell cycle inhibition by CDK 

inhibitors on 5-LO expression was investigated next.  

HT-29 and HCT-116 cells were treated with the CDK4/6 inhibitor Palbociclib (Palbo, 1 µM HT-29 

cells, 10 µM HCT-116 cells) and the CDK1 inhibitor Ro-3306 (Ro, 10 µM). Cell cycle analysis was 

performed to verify sufficient cell cycle arrest. Treatment with Palbociclib induced a potent cell 

cycle arrest in the G0/G1 phase for HT-29 cells, while Ro-3306 triggered a potent arrest in the 

G2/M phase for both cell lines (Figure 4.25A). 

 

Figure 4.25: Cell cycle analysis and 5-LO protein expression after treatment with CDK1 and CDK4/6 inhibitors.  

HT-29 and HCT-116 cells were seeded (3x106 cells/100 mm plate) and kept in RGM for 22 h to ensure cell cycle 

synchronization by serum starvation before treatment. Then, medium was changed to CGM for 2 h and cells were 

treated for 24 h with the indicated inhibitors Palbociclib (Palbo) and Ro-3306 (Ro). HT-29 cells were treated with 1 µM 

Palbolciclib or 10 µM Ro-3306, while HCT-116 cells were treated with 10 µM Palbocicib or 10 µM Ro-3306. The vehicle 

control (co) received DMSO instead. After 24 h cells were either harvested and prepared for cell cycle analysis (A) or 

Western blot analysis (B) to determine 5-LO protein expression. Densitometric values were determined and values 

were normalized to the loading control ɑ-tubulin followed by normalization to the DMSO vehicle control (co). Results 

are depicted as mean + SEM from 4-6 independent experiments. Asterisks indicate significant changes vs. co 

determined by two-way ANOVA coupled with Dunnett's post-test for multiple comparisons. * (P<0.05), ** (P<0.01), *** 

(P<0.001). Respective inhibitor structures are displayed in App. Figure 7.10. 
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HCT-116 cells were less sensitive to treatment with Palbociclib and, therefore, treated with a 

higher concentration. However, CDK4/6 inhibition failed to induce complete cell cycle arrest in 

HCT-116 cells (Figure 4.25A). Although both cell lines were affected to a different extent by 

CDK4/6 inhibition, 5-LO expression on protein level (Figure 4.25B) was upregulated significantly 

in HT-29 and HCT-116 cells by 1.6- and 1.7-fold, respectively. G2/M arrest by CDK1 inhibition 

through Ro-3306 also led to a significant increase of 5-LO expression in HCT-116 cells, whereas 

the increase in HT-29 was only marginal. 

As E2F1 expression was downregulated due to treatment or other tested conditions, the only 

commercially available pan-E2F inhibitor and its effect on 5-LO protein expression was tested. 

Therefore, HT-29 and HCT-116 cells were treated with HLM006474 (40 µM) for 24 h after cell 

cycle synchronization. Indeed, 5-LO protein expression was upregulated in both cell lines 

compared to the vehicle control (co) (Figure 4.26). However, the increase in 5-LO protein 

expression was minor and only significant for HCT-116 cells (Figure 4.26B).  

 

Figure 4.26: 5-LO protein expression after 24 h of treatment with an E2F inhibitor in monolayer grown cells.  

HT-29 (A) and HCT-116 (B) cells were seeded (3x106 cells/100 mm plate) and cell cycle was synchronized by serum 

starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated for 

24 h with the pan-E2F inhibitor HLM006474 (HLM) 40 µM. The vehicle control (co) received DMSO instead. 

Densitometric values were determined and values were normalized to the loading control ɑ-tubulin followed by 

normalization to the DMSO vehicle control (co). Results are depicted as mean + SEM from 3 independent experiments. 

Asterisks indicate significant changes vs. DMSO vehicle control determined by unpaired two-tailed student’s t-test with 

Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). The structure of HLM006474 is displayed in App. Figure 

7.10. 
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4.3.5.2 5-LO localization in MCTS 

As the previous results hint at a coherence between cell cycle regulation and 5-LO expression, 

the distribution of 5-LO expression in the MCTS was investigated and further related to 

proliferative and apoptotic regions in the spheroids. 

For this, 14 µm cryosections of MCTS grown for 7 days were prepared and stained against the 

proliferation marker Ki67, the apoptosis marker (cleaved) Caspase 3 and 5-LO. After probing, 

samples were incubated with different secondary fluorophore-conjugated antibodies (Alexa 

Fluor™ Plus 488, Alexa Fluor™ Plus 647) for visualization employing a confocal laser scanning 

microscope. DAPI (4’,6-diamidino-2-phenylindole) was used as a nuclear counterstain. MCTS 

cryosections generated from HT-29 and HCT-116 5-LO knockout cells served as controls to verify 

the specificity of the used primary 5-LO antibody (see (72) for KO generation and validation). Due 

to the size of the samples, tile scans were used to image a whole section of the respective HT-

29 (3x3 tile scan) or HCT-116 (4x4 tile scan) MCTS. Total tile scans are displayed in App. Figure 

7.11 and App. Figure 7.12. For better visibility, parts of those total tile scans are displayed in 

Figure 4.27 and Figure 4.28.  

HT-29 MCTS displayed a dense coherent tissue mass which showed a distinct necrotic core. The 

necrotic core was characterized by a large mass of fragmented nuclei visualized by the DAPI 

staining (Figure 4.27C, Figure 4.28C, displayed as blue in the overlay Figure 4.27D, Figure 

4.28D). In contrast, HCT-116 cells formed less coherent, sometimes even hollow MCTS. Staining 

of Ki67 was mainly concentrated towards the outer rim of the spheroid in both cell lines (Figure 

4.27B, displayed as red in the overlay Figure 4.27D). Staining of cleaved Caspase 3 was primarily 

observed within the spheroid core or regions furthest from the rim regions (Figure 4.28B, 

displayed as red in the overlay Figure 4.28D).  

Staining of 5-LO revealed a predominantly cytosolic location of the enzyme in cells within the 

MCTS of both cell lines (Figure 4.27E). HT-29 MCTS showed high 5-LO expression, mainly 

localized outside of the necrotic core region within the encasing viable mantle of cells. This region 

was also interspersed with highly proliferating cells. Notably, the Ki67-positive proliferating cells 

did not co-stain for 5-LO (Figure 4.27D, E). However, the cell mass within the necrotic core region 

also showed a positive 5-LO staining (Figure 4.28A, D). HCT-116 MCTS displayed an overall 

more diffuse 5-LO staining, concentrated on the viable outer rim of the MCTS structure, but 5-LO 

staining was also observed at the core rim (Figure 4.27D, Figure 4.28D). Of note, in HCT-116 

MCTS the proliferating cells positive for Ki67 also showed a positive staining for 5-LO (Figure 

4.27E). 
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Figure 4.27: Confocal microscopy analysis of immunofluorescent stained MCTS cryosections.  

MCTS (0.05x106 cells/well) were grown for 7 days in 96-well low adherence plates. 14 µM cryosections were co-stained 

with primary antibodies directed against 5-LO (A) and Ki67 (B). Afterwards, samples were probed with secondary 

fluorophore-conjugated antibodies (Alexa Fluor™ Plus 488, Alexa Fluor™ Plus 647). DAPI (C) was used for nuclear 

counterstaining. The sections were analyzed by confocal microscopy using 3x3 (HT-29) or 4x4 (HCT-116) tile scans. 

Displayed is a representative part of each digitally assembled scan. Single-channel fluorescence tile scan images (A-

C) are displayed in black and white for better contrast, while channel overlay (D) is presented in color (Ki67 red, 5-LO 

green, DAPI blue). (E) shows an enlarged cut out of (D). Identical linear histogram adjustments were applied to each 

channel to adjust brightness and contrast. Scale bars are provided within the figure. Arrows indicate examples of cells 

expressing high amounts of 5-LO. One representative image of 3 independent experiments is shown. 
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Figure 4.28: Confocal microscopy analysis of immunofluorescent stained MCTS cryosections.  

MCTS (0.05x106 cells/well) were grown for 7 days in 96-well low adherence plates. 14 µM cryosections were co-stained 

with primary antibodies directed against 5-LO (A) and cleaved caspase 3 (B). Afterwards, samples were probed with 

secondary fluorophore-conjugated antibodies (Alexa Fluor™ Plus 488, Alexa Fluor™ Plus 647). DAPI (C) was used for 

nuclear counterstaining. The sections were analyzed by confocal microscopy using 3x3 (HT-29) or 4x4 (HCT-116) tile 

scans. Displayed is a representative part of each digitally assembled scan. Single-channel fluorescence tile scan 

images (A-C) are displayed in black and white for better contrast, while channel overlay (D) is presented in color 

(cleaved caspase 3 red, 5-LO green, DAPI blue). Identical linear histogram adjustments were applied to each channel 

to adjust brightness and contrast. Scale bars are provided within the figure. One representative image of 3 independent 

experiments is shown. 
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4.3.6 Influence of b-Myb expression on 5-LO expression 

A number of genes were regulated in a similar way in HT-29 and HCT-116 cells after treatment 

with the different pathway inhibitors, MCTS formation as well as growth under high cellular density 

described in 4.3.5. These genes were MYBL2, E2F1, and SP1. Especially MYBL2 and E2F1 were 

significantly attenuated and negatively correlated with 5-LO expression. A MYB binding site 

upstream of the core promoter region (pN10) has already been characterized and identified to 

play a role in the repression of 5-LO expression in HL-60 cells (15, 355). In this context, the 

similarity in binding sites and the potential ability of b-Myb to bind at c-Myb binding sites were 

further discussed by Ponton et al. (355). Therefore, the potential role of b-Myb in the regulation 

of 5-LO in HT-29 and HCT-116 cells was further investigated within this study.  

First, the influence of b-Myb overexpression on 5-LO expression was examined. Stably 

transfected HT-29 and HCT-116 cells constitutively overexpressing b-Myb (pSBbiGP_MYBL2) 

were designed and generated. Unfortunately, both cell lines quickly silenced the overexpressed 

transgene (App. Figure 7.13). Nevertheless, the constitutive b-Myb overexpression led to a 

significant downregulation of 5-LO expression in HCT-116 cells (App. Figure 7.13B). 

To overcome the transgene silencing, HT-29 and HCT-116 cells carrying a Doxycycline-inducible 

variant of b-Myb (pSBtetGP_MYBL2) were designed and generated. After treatment with 

Doxycycline (400 ng/mL HT-29, 200 ng/mL HCT-116) for 24 and 48 h, b-Myb and 5-LO protein 

expression was analyzed. Compared to the control vector cell lines (CV), both HT-29 and HCT-

116 cells induced b-Myb expression.  

 

Figure 4.29: b-Myb and 5-LO protein expression in inducible b-Myb overexpressing cells after 24 and 48 h of 

Doxycycline treatment.  

Inducible HT-29 (A) and HCT-116 (B) b-MYB overexpressing cells were seeded (3x106 cells/100 mm plate) and cell 

cycle was synchronized by serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM 

for 2 h and cells were treated with either 400 ng/mL (A) or 200 ng/mL Doxycycline for 24 h or 48 h. The control vector 

cells (CV) received the same treatment. Densitometric values were determined and values were normalized to the 

loading control ɑ-tubulin followed by normalization to the respective control vector cells (CV). Results are depicted as 

mean + SEM from 3 independent experiments. Asterisks indicate significant changes vs. DMSO vehicle control 

determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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However, b-MYB expression was lower after 48 h of Doxycycline treatment compared to 24 h 

(Figure 4.29A, B). Nevertheless, 5-LO expression was significantly reduced (about 40%) in b-

MYB overexpressing HT-29 cells after 48 h of Doxycycline treatment (Figure 4.29A). HCT-116 

cells also showed a slight but not significant decrease (about 20%) in 5-LO expression.  

Next, the influence of b-MYB overexpression on 5-LO expression during MCTS formation was 

investigated. Therefore, cells were seeded in CGM and treated with Doxycycline (400 ng/mL). 

After growth for 4 days, b-MYB and 5-LO protein expression were analyzed and compared with 

control vector cells (CV). 

 

Figure 4.30: b-MYB and 5-LO protein expression in inducible b-Myb overexpressing cells after MCTS formation and 

Doxycycline treatment for 4 days.  

Inducible HT-29 (A) and HCT-116 (B) b-MYB (pSBGP_MYBL2) overexpressing cells were seeded in 96-well low 

adherence plates (0.05x106 cells/well) using the respective CGM containing 400 ng/mL Doxycycline and were grown 

for 4 days. The control vector cells (CV) received the same treatment. Densitometric values were determined and 

values were normalized to the loading control ɑ-tubulin followed by normalization to the respective control vector cells 

(CV). Results are depicted as mean + SEM from 3 independent experiments. Pictures were taken employing a light 

microscope (scale bar: 200 µm). One representative picture out of 3 is shown. 
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Neither HT-29 nor HCT-116 b-Myb overexpressing cells differentially expressed 5-LO compared 

to MCTS formed from control vector cells, which were also treated with Doxycycline (Figure 4.30). 

However, b-Myb expression influenced the spheroid formation of both cell lines. While HCT-116 

b-Myb overexpressing cells formed bigger spheroids due to b-Myb overexpression, HT-29 b-Myb 

overexpressing cells formed spheroids with a loosened outer rim structure (Figure 4.30). 

As the b-Myb overexpression experiments in HT-29 and HCT-116 monolayer-grown cells 

demonstrated a potential role of b-Myb in the regulation of 5-LO expression in those cells, 

additional reporter gene experiments were conducted. The ALOX5 promoter region was 

investigated first. 

To determine if the previously identified c-Myb binding site within the ALOX5 promoter might play 

a role in the regulation of 5-LO expression in HT-29 and HCT-116 cells, stably transfected cells 

carrying reporter constructs containing the 5-LO core promoter (pN10LUC; -843 relative to the 

translation start (ATG)) or a larger promoter construct where the putative MYB response element 

is situated (pN6LUC; -2530 relative to translation start (ATG)), as well as a reporter construct 

carrying a promoter derivative that lacked the putative MYB binding site (pN6ΔMYBLUC) were 

generated (see Figure 1.3 for detailed sequences). Besides a firefly luciferase as the reporter, 

generated cell lines additionally constitutively expressed EGFP for easier verification of the 

efficacy of the antibiotic selection process. Furthermore, the EGFP signal was used for assay 

normalization since an in-house developed and produced substrate buffer system was applied 

(see 3.7 for substrate buffer composition and Figure 4.31E for schematic construct 

representation).  

Parameters such as cell number, volumes, incubation times, pH, general assay procedure, and 

read-out were optimized and compared with Promega's commercially available Dual-Glo® 

substrate buffer. The generated cell lines were then tested under optimized conditions for their 

treatment response. Therefore, cells were treated with three different concentrations of the HDAC 

inhibitor Apicidin. As demonstrated for the pN10 cells in App. Figure 7.14, treatment of the pN10 

carrying HT-29 and HCT-116 reporter cells with Apicidin led to a concentration-dependent 

increase of the firefly luciferase signal (App. Figure 7.14A) but did not significantly influence the 

EGFP signal (App. Figure 7.14B). After normalization, the results demonstrated a significant 

concentration-dependent increase of the firefly luciferase activity compared to the vehicle control 

(DMSO) and, therefore, suited reporter responsiveness of the generated cell lines (App. Figure 

7.14C).  

Analysis of the basal promoter activity in HT-29 and HCT-116 reporter cells showed a reduced 

relative firefly luciferase activity of the larger pN6 construct compared to the shorter pN10 

construct in both cell lines, indicating the presence of an element that negatively regulates the 

ALOX5 gene and is located upstream of the pN10 core promoter (Figure 4.31A, C). Mutation of 

the putative MYB binding site within the pN6 promoter construct led to different results for HT-29 

and HCT-116 cells. Deleting the MYB binding site led to an activity loss of 83% in HT-29 cells, 

while the pN6 promoter activity was increased by about 34% in HCT-116 cells (Figure 4.31A, C).  

After treatment with the pan-PI3K/mTOR inhibitor Dactolisib (Dac, 3 µM) and inhibitors of the 

MEK-1/ERK cascade (PD184352 (PD, 1 µM), Cobimetinib (Cobi, 0.5 µM), and SCH772984 

(SCH, 1 µM)) a significant increase in relative firefly luciferase activity compared to vehicle 
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(DMSO) treated cells was detected in HT-29 and HCT-116 cells carrying the pN10 and pN6 

reporter constructs (Figure 4.31B, D).  

 

Figure 4.31: Firefly luciferase reporter gene assay to investigate different 5-LO promoter segments in stably transfected 

reporter cells. 

Stably transfected (pSBGP_XLUC; X = promoter segment) HT-29 and HCT-116 reporter cells were seeded in black 

96-well plates with a clear bottom (0.03x106 cells/well) and were cell cycle synchronized by serum starvation using 

RGM 22 h before further treatment. Then, medium was changed to CGM for 2 h and cells were treated for 24 h with 

the indicated inhibitors Dactolisib (Dac) 3 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 

1 µM. The vehicle control received DMSO instead. (A, C) Basal activity of luciferase (LUC) reporter constructs in HT-

29 (A) and HCT-116 (C) reporter cells (pN10LUC; -843 relative to the translation start (ATG), pN6LUC; -2530 relative 

to translation start (ATG), pN6∆MYBLUC missing the 7 bp MYB binding site; see Figure 1.2 for reference). Results are 

given as RLU (normalized to EGFP). (B, D) Reporter gene assay in HT-29 (B) and HCT-116 (D) reporter cells after 

treatment with inhibitors of the PI3K/mTOR and MEK/ERK axis for 24 h. Results are depicted as fold vehicle (DMSO) 

control. (E) Schematic representation of the luciferase constructs carrying different parts of the 5-LO promoter used for 

reporter gene experiments. Results are depicted as mean + SEM of 6 independent experiments. Asterisks indicate 

significant changes vs. co determined by two-way ANOVA coupled with Dunnett's post-test for multiple comparisons. 

* (P<0.05), ** (P<0.01), *** (P<0.001). Two-way ANOVA coupled with Tukey’s post-test for multiple comparisons 

determined significant differences between constructs that received the same treatment. * (P<0.05), ** (P<0.01), *** 

(P<0.001). 
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HCT-116 carrying the pN6 construct with the deleted MYB binding site (pN6ΔMYB) showed the 

same results as obtained with the pN6 construct (Figure 4.31D). In contrast, deleting the MYB 

binding site of the pN6 construct (pN6ΔMYB) led to a significant decrease in luciferase activity in 

HT-29 cells compared with the pN6 reporter construct (Figure 4.31B). 

In addition to the ALOX5 promoter reporter constructs, constructs to investigate the role of a 

previously identified putative MYB binding site within the gene’s coding sequence were 

generated, similar to Ringleb et al. (356). The constructs were designed to result in 5-LO cds 

fragment and firefly luciferase fusion proteins. A shortened 5-LO cds construct containing the 

putative MYB binding site should have been compared with a construct containing a mutated 

binding site (1600delmutMYB) and an even shorter construct not containing the putative MYB 

binding site (1699del) (see Figure 4.32C for schematic construct representation). Unfortunately, 

all constructs showed very low firefly luciferase activity in both cell lines, which was not 

significantly different from the control vector (SV40) (Figure 4.32A, B). Therefore, these constructs 

were not further evaluated. 

 

Figure 4.32: Firefly luciferase reporter gene assay to investigate different 5-LO coding sequence (cds) segments in 

stably transfected reporter cells.  

Stably transfected (pSBGP_XLUC; X = cds segment) HT-29 and HCT-116 reporter cells were seeded in black 96-well 

plates with a clear bottom (0.03x106 cells/well) and were cell cycle synchronized by serum starvation using RGM for 

22 h. Then, medium was changed to CGM and cells were incubated for 24 h. (A, B) Basal activity of luciferase (LUC) 

reporter constructs in HT-29 (A) and HCT-116 (B) reporter cells (SV40 control vector without cds; 1699del, +321 relative 

to the translation start (ATG); 1600del, +420 relative to the translation start (ATG) with a putative MYB binding site 

(CAAAGTTG); 1600delmutMYB, +420 relative to the translation start (ATG), with a mutated putative MYB binding site 

(TACATTCG)). Results are given as RLU (normalized to EGFP). (C) Schematic representation of the luciferase 

constructs carrying different segments of the 5-LO cds. Results are depicted as mean + SEM of 4 independent 

experiments.  
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4.3.7 Investigations on the applicability of 5-LO regulation by the PI3K/mTOR and 
MEK/ERK cascades in other cell lines 

Elevated 5-LO expression is not restricted to colorectal malignancies and cell lines but has also 

frequently been found in other solid tumor specimens and cell lines of these tumors. Therefore, it 

was investigated if the previously identified regulation of 5-LO expression via the PI3K/mTOR and 

MEK-1/ERK signaling might be a mechanism that applies to other cancer cell lines as well. 

To investigate the broader applicability of the findings obtained for HT-29 and HCT-116 cells, two 

other cell lines that show a substantial 5-LO expression (Capan-2, pancreas adenocarcinoma; U-

2 OS, osteosarcoma, see Figure 2.1 for 5-LO expression compared to HT-29 and HCT-116 cells) 

and two cell lines which have inconsistent reports on their 5-LO expression status but are 

considered 5-LO negative under standard culture conditions, at least within the Steinhilber group, 

were selected (Caco-2, colon adenocarcinoma; MCF-7, mammary gland adenocarcinoma) (356–

359).  

 

Figure 4.33: mRNA expression of ALOX5 after 24 h of treatment with inhibitors of the PI3K/mTOR and MEK/ERK 

pathway in monolayer grown cells.  

Cell cycles of Capan-2 (A), U-2 OS (B), Caco-2 (C), and MCF-7 (D) cells were synchronized by serum starvation using 

RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated for 24 h with the 

indicated inhibitors Dactolisib (Dac) 3 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. 

The vehicle control received DMSO instead. ALOX5 expression was determined via qPCR analysis. Expression was 

normalized to the housekeeping gene ACTB and the respective vehicle control (2-ΔΔCT method). Results are depicted 

as mean + SEM from 3 independent experiments. Asterisks indicate significant changes vs. DMSO co determined by 

unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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Treatment of the respective cell lines with the pan-PI3K/mTOR inhibitor Dactolisib (Dac, 3 µM) 

and inhibitors of the MEK-1/ERK cascade (PD184352 (PD, 1 µM), Cobimetinib (Cobi, 0.5 µM), 

and SCH772984 (SCH, 1 µM)) for 24 h after cell cycle synchronization led to different results. 

While treatment of Capan-2 cells led to comparable results for ALOX5 expression as previously 

shown for HT-29 and HCT-116 cells, U-2 OS cells showed no differential ALOX5 expression due 

to the treatment (Figure 4.33A, B). ALOX5 mRNA expression was significantly upregulated upon 

inhibition of MEK-1/ERK (8.5 - 9.8-fold, depending on the inhibitor), while dual inhibition of 

PI3K/mTOR only had a weak effect in Capan-2 cells. In contrast, Caco-2 and MCF-7 cells 

significantly induced ALOX5 expression after treatment with Dactolisib (11.3 – 13.8-fold). But, 

treatment with MEK-1/ERK inhibitors did not upregulate ALOX5 expression. Treatment of Caco-

2 cells using PD184352 even reduced ALOX5 expression. However, it is important to state that 

both cell lines only showed a very low basal ALOX5 expression (CT values >33 for DMSO-treated 

cells). In Caco-2 cells, basal ALOX5 expression was only detectable using 70 ng of cDNA 

template per PCR reaction instead of the usually used 20 ng. 

Expression of SP1 was upregulated in line with ALOX5 expression. In U-2 OS cells, expression 

of SP1 was not induced by any inhibitor, but treatment with Cobimetinib and SCH772984 reduced 

SP1 expression significantly. E2F1 expression was significantly downregulated in all tested cell 

lines due to Dactolisib treatment. Inhibition of MEK-1/ERK reduced E2F1 expression significantly 

as well, but only in Capan-2 cells (Figure 4.34A). MYBL2 expression was downregulated in all 

tested cell lines due to Dactolisib treatment as well, but only in a significant manner for U-2 OS, 

Caco-2, and MCF-7 cells. Treatment using MEK-1/ERK inhibitors did not reduce MYBL2 

expression in MCF-7 cells but led to a substantial and significant downregulation in Capan-2 cells 

(> 50%) (Figure 4.34A, D). Significant but minor downregulation was also observable in treated 

U-2 OS and Caco-2 cells. However, as shown in Figure 4.33, this was not accompanied by 

concurrent ALOX5 upregulation. MYB expression was significantly downregulated in Capan-2, U-

2 OS, and Caco-2 cells after treatment with Dactolisib. In contrast, this treatment led to a slightly 

elevated MYB expression in MCF-7 cells (Figure 4.34D). Treatment with the MEK/ERK inhibitors 

PD184352 and SCH772984 only significantly reduced MYB expression in Capan-2 cells (Figure 

4.34A). Finally, treatment using Cobimetinib reduced the MYB expression in Capan-2 and U-2 

OS cells but led to a slight but insignificant increase in Caco-2 cells (Figure 4.34A, B, C).  
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Figure 4.34: mRNA expression of cell cycle relevant transcription factors after 24 h of treatment with inhibitors of the 

PI3K/mTOR and MEK/ERK pathway in monolayer grown cells.  

Capan-2 (A), U-2 OS (B), Caco-2 (C), and MCF-7 (D) cells were cell cycle synchronized by serum starvation using 

RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and cells were treated for 24 h with the 

indicated inhibitors Dactolisib (Dac) 3 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. 

The vehicle control received DMSO instead. mRNA expression of SP1, E2F1, MYBL2, and MYB was determined via 

qPCR analysis. Expression was normalized to the housekeeping gene ACTB and the respective vehicle control (2-ΔΔCT 

method). Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes 

vs. DMSO co determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** 

(P<0.001). 
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4.4 Investigations on the impaired lipid mediator formation in HT-29 

and HCT-116 cells 

As demonstrated in Figure 2.1E published by Weisser et al., the cell lines HT-29 and HCT-116, 

mainly investigated within this thesis, feature an impaired 5-LO activity in intact cells (72). In 

comparison to PMNL, the enzyme seemed inactive in those cell lines. However, the enzyme 

appears more active after the disruption of cellular integrity and segregation of membrane 

fractions via ultracentrifugation. Therefore, it was further investigated why the enzymes’ activity 

is impaired in intact HT-29 and HCT-116 cells.  

4.4.1 Lipid mediator formation and profile in HT-29 and HCT-116 cells 

Due to the low 5-LO activity in intact HT-29 and HCT-116 cells compared to PMNL (Figure 2.1E), 

the differences between the basal and stimulated 5-LO activity were investigated first. For this 

purpose, 10x106 cells per sample were prepared in ice-cold PBSG buffer. All samples were 

supplemented with 1 mM Ca2+ prior to the activity assay. Depending on the tested assay 

condition, cells were then either incubated for 10 min at 37°C or, prior to this, additionally 

stimulated with Ca2+ ionophore (A23187, 2.5 µM) or supplemented with a fatty acid mix (60 µM 

ARA, 60 µM DHA, 60 µM EPA), or stimulated and supplemented (A23187 2.5 µM, 60 µM ARA, 

60 µM DHA, 60 µM EPA). An overview of the tested conditions is displayed in Figure 4.35A. After 

incubation, reactions were stopped by the addition of ice-cold MeOH. Samples were then 

aliquoted and stored at -80°C until further processing at the Fraunhofer-Institute for Translational 

Medicine and Pharmacology, Department of Clinical Research (Biomedical Analysis) by Carlo 

Angioni or Sandra Trautmann. Samples were analyzed towards the lipid mediator profile derived 

from lipoxygenase-mediated conversion of ARA, DHA, or EPA. The obtained lipid mediator 

concentrations were normalized according to 106 cells and corrected for non-enzymatic oxidation 

products determined in control samples without cells. 

As shown in Figure 4.35B-F, the investigated cell lines did not produce any lipid mediators 

determined within this panel without supplementation of ARA, DHA, and EPA during the assay 

independent from the stimulation with Ca2+ ionophore (values <LLOQ). In the case of HT-29 cells, 

the stimulation using Ca2+ ionophore led to a significantly higher 5-LO-dependent 5-HETE and 5-

HEPE formation (Figure 4.35B, C). Interestingly, the EPA-derived 5-HEPE amount was 2.5-fold 

higher than the formed ARA-derived 5-HETE amount (Figure 4.35C). Stimulation increased the 

formed LTB4, but not significantly (Figure 4.35B). However, no differences in the formation of 7-

HDHA were observed due to Ca2+ ionophore stimulation. The 15-LO-dependent formation of 17-

HDHA and 15-HEPE was only minor and not significantly affected by stimulation with Ca2+ 

ionophore. Furthermore, both metabolites were formed in comparable amounts in HT-29 cells. In 

contrast, 15-HETE formation was 2-3-fold higher compared to 17-HDHA and 15-HEPE. 

Additionally, stimulation with Ca2+ ionophore increased 15-HETE formation significantly (Figure 

4.35D). Interestingly, the formation of the 15-LO-1 metabolites 12-HETE, 14-HDHA, and 12-

HEPE showed a different pattern. Here, the formation of 14-HDHA and 12-HEPE was preferred 

compared to the formation of 12-HETE. 14-HDHA and 12-HEPE formation was 2-3-fold higher 

compared to 12-HETE formation. Stimulation with Ca2+ ionophore failed to increase the formation 

of those metabolites significantly; however, an elevation was observed (Figure 4.35E). 
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Surprisingly, formation of the di-oxygenated metabolites 5,15-DiHETE and RvE4 derived from 

ARA and EPA, respectively, could also be detected in both cell lines. The panel also included the 

quantification of the DHA-dependent metabolite RvD5, but no quantifiable amounts were detected 

(<LLOQ). The formation of 5,15-DiHETE was 7.6-9.3-fold higher compared to RvE4 in HT-29 

cells. Furthermore, no differences were observed for the formation of RvE4 after stimulation with 

Ca2+ ionophore. In contrast, this stimulation significantly induced the formation of 5,15-DiHETE. 

Notably, the formation of di-hydroxylated fatty acids was 25-80-fold lower compared to the 

formation of the mono-hydroxylated precursors in HT-29 cells. 

In line with the already low 5-LO protein expression in HCT-116 cells (Figure 2.1), 5-LO-

dependent lipid mediator formation was lower compared to HT-29 cells. Stimulation with Ca2+ 

ionophore did not significantly increase the formation of 5-HETE, but LTB4 was only detectable in 

stimulated HCT-116 samples (Figure 4.35B). As already observed in HT-29 cells, 5-HEPE 

formation was 3-4-fold higher than 5-HETE formation. Furthermore, stimulation with Ca2+ 

ionophore increased 5-HEPE formation significantly. 7-HDHA formation was very low and not 

influenced by stimulation with Ca2+ ionophore (Figure 4.35C). In contrast to 5-LO metabolites, the 

formation of the 15-LO metabolites 15-HETE, 17-HDHA, and 15-HEPE was more pronounced in 

HCT-116 cells. However, no significant changes could be observed due to stimulation with Ca2+ 

ionophore. Compared to HT-29 cells, 15-HEPE formation was more pronounced in HCT-116 

cells. The formation of 17-HDHA was comparable between both cell lines. Among the other 15-

LO-1 metabolites, 12-HEPE was the most abundant and higher than in HT-29 cells. Again, as 

already seen in HT-29 cells, stimulation with Ca2+ ionophore did not significantly increase the 

formation of 12-HETE, 14-HDHA, and 12-HEPE. Finally, the formation of the di-hydroxylated fatty 

acids 5,15-DiHETE and RvE4 was lower compared to HT-29 cells, and formation was not 

influenced by stimulation with Ca2+ ionophore in HT-29 cells. As described for HT-29 cells, the 

formation of di-hydroxylated fatty acids was 40-170-fold lower than mono-hydroxylated precursors 

in HCT-116 cells. 

Since ALOX15 mRNA expression was relatively low compared to ALOX5 expression, and 

ALOX15B expression could not be detected in HT-29 and HCT-116 cells, 15-LO-1 and 15-LO-2 

protein expression was determined via Western blot (Figure 4.36A). By this, very low 15-LO-1 

protein expression in both cell lines could be confirmed. Furthermore, no 15-LO-2 protein 

expression was detected (Figure 4.36A). Surprisingly, chiral 15-HETE and 17-HDHA analysis 

revealed significantly higher amounts of the respective R-enantiomers than the S-enantiomers in 

both cell lines. In HT-29 cells, the ratio of 15-R/S-HETE is distributed between 2.1-5, dependent 

on the assay condition. This ratio is lower (1.4-1.5) in HCT-116 cells. In comparison, the ratio of 

17-R/S-HETE is distributed between 1.2-1.5 in HT-29 cells, while it is again lower (1.2-1.3) in 

HCT-116 cells. In HT-29 cells, the formation of 15-R/S-HETE and 17-R/S-HDHA was influenced 

by stimulation with Ca2+ ionophore but not significantly. This effect was only observed for the 

respective S-enantiomer in HCT-116 cells. 
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Figure 4.35: Lipid mediator profile in unstimulated and stimulated HT-29 and HCT-116 cells.  

Comparison of the stimulated and unstimulated lipid mediator formation in intact HT-29 and HCT-116 cells (A). Cells 

were seeded (10x106 cells per 150 mm plate) in CGM and cultured for 48 h. Cells were harvested, counted and diluted 

according to 10x106 cells/mL in PBSG buffer prior to the assay. Intact cells (10x106 per sample) were stimulated with 

Ca2+ ionophore (A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and a fatty assay mix (FA mix; 60 µM ARA, 60 µM 

DHA, and 60 µM EPA). Samples were incubated for 10 min at 37°C, then the reaction was terminated with 1 mL ice-

cold MeOH and lipid mediator formation (5-HETE, LTB4 (B); 5-HETE, 7-HDHA, 5-HEPE (C); 15-HETE, 17-HDHA, 15-

HEPE (D); 12-HETE, 14-HDHA, 12-HEPE (E); 5,15-DiHETE, RvE4 (F)) was analyzed via LC/MS-MS. Ascertained lipid 

mediator amounts were normalized to 106 cells and corrected for non-enzymatic oxidation products determined in 

control samples without cells. Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate 

significant changes between stimulated and unstimulated cells supplemented with fatty acid mix determined by two-

way ANOVA coupled with Dunnett's post-test for multiple comparisons. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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Figure 4.36: 15-LO expression and chiral 15-LO dependent lipid mediator formation in unstimulated and stimulated HT-

29 and HCT-116 cells.  

(A) 15-LO-1 and 15-LO-2 protein expression was analyzed via Western blot. Stably transfected HEK239T cells 

expressing either 15-LO-1 (co1) or 15-LO-2 (co2) and a size marker (M) served as controls. Displayed is one 

representative out of 3 independent blots. (B, C) Comparison of the stimulated and unstimulated 15-LO dependent 

15R/S-HETE and 17R/S-HDHA formation in intact HT-29 and HCT-116 cells. Cells were seeded (10x106 cells per 

150 mm plate) in CGM and cultured for 48 h. Cells were harvested, counted and diluted to 10x106 cells/mL in PGC 

buffer prior to the assay. Intact cells (10x106 per sample) were stimulated with Ca2+ ionophore (A23187, 2.5 μM) and 

supplemented with 1 mM Ca2+ and a fatty acid mix (FA mix; 60 µM ARA, 60 µM DHA, and 60 µM EPA). Samples were 

incubated for 10 min at 37°C, then the reaction was terminated with 1 mL ice-cold MeOH, and lipid mediator formation 

was analyzed via LC/MS-MS. Ascertained lipid mediator amounts were normalized to 106 cells and corrected for non-

enzymatic oxidation products determined in control samples without cells. Results are depicted as mean + SEM from 

3 independent experiments. Asterisks indicate significant changes between stimulated and unstimulated cells 

supplemented with fatty acid mix determined by two-way ANOVA coupled with Bonferroni’s post-test for multiple 

comparisons. * (P<0.05), ** (P<0.01), *** (P<0.001). 

Since the general lipid mediator formation in both cell lines was relatively low, even though high 

fatty acid concentrations were used, substrate concentration dependent 5-HETE and LTB4 

formation was investigated (Figure 4.37). Indeed, the highest concentration of ARA (60 µM) led 

to the highest 5-HETE formation in both cell lines. However, doubling or tripling (10 µM vs. 20 µM, 

20 µM vs. 60 µM) of the substrate concentration did not lead to doubling or tripling of formed 5-

HETE. Instead, 3.8-fold less 5-HETE was formed using 20 µM ARA, 11-fold less using 10 µM 

ARA, and 57.6-fold less using 6 µM ARA compared to 60 µM ARA in HT-29 cells. In HCT-116 

cells, 20 µM ARA led to 2-fold less 5-HETE, while 10 µM ARA led to 3-fold less 5-HETE, and 

6 µM ARA led to 30-fold less 5-HETE compared to 60 µM ARA. 
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No LTB4 formation could be detected in both cell lines using 6 µM ARA. Very low LTB4 

concentrations could be detected using 10 µM ARA in HT-29 cells (0.019 ng/106 cells, Figure 

4.37A), while no LTB4 formation could be detected in HCT-116 cells (Figure 4.37B). In 

comparison, the use of 60 µM ARA led to 0.21 ng/106 HT-29 cells and only 0.019 ng/106 HCT-

116 cells. Therefore, using 6-fold less of the substrate (10 µM vs. 60 µM ARA) led to 11-fold less 

LTB4 in HT-29 cells, the same ratio as seen for 5-HETE.  

 

Figure 4.37: Substrate-dependent 5-LO activity in HT-29 and HCT-116 cells.  

Comparison of the stimulated substrate concentration-dependent 5-LO activities in intact HT-29 and HCT-116 cells. 

Cells were harvested, counted and diluted according to 10x106 cells/mL in PGC buffer prior to the assay. Intact cells 

(10x106 per sample) were stimulated with Ca2+ ionophore (A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and 

several ARA concentrations. Samples were incubated for 10 min at 37°C, then the reaction was terminated with 1 mL 

ice-cold MeOH, and lipid mediator formation was analyzed via LC/MS-MS. Ascertained lipid mediator amounts were 

normalized to 106 cells and corrected for non-enzymatic oxidation products determined in control samples without cells. 

Results are depicted as mean + SEM from 3 independent experiments. n.d = not determined. 

 

4.4.2 Lipid mediator profile in HT-29 and HCT-116 cells compared to leukocytes 

As 5-LO is primarily expressed in leukocytes, the activity of 5-LO in HT-29 and HCT-116 cells 

was compared to the enzymes’ activity in PMNL, M1, and M2 macrophages. Furthermore, the 

lipid mediator formation was compared with the respective 5-LO and FLAP expression of the 

individual cells. For better comparability between the different cell types, the lipid mediator 

formation was, this time, normalized to the total protein amount of the cells assayed. 

Samples were prepared in ice-cold PBSG buffer. All samples were supplemented with 1 mM Ca2+ 

prior to the activity assay. Cells were incubated for 10 min at 37°C and stimulated with Ca2+ 

ionophore (A23187, 2.5 µM) as well as supplemented with a fatty acid mix (60 µM ARA, 60 µM 

DHA, 60 µM EPA). As suspected, PMNL formed the highest amounts of 5-HETE (465.8 ng/mg 

total protein) and LTB4 (110.6 ng/mg total protein) (Figure 4.38). Unfortunately, this does not align 

with the displayed 5-LO expression due to protein degradation (Figure 4.38A). In line with the 

higher 5-LO expression, M1 macrophages formed higher 5-HETE and LTB4 amounts than M2 

macrophages. Surprisingly, HT-29 (59 ng/mg total protein) and HCT-116 (46 ng/mg total protein) 

cells formed comparable amounts of 5-HETE to M2 macrophages (57 ng/mg total protein) (Figure 

4.38). However, M2 macrophages formed higher amounts of LTB4 (0.72 ng/mg total protein) 
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compared to HT-29 (0.43 ng/mg total protein) and HCT-116 (0.13 ng/mg total protein) cells 

(Figure 4.38B). Additionally, FLAP (upper band) expression was rather low in cells that formed 

only low amounts of LTB4 (Figure 4.38A). Summarizing, 5-LO activity indicated by the formation 

of 5-HETE and LTB4 was, compared to PMNL, 9.7-fold lower in HT-29 cells, 12.5-fold lower in 

HCT-116 cells, 4.9-fold lower in M1 macrophages, and 10-fold lower in M2 macrophages even 

though M1 and M2 macrophages showed much higher 5-LO protein expression than HT-29 and 

HCT-116 cells. 

 

Figure 4.38: Comparison of 5-LO activity in tumor cells and leukocytes.  

Comparison of the 5-LO activity with 5-LO and FLAP expression in intact HT-29 and HCT-116 cells, PMNL, M1 and 

M2 macrophages. Tumor cells were seeded (10x106 cells per 150 mm plate) in CGM and cultured for 48 h. PMNL and 

PBM were isolated from buffy coats via density centrifugation. Macrophages were differentiated from human PBM 

isolated via the adherence method (8x100 mm plates per patient). For this, cells were treated with 10 ng/mL GM-CSF 

(M1, 4 plates) or M-CSF (M2, 4 plates) for 7 days. Additionally, the cells received 10 ng/mL IFNγ (M1) or IL-4 (M2) 

during the final 48 h. Cells were harvested, counted (HT-29, HCT-116, and PMNL) and diluted according to 

10x106 cells/mL in PGC buffer prior to the assay. The 4 prepared M1 or M2 dishes of each donor were combined. Intact 

cells (10x106 cells, HT-29, HCT-116, PMNL, or M1/M2 cells combined from 4 dishes) were stimulated with Ca2+ 

ionophore (A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and a fatty acid mix (FA mix; 60 µM ARA, 60 µM DHA, 

and 60 µM EPA). Samples were incubated for 10 min at 37°C, then the reaction was terminated with 1 mL ice-cold 

MeOH, and lipid mediator formation was analyzed via LC/MS-MS. Ascertained lipid mediator amounts were normalized 

to the determined total protein amounts and corrected for non-enzymatic oxidation products determined in control 

samples without cells. Results are depicted as mean + SEM from 3 (HT-29, HCT-116) or 6 (PMNL, M1, M2) 

independent experiments. 5-LO and FLAP expression was analyzed via Western blot. One representative out of 3 blots 

is shown.  

Despite the fact that formed amounts of 5-HETE in PMNL were very high, the formation of 5-LO 

dependent 5-HEPE was even higher (465.8 ng/mg total protein vs. 642.7 ng/mg total protein) 

(Figure 4.39A). As already displayed in Figure 4.35C, 5-HEPE formation was also higher in HT-

29 and HCT-116 cells compared to 5-HETE. This was also found for M1 and M2 macrophages. 

In comparison, the DHA metabolite 7-HDHA was formed only in low amounts in all cells tested 

(6.2-32.3 ng/mg total protein) (Figure 4.39A).  
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The 15-LO dependent 15-HETE formation was quite comparable among HT-29, HCT-116, PMNL, 

and M2 macrophages (47.3-73.4 ng/mg total protein). Unsurprisingly, M1 macrophages formed 

only minor amounts of 15-HETE and 17-HDHA as they do not express 15-LO-1 (Figure 4.39B) 

(42). Furthermore, no 15-HEPE formation was found in M1 macrophages. PMNL and M2 

macrophages formed higher amounts of 17-HDHA than HT-29 and HCT-116 cells. However, the 

formation of 15-HEPE was quite comparable between HCT-116 cells and PMNL. In comparison, 

the other 15-LO-1 metabolites 12-HETE, 14-HDHA, and 12-HEPE were formed in equal amounts 

by PMNL (66-81.5 ng/mg total protein), while HT-29 and HCT-116 cells formed higher amounts 

of 12-HEPE and 14-HDHA compared to 12-HETE (Figure 4.39C). M2 macrophages formed 

comparable amounts of 14-HDHA like HT-29 and HCT-116 cells (20.1-22.6 ng/mg total protein) 

but lower amounts of 12-HEPE. Surprisingly, the formation of 12-HETE was higher in HT-29 and 

HCT-116 cells than in M2 macrophages (8.6 ng/mg total protein vs. 3.1 ng/mg total protein Figure 

4.39C). 

Finally, the formation of di-hydroxylated metabolites was compared. PMNL formed the highest 

amounts of 5,15-DiHETE, while M1 and M2 macrophages formed lower but surprisingly equal 

amounts. RvD5 was mainly formed by M2 macrophages but was also detected in M1 

macrophages in very low amounts. PMNL formed RvD5 as well, while the formation was not 

detected in HT-29 and HCT-116 cells. Formation of RvE4 could be detected in all test cells, but 

only in very low amounts. However, RvE4 was preferably formed by PMNL and M2 macrophages 

compared to HT-29 cells, HCT-116 cells, and M1 macrophages. 
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Figure 4.39: Comparison of the lipid mediator profile in tumor cells and leukocytes.  

Comparison of the lipid mediator formation in intact HT-29 and HCT-116 cells, PMNL, M1 and M2 macrophages. Tumor 

cells were seeded (10x106 cells per 150 mm plate) in CGM and cultured for 48 h. PMNL and PBM were isolated from 

buffy coats via density centrifugation. Macrophages were differentiated from human PBM isolated via the adherence 

method (8x100 mm plates per patient). For this, cells were treated with 10 ng/mL GM-CSF (M1, 4 plates) or M-CSF 

(M2, 4 plates) for 7 days. Additionally, the cells received 10 ng/mL IFNγ (M1) or IL-4 (M2) during the final 48 h. Cells 

were harvested, counted (HT-29, HCT-116, and PMNL) and diluted according to 10x106 cells/mL in PGC buffer prior 

to the assay. The 4 prepared M1 or M2 dishes of each donor were harvested using accutase and were combined. 

Intact cells (10x106 cells, HT-29, HCT-116, PMNL, or M1/M2 cells combined from 4 dishes) were stimulated with Ca2+ 

ionophore (A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and a fatty acid mix (FA mix; 60 µM ARA, 60 µM DHA, 

and 60 µM EPA). Samples were then incubated for 10 min at 37°C, the reaction was terminated with 1 mL ice-cold 

MeOH and lipid mediator formation (5-HETE, 7-HDHA, 5-HEPE (A); 15-HETE, 17-HDHA, 15-HEPE (B); 12-HETE, 14-

HDHA, 12-HEPE (C); 5,15-DiHETE, RvD5, RvE4 (D)) was analyzed via LC/MS-MS. Ascertained lipid mediator 

amounts were normalized to the determined total protein amounts and corrected for non-enzymatic oxidation products 

determined in control samples without cells. Results are depicted as mean + SEM from 3 (HT-29, HCT-116) or 6 

(PMNL, M1, M2) independent experiments.  
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Next, co-incubations of PMNL, HT-29 cells, and HCT-116 cells were prepared. Since PMNL 

express high amounts of 5-LO but formed comparable amounts of 15-HETE to HT-29 and HCT-

116 cells, it was of interest if the amount of di-hydroxylated metabolites would increase due to 

transcellular metabolism or if the lipid mediator profile in general, would change. Tumor cells and 

PMNL were coincubated in an equal ratio or an unequal ratio, where twice as many tumor cells 

compared to PMNL were used. Individual tumor cells and PMNL incubations served as controls, 

respectively. All samples were prepared in ice-cold PBSG buffer, and each sample was 

supplemented with 1 mM Ca2+ prior to the assay. Cells were stimulated with Ca2+ ionophore 

(A23187, 2.5 µM), supplemented with a fatty acid mix (10 µM ARA, 10 µM DHA), and incubated 

for 10 min at 37°C. After the incubation, reactions were stopped by adding ice-cold MeOH. After 

sonication (3x at the lowest pulse rate, MS72), samples were aliquoted and stored at -80°C until 

further processing at the Department of Food Chemistry (University Wuppertal) by Dr. Nadia 

Kampschulte from the group of Prof. Dr. Nils Helge Schebb. Samples were extracted and 

analyzed as described by Kutzner et al. (360). The complete measured panel for this assay can 

be found in App. Table 37 and App. Table 38. However, only lipoxygenase-dependent metabolites 

formed in tumor cells and PMNL are depicted in Figure 4.40 and Figure 4.41. As seen in other 

experiments, HT-29 cells alone produced only low amounts of ARA (5-HETE, LTB4, 12-HETE, 

15-HETE, and 5,15-DiHETE) and DHA (4-HDHA, 7-HDHA, 14-HDHA, 17-HDHA, and RvD5) 

metabolites. In contrast, PMNL formed especially high amounts of the ARA metabolites 5-HETE 

and 12-HETE (Figure 4.40A-E). 15-HETE and 5,15-DiHETE levels were also increased (Figure 

4.40C, E) compared to HT-29 incubations, as well as the DHA metabolites (Figure 4.40B-E), but 

to a lesser extent. Surprisingly, co-incubation of HT-29 and PMNL formed product levels in 

concentrations between the HT-29 and PMNL single incubations instead of increased amounts. 

Beyond that, concentrations of 4-HDHA, 15-HETE, and 17-HDHA were even decreased in co-

incubations compared to HT-29 single incubations (Figure 4.40B, C). This decrease seemed to 

depend on the total amount of cells since incubations with the highest amounts of cells resulted 

in the lowest amounts of those metabolites. The formation of 5-HETE, 15-HETE, and 17-HDHA 

was significantly decreased in co-incubations compared to the respective PMNL single 

incubations.  

In addition, endogenous EPA metabolite levels of 5-HEPE, 12-HEPE, 15-HEPE, and 18-HEPE 

were determined since the cells were not stimulated with extracellular EPA (Figure 4.40F). In HT-

29 cells, 5-HEPE levels were the lowest, while 18-HEPE was formed the most. In contrast, PMNL 

incubations only led to a relevant formation of 5-HEPE and 12-HEPE. Co-incubation resulted in 

5-HEPE and 12-HEPE levels similar to PMNL incubations, while 15-HEPE and 18-HEPE levels 

were only slightly higher than the respective PMNL ones (Figure 4.40F). 
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Figure 4.40: Lipid mediator formation in HT-29 and PMNL co-incubations.  

Analysis of the lipid mediator formation in intact HT-29 cells in combination with freshly isolated PMNL. Tumor cells 

were cultured under standard conditions for 4 days. PMNL were isolated from buffy coats via density centrifugation. 

Cells were harvested, counted and diluted according to 10x106 cells/mL in PGC buffer prior to the assay. Intact cells 

were stimulated with Ca2+ ionophore (A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and a fatty acid mix (10 µM 

ARA, 10 µM DHA). Samples were then incubated for 10 min at 37°C, the reaction was terminated with 1 mL ice-cold 

MeOH, and lipid mediator formation (5-HETE, LTB4 (A); 5-HETE, 7-HDHA, 5-HEPE (B); 15-HETE, 17-HDHA (C); 12-

HETE, 14-HDHA (D); 5,15-DiHETE, RvD5 (E); 5-HEPE, 12-HEPE, 15-HEPE, 18-HEPE (F)) was analyzed via LC/MS-

MS. Ascertained lipid mediator amounts were normalized to 106 cells and corrected for non-enzymatic oxidation 

products determined in control samples without cells. Results are depicted as mean + SEM from 3 independent 

experiments. Asterisks indicate significant changes vs. the respective PMNL single-cell incubations determined by two-

way ANOVA coupled with Tukey’s post-test for multiple comparisons. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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Figure 4.41: Lipid mediator formation in HCT-116 and PMNL co-incubations.  

Analysis of the lipid mediator formation in intact HCT-116 cells in combination with freshly isolated PMNL. Tumor cells 

were cultured under standard conditions for 4 days. PMNL were isolated from buffy coats via density centrifugation. 

Cells were harvested, counted and diluted according to 10x106 cells/mL in PGC buffer prior to the assay. Intact cells 

were stimulated with Ca2+ ionophore (A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and a fatty acid mix (10 µM 

ARA, 10 µM DHA). Samples were then incubated for 10 min at 37°C, the reaction was terminated with 1 mL ice-cold 

MeOH and lipid mediator formation (5-HETE, LTB4 (A); 5-HETE, 7-HDHA, 5-HEPE (B); 15-HETE, 17-HDHA (C); 12-

HETE, 14-HDHA (D); 5,15-DiHETE, RvD5 (E); 5-HEPE, 12-HEPE, 15-HEPE, 18-HEPE (F)) was analyzed via LC/MS-

MS. Ascertained lipid mediator amounts were normalized to 106 cells and corrected for non-enzymatic oxidation 

products determined in control samples without cells. Results are depicted as mean + SEM from 3 independent 

experiments. 
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As seen for HT-29 cells, LO products were formed in minor amounts in HCT-116 single 

incubations. 15-HETE and 17-HDHA levels of PMNL were similar to those of HCT-116 cells, while 

5,15-DiHETE and DHA-derived LO products were slightly higher in PMNL than in HCT-116 cells 

(Figure 4.41A-E). Co-incubations of HCT-116 and PMNL led to LO product levels between the 

respective single incubations except for 4-HDHA, 15-HETE, 17-HDHA, and LTB4 (if equal 

amounts of cells were used). 4-HDHA and 15-HETE levels were slightly decreased if HCT-116 

cells were incubated with 5x106 PMNL, while 17-HDHA levels were unaffected. However, even 

17-HDHA was decreased when the PMNL number was increased to 10x106 cells. Interestingly, 

the other metabolites 5-HETE, 4-HDHA, 7-HDHA, 12-HETE, 14-HDHA, 5,15-DiHETE, and RvD5 

were not affected by an increase in the PMNL/HCT-116 ratio from 0.5 to 1. Solely LTB4 levels 

were affected by an increased ratio but were inversely correlated (Figure 4.41A). In addition to 

ARA- and DHA-derived LO products, endogenous EPA-derived metabolite levels of 5-HEPE, 12-

HEPE, 15-HEPE, and 18-HEPE were analyzed (Figure 4.41F). In HCT-116 incubations, 5-HEPE 

and 12-HEPE were formed in equal amounts, which was also true for 15-HEPE and 18-HEPE, 

although the latter concentrations were slightly higher. In PMNL incubations, only 5-HEPE and 

12-HEPE were formed in relevant amounts. Interestingly, co-incubations seemed to increase 5-

HEPE and 12-HEPE formation and caused product levels that were even higher than those of 

PMNL single incubations. However, especially the large standard errors of 12-HEPE have to be 

considered. 

 

4.4.3 Lipid mediator formation in cells with induced 5-LO expression 

Since 5-LO expression was found inducible in HT-29 and HCT-116 cells due to treatment with 

the PI3K/mTOR inhibitor Dactolisib (Dac, 3 µM) or treatment with the MEK/ERK inhibitors 

PD184352 (PD, 1 µM), Cobimetinib (Cobi, 0.5 µM, and SCH772984 (SCH, 1 µM) it was 

investigated if the elevated protein expression would lead to elevated product formation.  

Therefore, cells were treated identically to the respective Western blot experiments. After cell 

cycle synchronization via serum starvation, cells were incubated with the indicated inhibitors for 

24 h. Then, cells were harvested using TE and counted for normalization. After sample 

preparation in ice-cold PBSG buffer, all samples were supplemented with 1 mM Ca2+ prior to the 

activity assay. Then, samples were stimulated with Ca2+ ionophore (A23187, 2.5 µM), 

supplemented with ARA (20µM), and incubated for 10 min at 37°C. After incubation, reactions 

were stopped by adding ice-cold MeOH. Samples were then aliquoted and stored at -80°C until 

further processing at the Fraunhofer-Institute for Translational Medicine and Pharmacology, 

Department of Clinical Research (Biomedical Analysis) by Carlo Angioni or Sandra Trautmann. 

There, samples were analyzed towards their 5-HETE and LTB4 formation. Additionally, the 

concentration of free ARA was determined in each sample.  

As suspected, the treatment with PI3K/mTOR and MEK/ERK inhibitors, previously shown to 

induce 5-LO expression, led to elevated 5-LO product formation in both cell lines. In HT-29 cells, 

treatment with Dactolisib led to 1.45-fold more 5-HETE formation but did not influence LTB4 

formation. The MEK/ERK inhibitors led to 1.95-fold (PD), 3.26-fold (Cobi), and 2.16-fold (SCH) 

higher 5-HETE formation but increased LTB4 formation 3.64-fold (PB), 4.95-fold (Cobi), and 3.23-

fold (SCH) (Figure 4.42A). In HCT-116 cells, no LTB4 formation was detectable, and 5-HETE 
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formation in the vehicle control (co) was lower compared to HT-29 cells. However, treatment with 

Dactolisib increased the 5-HETE formation 5.96-fold, while MEK/ERK inhibitors led to a 2.58-fold 

(PD), 3.78-fold (Cobi), and 2.19-fold (SCH) increase in 5-HETE formation compared to the control, 

respectively (Figure 4.42B). 

Notwithstanding the above, the overall 5-HETE and LTB4 formation in those incubations was 

relatively low compared to those with the same substrate concentration presented before (Figure 

4.37). Furthermore, analysis of free arachidonic acid in HT-29 incubations revealed a strongly 

reduced substrate concentration in the cell-less substrate control compared to the suspected ARA 

concentration of 20 µM (Figure 4.42C). Since the prepared samples were only analyzed towards 

selected metabolites, it was not possible to assess if the difference in ARA concentration between 

the cell-less control and the cell samples resulted due to product formation or other reasons.  

 

Figure 4.42: 5-LO product formation after 24 h of treatment with PI3K/mTOR and MEK/ERK pathway inhibitors.  

HT-29 (A, C) and HCT-116 (B) cells were seeded (3x106 cells/100 mm dish, 2 dishes per sample) and cell cycle was 

synchronized by serum starvation using RGM 22 h before treatment. Then, medium was changed to CGM for 2 h and 

cells were treated for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 

0.5 µM; SCH772984 (SCH) 1 µM. The vehicle control (co) received DMSO instead. Cells were harvested, counted and 

diluted in PBSG buffer prior to the assay. Intact cells were stimulated with Ca2+ ionophore (A23187, 2.5 μM) and 

supplemented with 1 mM Ca2+ and ARA (20 µM). Samples were incubated for 10 min at 37°C. Then, the reaction was 

terminated with 1 mL ice-cold MeOH and 5-LO product formation, as well as ARA concentrations were analyzed via 

LC/MS-MS. Ascertained lipid mediator amounts were normalized to 106 cells and corrected for non-enzymatic oxidation 

products determined in control samples without cells. Results are depicted as mean + SEM from 3 independent 

experiments.  
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4.4.4 4. Substrate availability in HT-29 and HCT-116 cells 

As the analysis of free ARA in the control samples revealed a substantial concentration difference 

compared to cell incubations, it was investigated if the difference results from lipid mediator 

formation. Furthermore, it was examined if the difference in the measured fatty acid concentration 

compared to the intended concentration was due to an experimental error.  

For this purpose, samples were prepared in ice-cold PBSG buffer and supplemented with 1 mM 

Ca2+ prior to the activity assay. Cells were incubated for 10 min at 37°C and stimulated with Ca2+ 

ionophore (A23187, 2.5 µM) as well as supplemented with a fatty acid mix (6 µM ARA, 6 µM DHA, 

6 µM EPA). Samples were then aliquoted and stored at -80°C until further processing at the 

Fraunhofer-Institute for Translational Medicine and Pharmacology, Department of Clinical 

Research (Biomedical Analysis) by Carlo Angioni or Sandra Trautmann. There, samples were 

analyzed towards the formation of ARA, DHA, and EPA-dependent lipid mediators. The exact 

panel is listed in App. Table 32. Additionally, the concentration of free ARA, EPA, and DHA was 

determined in each sample. 

Unfortunately, samples could not be quantified towards their DHA concentration since all control 

samples had concentrations above the upper limit of quantification (>ULOQ). Hence, Figure 4.43 

only shows results for ARA and EPA. As seen previously, the measured ARA concentration 

differed widely from the intended concentration (1.99 µM vs. 6 µM, Figure 4.43A). However, the 

concentration of free ARA in samples containing cells was 4.95-fold lower than the determined 

concentration in the control samples. Surprisingly, analysis of the formed lipid mediators revealed 

that only a meager percentage of 0.4-0.9% of the substrate seems to be metabolized into analytes 

included in the panel (displayed in pink). A similar but yet higher turnover of 2.2-6.8% was found 

for EPA. HT-29 and HCT-116 cells metabolized more EPA, resulting in higher metabolite 

concentrations (displayed in green, Figure 4.43B). Surprisingly, the difference between measured 

and intended EPA concentration was even higher compared to ARA. 

Analysis of both ARA and EPA revealed a vast difference in the respective free fatty acid 

concentration in preparations with cells compared to cell-free controls, which cannot be explained 

due to metabolite formation since the ARA and EPA-dependent lipid mediator formation in HT-29 

and HCT-116 cells is very low compared to the substrate concentration (Figure 4.43 pink and 

green).  

Since the determined and intended free fatty acid concentration differed strongly for two tested 

concentrations (6 µM, 20 µM), it was interesting to see if this might be the case for an even higher 

concentration and if measurement for EPA would show comparable results. Indeed, the analysis 

of 60 µM ARA or EPA in cell-free controls resulted in substantially reduced factual free fatty acid 

concentrations (Figure 4.44). Notably, the difference between intended and measured free fatty 

acid concentration was higher for EPA than ARA (Figure 4.44B). In detail, analysis of samples 

supplemented with the intended 60 µM of each free fatty acid exhibited 5.45-fold (ARA) and 9.48-

fold (EPA) less concentration. Samples supplemented with the intended 20 µM of ARA exhibited 

2.79-fold less in concentration. Finally, samples supplemented with the intended 6 µM of each 

free fatty acid exhibited 3-fold (ARA) and 5.83-fold (EPA) less in concentration.  
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Figure 4.43: Free substrate and metabolite analysis in HT-29 and HCT-116 cells.  

Cells were seeded (10x106 cells per 150 mm plate) in CGM and cultured for 48 h. Cells were harvested, counted and 

diluted according to 10x106 cells/mL in PBSG buffer prior to the assay. Cells were stimulated with Ca2+ ionophore 

(A23187, 2.5 μM) and supplemented with 1 mM Ca2+ and a fatty assay mix (FA mix; 6 µM ARA, 6 µM DHA, and 6 µM 

EPA). Samples were incubated for 10 min at 37°C, then the reaction was terminated with 1 mL ice-cold MeOH, and 

lipid mediator formation (panel displayed in App. Table 32) was analyzed via LC/MS-MS. Ascertained lipid mediator 

and free fatty acid amounts in cell-less controls and cell-containing samples were calculated in µM for better 

comparison. ΔARA and ΔEPA were calculated by subtraction of ARA and its metabolites (blue and pink) or EPA and 

its metabolites (yellow and green) in cell-containing samples from respective control samples without cells (w/o). 

Quantifiable ARA metabolites (pink) include 5-HETE, 12-HETE, 15-HETE, 5(S),15(S)-DiHETE, PGD2, TBX2, and 

PGF2α. Quantifiable EPA metabolites include 5-HEPE, 12-HEPE, 15-HEPE, and 18-HEPE. LTB4, 20-HETE, 8S,15S-

DiHETE, LXA4/15-epi-LXA4, LXA5, LXB4, PGE2, 11-dehydro-TXB2, PGJ2/Δ-12-PGJ2, 6-keto-PGF1α, RvE1, and RvE4 

were also part of the measured panel but not quantifiable. Determined metabolite values were corrected for non-

enzymatic oxidation products determined in control samples without cells (w/o). Results are depicted as mean + SEM 

from 3 independent experiments.  

 

Figure 4.44: Comparison of intended and determined free FA concentrations in cell-free incubations.  

PBSG buffer was spiked with Ca2+ ionophore (A23187, 2.5 μM), Ca2+ (1 mM), and a fatty assay mix containing the 

indicated concentration of each fatty acid (ARA, DHA, EPA). Samples were incubated for 10 min at 37°C, then the 

reaction was terminated with 1 mL ice-cold MeOH, and respective free fatty acid concentrations were analyzed and 

calculated. Results are depicted as mean + SEM from 3 independent experiments. n.d. = not determined.  
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5 Discussion 

5.1 HT-29 and HCT-116 cells fine-tune 5-LO expression in response to 

environmental changes  

In recent decades, non-physiological 5-LO expression was found frequently in various malignant 

neoplasms derived from different specimens. Several studies investigated the expression of 5-

LO and the leukotriene cascade in several cancer cell lines and primary cells derived from 

different cancers (51, 72, 361–363). The presented study investigated the regulation of 5-LO 

expression and activity in HT-29 and HCT-116 colon carcinoma cells. Both cell lines express the 

enzyme of interest in different amounts together with the complete LT machinery, but its activity 

appears to be low as both cell lines only produce minor amounts of LTs and 5-HETE under 

conventional cell culture conditions (72). The two colon carcinoma cell lines carry different 

mutations in crucial oncogenic signaling pathways and were previously shown capable of forming 

MCTS (348, 364). Therefore, HT-29 and HCT-116 cells were selected as suitable cell lines for 

this study. 

Most studies investigating 5-LO in tumor cell lines use conventional 2D culture models that 

provide controllable experimental parameters but do not display the in vivo characteristics of 

tumors. Therefore, it was of interest to investigate the expression of 5-LO and other enzymes of 

the leukotriene cascade in a 3D culture model, which provides a multitude of physicochemical 

factors such as cell-cell interactions and multiple gradients as, e.g., cell proliferation, viability, 

nutrients, catabolites, and oxygen which result in changes of the cellular signaling (293, 348, 365). 

To investigate the expression of enzymes involved in the leukotriene cascade, MCTS grown for 

4 and 7 days on special low adherence plates, without medium change, were compared to 

monolayer controls cultured under optimal cell culture conditions (incubation for 48 h, medium 

change after 24 h, 70-80% confluency). This comparison revealed that the protein expression of 

5-LO and LTA4H, as well as the mRNA expression of LTC4S were upregulated due to 3D growth 

(Figure 4.1 & Figure 4.2). Additionally, similar results were found for the expression of ALOX15, 

PTGS1, and PTGS2 mRNA (Figure 4.2 & App. Figure 7.2). In contrast, expression of the cPLA2α 

protein was downregulated due to MCTS formation (Figure 4.1). The results were verified using 

another MCTS model employing the liquid overlay technique, utilizing larger wells coated with 

ultra-pure agarose (1% in PBS) and higher volumes of media supernatant. Within the long 

incubation period, the medium surrounding the spheroids gets depleted of nutrients but 

accumulates catabolites and acidifies. Subsequently, many factors can influence the cells and act 

upon cellular signaling. However, a higher media volume (700 µL vs. 200 µL used on low 

adherence plates) did not influence the experimental outcome. Therefore, both spheroid 

formation methods provided comparable results. Additionally, both models formed similar MCTS 

in size and shape, even though the initial compacting of agarose-grown MCTS took longer (Figure 

4.3 & Figure 4.4). The observed upregulation of 5-LO in MCTS of HT-29 and HCT-116 cells is in 

accordance with the reported elevation of LT release by human glioma spheroids (366). A study 

in MCF-7 breast cancer cells demonstrated the induced expression of ALOX15 in MCF-7 

spheroids compared to monolayer controls (367). Furthermore, MCTS-induced PTGS2 
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expression was previously demonstrated in DU145 prostate cancer cells and was reported to be 

dependent on necrosis (368). 

An effective medium change during the spheroid formation period was difficult to handle and was 

therefore not performed. Since this leads to the accumulation of factors in the medium that can 

influence the cells as described above, additional controls were prepared. To better understand 

and further isolate the factors leading to the observed results in 3D culture, cells were seeded in 

12-well plates employing the same cell numbers used for MCTS formation (per well). For a better 

comparison of monolayer-grown cells and spheroids, the medium was also not changed during 

the incubation periods of 4 or 7 days. Surprisingly, HT-29 and HCT-116 monolayers grown for 7 

days showed comparable regulation for all investigated targets (with the exception of LTA4H in 

HT-29 cells) compared to MCTS. Beyond this, similar results could also be observed for HCT-

116 cells grown for 4 days.  

The lengthy culture period of the additional control cells led to visible acidification of the medium 

and strong cellular overgrowth (Figure 4.3). An acidic environment is described as favorable for 

tumors. However, within the TME, tumor cells are adapted to extracellular acidity while 

maintaining a relatively stable intracellular pH (pHi) (280). Therefore, studies show that an acidic 

extracellular pH (pHe) can promote proliferation in cell cultures adapted to low pH conditions (369, 

370). However, other studies demonstrate cell cycle inhibition of cancer cell lines exposed to low 

pHe if previously cultured under physiological conditions (371, 372). Concerning cellular 

overgrowth, cancer cells feature no contact inhibition due to evading growth suppressors, but high 

cell density cultures can still lead to cell cycle arrest. A lack of nutrients, especially essential amino 

acids and glutamine, but also a lack of growth factors can induce growth arrest via mTOR (373–

375). Therefore, cell cycle analysis of the control incubation experiments was performed. By this, 

a substantial accumulation of cells within the G0/G1 phase was observed for HT-29 and HCT-

116 cells after 7 days compared to the controls cultured under optimal conditions (subconfluent 

growth, frequent media replenishment). Additionally, a shift towards the G0/G1 phase was 

observed for HCT-116 cells grown for 4 days, correlating with the higher cell density at this time 

point. This indicated a possible coherence between cell proliferation, culture density, and 5-LO 

expression.  

Next, the influence of low pHe was investigated in more detail. An acidic pH of 6.5 or 6.8 led to 

elevated ALOX5 levels in both cell lines, with more pronounced effects in HT-29 cells (Figure 4.7). 

However, to investigate the ALOX5 expression at defined non-physiological pH conditions, 

DMEM powder with a HEPES/PIPES buffer system had to be used, although HT-29 cells are 

usually cultured in McCoy’s 5A medium as recommended by DSMZ. Unfortunately, this medium 

was unavailable as powder. Therefore, all pH experiments with HT-29 cells (including controls) 

were performed using the prepared DMEM medium, which might also influence the general 

signaling and protein expression due to deviations in nutrition (376, 377). 

As the results of the pH experiments indeed showed an influence on ALOX5 expression, but 

overall, only a low induction, additional experiments focusing on the effects of cellular density on 

5-LO expression were performed. For this, increasing amounts of cells were incubated for 48 h, 

with a medium change after 24 h to minimize the effects of nutrient deprivation and acidification. 

The analysis revealed a cell density-dependent upregulation of 5-LO expression in both cell lines, 

which was more pronounced in HT-29 cells. Subsequent cell cycle analysis showed a cell density-
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dependent increase of cells in the G0/G1 phase for HCT-116 cells but not for HT-29 cells. 

Proliferation-dependent 5-LO expression was already observed in BL41-E95-A cells (378). 

However, no cell cycle analysis was performed within this study. 

HCT-116 cells generally show a higher proliferation rate but lower 5-LO expression than HT-29 

cells (72, 379). Furthermore, both cell lines are classified in different consensus molecular status 

categories and transcriptional subtypes. While HT-29 cells are described to hold a MMS 

(microsatellite stability) molecular status and a more differentiated goblet-like transcriptional 

status, HCT-116 cells are described to hold a MSI molecular status and a less differentiated stem-

like transcriptional status with higher metastatic potential (380–382). Therefore, pronounced 5-

LO expression might be a feature of more differentiated cell lines since differentiation of, e.g., the 

colorectal cancer cell line Caco-2 or several leukemic cell lines induces 5-LO expression and 

activity significantly (20, 28, 29, 357). 

5.2 5-LO expression is regulated in a mTORC-2- and MEK/ERK-

dependent manner 

Since CRC cells frequently show dysregulation in pathways that control cell growth, proliferation, 

survival, and metabolism, and 5-LO expression was induced by MCTS formation and high cellular 

density culture in HT-29 and HCT-116 cells, the potential involvement of the PI3K/mTOR and 

MEK/ERK pathway was investigated. 

With the use of pharmacological inhibition of the PI3K/mTOR and MEK/ERK pathways, 

suppression of 5-LO expression was identified in proliferating cells (Figure 4.10). Especially 

inhibition of PI3K/mTOR using the dual PI3K/mTOR inhibitor Dactolisib and inhibition of 

MEK/ERK using the MEK-1 inhibitors PD184352, Cobimetinib, and the ERK inhibitor SCH772984 

induced 5-LO expression significantly. Additionally, the PI3K inhibitor Wortmannin, the mTOR 

inhibitor Temsirolimus, the EGFR inhibitor Erlotinib, and the FTase inhibitor LB42708 were tested 

but failed to increase 5-LO expression as potently or at all compared to the other inhibitors. This 

was not too surprising. Dactolisib was shown to potently inhibit several PI3K class IA and IB 

isoforms, including common p110α mutations, as well as mTORC-1 and mTORC-2. In contrast, 

the effectiveness of the single target inhibitors Wortmannin (pan-PI3K) and the Rapalogue 

Temsirolimus (mTORC-1) is limited due to the negative feedback loop of PI3K and mTOR (272, 

383). Furthermore, tumor cells frequently have mutations in the PI3K/mTOR and the MEK/ERK 

pathway, leading to overactivation (see Table 31 for an overview of mutations in the used cell 

lines) (384). For example, the three Ras genes HRAS, KRAS, and NRAS are common oncogenes 

in humans upstream of the PI3K/mTOR and MEK/ERK pathways. Especially KRAS is frequently 

mutated in colorectal, pancreatic, and non-small-cell lung carcinomas, while HRAS and NRAS 

are often mutated in papillary thyroid cancer or hepatocellular carcinoma, respectively (385–389). 

For activation, Ras proteins depend on prenylation, the addition of a lipid moiety that promotes 

the association with the plasma membrane (390). This prenylation is mediated via a 

farnesyltransferase (FTase) or a geranyl-geranyl transferase (GGTase) (391). However, H-Ras 

exclusively depends on FTase, while N-Ras and K-Ras can utilize GGTase-mediated prenylation 

as a bypass mechanism (392). HT-29 cells show an elevation in KRAS copy numbers but express 

the wt protein, while HCT-116 cells express the K-Ras p.G13D mutation (Table 31). Mutated Ras 

proteins lose the ability to cleave bound GTP to GDP and hence are permanently activated (393). 
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Due to the possible bypass prenylation of K-Ras and the overactivation in HCT-116 cells, it is not 

surprising that the FTase inhibitor LB42708 and the EGRF inhibitor Erlotinib failed to induce 5-

LO expression in both cell lines, especially since downstream elements like Raf are frequently 

mutated in cancer cells as well (e.g., HT-29 BRAF V600E, Table 31).  

Because data discussed in chapter 5.1 implicated a possible link between cell proliferation and 

5-LO expression, cell cycle analysis and viability/cytotoxicity assays of inhibitor-treated cells were 

performed. Additionally, it was validated that the reversible short-term cell synchronization via 

serum deprivation did not influence 5-LO expression (App. Figure 7.4). Interestingly, cell 

synchronization using serum deprivation accumulates cells in the transition stage between G0 

quiescence and the early G1 phase (394, 395). Treatment with Dactolisib, PD184352, 

Cobimetinib, and SCH772984, which mediated upregulation of 5-LO expression, also induced 

G0/G1 cell cycle arrest in HT-29 and HCT-116 cells (Figure 4.10, Figure 4.13). Those inhibitors 

were previously shown to mediate G0/G1 cell cycle arrest in similar concentrations. As Dactolisib, 

PD184352, Cobimetinib, and SCH772984 were also shown to promote a decrease in viability 

proliferation and provoke cytotoxic effects in different cancer cells, WST-1 and LDH assays were 

performed as well (396–399). However, only treatment with Dactolisib and Cobimetinib decreased 

the cell viability, probably by reducing the overall cell number due to a reduction in cell 

proliferation, but did not promote a pronounced cytotoxicity (Figure 4.12). 

Riedl et al. recently reported that 3D cultures of HT-29 and HCT-116 cells diminished PI3K/mTOR 

and MEK/ERK signaling and induced a shift towards the G0/G1 phase (348). Since this supported 

the hypothesis that 5-LO might be regulated by pro-proliferative pathways in a cell cycle 

dependent manner in HT-29 and HCT-116 cells, Western blot analysis of p-p70S6K/p70S6K and 

pERK/ERK in HT-29 and HCT-116 MCTS was performed (Figure 4.14). Surprisingly, MCTS 

formation and high-density monolayer culture did not reduce but induce ERK phosphorylation in 

HCT-116 cells. Additionally, phosphorylation of p70S6K downstream of mTOR was elevated in 

HCT-116 MCTS and high-density monolayers as well. In contrast, MCTS formation potently 

reduced ERK phosphorylation in HT-29 cells. Especially the obtained findings for HCT-116 MCTS 

differed strongly from the reported findings by Riedl et al. However, this might be explainable by 

differences in the experimental setup. Riedl et al. incubated 3x103 cells for 24 h in reduced serum-

containing medium (5%) with 0.3% methylcellulose for 2D monolayers and MCTS formation. But 

for this thesis, 5x104 cells were incubated in their respective complete growth medium for 4 or 7 

days. Therefore, the results are hard to compare, and culture of 2D monolayers under reduced 

serum conditions might influence cellular signaling. In addition, phosphorylation of p70S6K is 

mediated via mTORC-1 but not mTORC-2 (400). Furthermore, p-p70S6K was previously reported 

to inhibit the mTORC-2 core component Rictor (via Thr-1135) and thus inhibit mTORC-2-

mediated ATK activation (401, 402). Inhibition of mTORC-2 was also previously shown to induce 

G0/G1 cell cycle arrest in hepatocellular carcinoma cell lines (403). Related to the inhibitor-based 

findings, a possible signaling route across mTORC-2 resulting in 5-LO upregulation seems 

plausible. As described above, Dactolisib is reported to inhibit both mTORC-1 and mTORC-2, 

while Temsirolimus, which did not induce 5-LO expression in HT-29 and HCT-116 cells, is 

described to inhibit mTORC-1 but not mTORC-2 (383). Therefore, the hypothesis was adapted 

and further investigated if MEK/ERK and PI3K/mTORC-2 inhibition might be responsible for the 

seen upregulation of 5-LO. Additionally, it was considered that the observed 5-LO regulation might 
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be slightly different in both cell lines with differently preferred routes dependent on the respective 

mutational profile of the cells. 

Since pharmacological inhibition using small molecules is well known to promote both off-target 

effects and bypass mechanisms by activating other pathways than the intended, RNAi technology 

was used to validate and further investigate the previous results. Surprisingly, the knockdown of 

the PI3K isoforms PIK3CA and PIK3CG led to a significant downregulation of 5-LO expression in 

HT-29 (PIK3CA, PIK3CG) and HCT-116 cell (PI3KCA)(Figure 4.18, Figure 4.19, Figure 4.20). 

The consequences of PI3K knockdown on 5-LO expression have not been investigated in other 

cell lines yet. However, it has been reported that overexpression of 5-LO in bladder cancer cells 

(HT1376, J82) leads to elevated PI3K and AKT phosphorylation. In line with this, knockdown and 

pharmacological inhibition of 5-LO in the HER2-positive breast cancer cell line SKBR3 led to 

decreased PI3K and AKT phosphorylation (404). Knockdown of 5-LO in an Apcmin/x mouse model 

also decreased PI3K and AKT phosphorylation (405). Therefore, the existence of a regulatory 

feedback loop seems possible. Treatment of pancreatic cancer cell lines (Panc-1, AsPC-1) using 

LTB4 increased AKT phosphorylation (406). Both 5-LO overexpression and treatment with 

exogenous LTB4 or 5-HETE have been shown to induce cell proliferation in several cell lines (308, 

407). Cancer cells might upregulate 5-LO during cell stress conditions, inhibiting cell growth to 

produce LTB4 to reactivate pro-proliferation pathways. Additionally, PI3K might have another role 

in 5-LO regulation besides its part in the PI3K/mTOR cascade. 

Contrary to PI3K, the knockdown of the mTORC-2 core component RICTOR significantly 

increased 5-LO expression in both cell lines. This supports the theory that 5-LO expression might 

be regulated via mTORC-2. Knockdown of mTOR itself elevated 5-LO expression, but only non-

significantly in both cell lines. In contrast, the knockdown of RAPTOR, the core component of 

mTORC-1, led to opposing results in both cell lines, again in a non-significant manner. Contrary 

to the results obtained by using MEK/ERK inhibitors, the knockdown of MAP2K1 (MEK-1) did not 

influence 5-LO expression in HT-29 cells but led to an elevated, non-significant 5-LO expression 

in HCT-116 cells. Knockdown of MAP2K1 (MEK-1) did not display the results obtained using 

pharmacological inhibition of MEK-1 and ERK. However, the MEK-1 inhibitors PD184352 and 

Cobimetinib were shown to inhibit both ERK-1 and ERK-2 phosphorylation. Therefore, 

knockdown of MEK-1 alone might not be able to mimic the results obtained using pharmacological 

inhibition. As discussed for the PI3K/mTOR pathway, MEK/ERK signaling can be activated via 5-

LO-dependent products. Furthermore, 5-LO inhibition also decreased ERK phosphorylation 

(408). In turn, 5-LO activity can be stimulated by phosphorylation via a PKC/MEK-1/ERK axis in 

ionophore-treated MM6 cells and differentiated Daidzein-treated THP-1 cells (82, 409). However, 

some publications show 5-LO downregulation after inhibition of the MEK/ERK axis or 5-LO 

upregulation with parallel ERK activation (408, 410, 411). As this is contrary to the results 

presented in this thesis, it should be mentioned that most of the studies used very high inhibitor 

or compound concentrations (e.g., You et al. 2009, 50 µM PD98059, MCF-7 cells) and used cells 

(MCF-7) which only showed ALOX5 expression on mRNA level within our group (32, 408). 

Additionally, publications that tested very high inhibitor or compound concentrations mainly 

provided no information on cytotoxicity testing (408, 411). And, as discussed before, different cell 

lines might regulate 5-LO expression differently, depending on their respective mutational profile. 

It can also be speculated that cells are heavily dependent on pro-proliferative oxylipins, which 
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downregulate energy-expensive pro-proliferative pathways when growth conditions are 

suboptimal, thereby triggering cell cycle arrest.  

Finally, knockdown of PRKCZ (PKCζ), a known downstream target of mTORC-2 and a known 

kinase for cPLA2α which stabilizes the enzyme, led to no effects on 5-LO expression in HT-29 

cells but to a recognizable downregulation in HCT-116 cells. Knockdown of PRKCZ was 

investigated since it was recently shown that constitutive activation of the PI3K p100α catalytic 

subunit reprograms breast cancer cells towards an oxylipin-dependent phenotype. They showed 

that these cells are enriched in certain fatty acids, particularly palmitoleate and ARA, due to an 

elevated de novo lipogenesis and increased FA uptake. Constitutive activation of PI3K 

downstream pathways leads to the stabilization of cPLA2α by an mTORC-2/PKCζ-dependent axis 

and constantly elevated intracellular Ca2+ levels, which activate cPLA2α resulting in the continuous 

release of ARA-derived oxylipins with growth stimulating properties (412). Interestingly, HT-29 

and HCT-116 cells also carry a mutated, constitutively active PI3KCA (see Table 31). It seemed 

possible that the knockdown of PRKCZ might, therefore, influence 5-LO expression. Even though 

this was not the case, at least for HT-29 cells, the described regulation via mTORC-2/PKCζ might 

explain the downregulation of cPLA2α during 3D growth.  

As conditions inhibiting the investigated pathways triggered cell cycle arrest and elevated 5-LO 

expression, it was also investigated if the observed 5-LO upregulation is independent of p53. This 

possible dependency was investigated using HCT-116 cells since they express wt p53 (Table 31) 

and HCT-116 p53 -/- cells. Treatment of both cell lines using Dactolisib, PD184352, Cobimetinib, 

and SCH772984 induced ALOX5 mRNA expression and led to a shift towards the G0/G1 phase 

in both cell lines (Figure 4.11A, Figure 4.17B, C). A p53-independent G0/G1 arrest induction was 

already observed in HCT-116 cells using Cobimetinib (397). However, the observed ALOX5 

mRNA induction in HCT-116 53 -/- did not translate into 5-LO protein, and basal 5-LO protein 

expression was potently suppressed (Figure 4.17A). It is indeed known that p53 can influence 

several targets on the transcriptional level by regulation factors that control translation initiation 

(413). ALOX5 was previously described as a direct p53 target gene, and it has already been 

established that 5-LO is upregulated upon genotoxic stress induced by UV irradiation, oxidative 

agents, or treatment with cytostatic drugs in several cancer cell lines together with p53. However, 

the observed upregulation was initially described as independent of p53 since cells that carried a 

p53 frameshift mutation also upregulated 5-LO upon these stimuli by Catalano et al. (88). In 

contrast, the 5-LO upregulation after treatment with Etoposide and Actinomycin D was described 

as p53-dependent by another study (32). The presented results might explain the putative 

discrepancies between both studies: 5-LO is a direct p53 target gene, but as shown in the present 

study, pro-proliferative signaling pathways can simultaneously suppress its gene expression. 

Upon p53 activation, cell cycle arrest is triggered by p21. This triggers most probably the inhibition 

of the transcriptional repression of 5-LO by pro-proliferative pathways in a synergistic way. 

Alternatively, ALOX5 transcription can also be upregulated by cell cycle arrest independent of 

p53 by exclusive attenuation of PI3K/mTOR and MEK-1/ERK-dependent signaling pathways, as 

shown in this thesis. In line with this, it has been reported that oncogenic RasV12 is known to 

induce 5-LO expression in fibroblasts and a number of other cell lines. This was accompanied by 

an activation of p53 by 5-LO-derived ROS, which induced cell cycle arrest by elevation of p53 

and, thus, p21 (414). Furthermore, the interplay of p53 and 5-LO in HT-29 cells that express the 

R273H p53 mutation that lost its DNA binding capacity is less clear since the expression of 5-LO 



Discussion 138 
 

is per se p53-independent. Therefore, 5-LO translation may be independent of p53 in cancer cells 

carrying a p53 gain of function mutation. 

Table 31: MS status, transcriptional subtype, and mutational status overview of investigated cell lines.  

Information about entries marked with * was obtained using the COSMIC database (https://cancer.sanger.ac.uk) as 

other sources were not available (415).  

 

In addition to p53, further transcription factors involved in cell cycle regulation, such as FOXO1 

and 3, SP1, MYC, and members of the DREAM complex (E2F1-5, MYB, and MYBL2), were 

investigated in monolayer grown cells. Interestingly, MEK/ERK inhibition revealed differences 

between the respective inhibitors. While treatment with Cobimetinib and SCH772984 resulted in 

similar effects for all transcription factors the effects of PD184352 differed. This was unexpected 

as Cobimetinib and PD184352 are both non-ATP competitive allosteric inhibitors of MEK1. 

However, results obtained using Cobimetinib, an optimized structural analog of PD184352 in 

terms of metabolic stability, indicate that side products might cause the observed effects of 

PD184352 due to extensive oxidative metabolism (430, 431). 

Inhibition of the MEK/ERK or PI3K/mTOR pathway resulted in a similar regulation of MYBL2, 

E2F1, and SP1. As these findings supported the hypothesis that 5-LO upregulation is at least 

partially mediated by the reduced MEK/ERK and PI3K/mTOR signaling in HT-29 and HCT-116 

cells, MCTS were analyzed next (Figure 4.23). Again, the transcription factors were regulated 

mostly similar to MEK/ERK or PI3K/mTOR inhibition in monolayer grown cells, although some 

effects were less pronounced. Nevertheless, these findings are in accordance with the previous 

report of Riedl et al. confirming the restriction of PI3K/mTOR and MEK/ERK signaling in HT-29 

and HCT-116 cells (348). 

Cell line 

Mutation 

HT-29 HCT-116 Capan-2 U-2 OS Caco-2 MCF-7 

MS status 

(380) 

MSS (380) MSI (380) MSS* 

(415) 

MSS* 

(415) 

MSS (380) MSS (416) 

CRC 

transcriptional 

subtype (380) 

goblet stem - - stem - 

PIK3CA p.P449T 

(417) 

p.H1047R 

(417) 

wt* (415) wt (418) wt (419) p.E545K 

(420) 

KRAS wt (421) p.G13D 

(421) 

p.G12C 

(422) 

wt (423) wt (421) wt (424) 

BRAF p.V600E 

(425) 

p.T119S 

(421) 

wt (425) wt* (415) wt (426) wt (425) wt (427) 

TP53 p.R273H 

(428) 

wt (428) p.R273H 

(428) 

wt (429) p.E204X 

(421) 

wt (428) 

https://cancer.sanger.ac.uk/
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As already discussed in chapter 5.1, an increase in cellular density leads to enhanced ALOX5 

expression in the tested cell lines. Thus, the influence of cellular density on E2F1, MYBL2, MYB, 

and SP1 was analyzed next (Figure 4.24). E2F1 and MYBL2 expression slightly decreased with 

higher density, whereas SP1 levels were increased in both cell lines. MYB expression, however, 

led to mixed results. As the data indicate transcriptional repression of ALOX5 mRNA via E2F1, a 

pan-E2F inhibitor (HLM006474) was used to confirm this correlation on protein level. Indeed, 5-

LO expression was significantly upregulated in HCT-116 cells, whereas the increase in 5-LO 

protein was similar but not significant in HT-29 cells (Figure 4.26). As a selective E2F1 inhibitor 

was commercially not available, a pan-E2F inhibitor also inhibiting E2F4 had to be used (432). 

This might explain why the induction of 5-LO was only minor. Furthermore, the data also indicate 

that b-Myb (MYBL2) is involved in transcriptional repression of ALOX5, although regulation of 

ALOX5 has only been described for c-Myb (MYB) in myeloid cells (355, 356, 433). However, both 

transcription factors share their DNA consensus sequence, so a similar function seems 

reasonable. b-Myb overexpressing cell lines derived from HT-29 and HCT-116 cells were 

prepared to investigate this effect further. Unfortunately, constitutive overexpression of b-Myb was 

silenced within a few passages, so doxycycline-inducible cell lines had to be used instead. Here, 

b-Myb expression resulted in a decreased 5-LO expression in both cell lines after 48 h of 

Doxycycline treatment, although data were only significant in HT-29 cells (Figure 4.29). However, 

in MCTS of these inducible cell lines, 5-LO expression was not affected. Instead, b-Myb 

overexpression resulted in larger MCTS of HCT-116 cells and MCTS with a loosened outer rim 

structure in HT-29 cells (Figure 4.30). It is important to note that MCTS were seeded and kept in 

a Doxycycline-containing medium for 4 days, whereas the monolayer-grown cells were only 

treated for 48 h at max. Thus, it could not be excluded that the cell lines somehow adapted to the 

Doxycycline treatment, leading to normalized 5-LO levels. In addition, MCTS are characterized 

by gradients of nutrients or oxygen deprivation as the inner core region is cut off from the 

surrounding medium (280, 281). Therefore, it might also be that the inner cells of the MCTS 

received less or no Doxycycline at all, which consequently led to reduced b-Myb and, thus, 

unaltered 5-LO expression. 

To gain more information on the b-Myb interaction, reporter gene experiments were conducted. 

So far, two c-Myb binding sites have been identified in the ALOX5 gene. The first is located 

upstream of the core promoter region, whereas the second is located within the coding region 

(356). Therefore, ALOX5 promoter constructs with varying lengths were prepared in order to 

identify the site responsible for ALOX5 repression. Indeed, the larger (pN6) construct resulted in 

a decreased luciferase signal for both cell lines, indicating a regulatory element upstream of the 

core promoter region (pN10) (Figure 4.31A). However, deletion of the putative b-Myb binding site 

(pN6ΔMYB) led to inconclusive results. In HCT-116 cells, the luciferase signal was increased 

again, whereas the signal in HT-29 cells was further reduced. When treated with the MEK/ERK 

and PI3K/mTOR inhibitors, the signals of the pN6ΔMYB constructs were significantly decreased 

compared to pN6 and pN10 in HT-29 cells (Figure 4.31C), whereas the results in HCT-116 cells 

did not differ from the control (Figure 4.31D). In addition, the MYB binding site within the ALOX5 

coding region was investigated using constructs that contained a mutated binding site (Figure 

4.32), according to Ringleb et al. (356). However, only low signals were observed for these 

constructs, so this approach was not further pursued. The low signals were presumably caused 

by the design of these constructs. To investigate the putative b-Myb binding site within the coding 
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sequence of ALOX5, a fusion protein of the N-terminal 5-LO sequence and the luciferase gene 

was used for the read-out. The combination of both protein parts was not tested in advance, so 

the low signals are most likely the result of a misfolded fusion protein. Although only the 

investigation of the putative binding site upstream of the core promoter led to sufficient results, 

the analysis indicated that ALOX5 is indeed transcriptionally repressed by b-MYB. However, the 

underlying mechanism, or at least the responsible binding site, seems to differ in HT-29 and HCT-

116 cells. 

As MEK/ERK and PI3K/mTOR inhibition was shown to affect the cell cycle (Figure 4.13), HT-29 

and HCT-116 cells were treated with inhibitors of cell-cycle promoting factors. CDK4/6 inhibition 

by Palbociclib resulted in a strong G0/G1 arrest in HT-29 cells (Figure 4.25A), accompanied by a 

significant increase in 5-LO expression (Figure 4.25B). Treatment with Ro-3306 (CDK1 inhibitor) 

resulted in a G2/M arrest in HT-29 cells, but 5-LO expression was nearly unchanged. HCT-116 

cells were similarly affected, but CDK4/6 inhibition resulted in a less pronounced G0/G1 arrest, 

although the concentration of Palbociclib was 10-fold increased (10 µM) compared to HT-29 cells. 

Nevertheless, 5-LO expression was significantly increased following both treatments in HCT-116 

cells. Overall, 5-LO expression was more responsive to cell-cycle manipulation in HCT-116 cells 

than in HT-29 cells, probably due to the already higher basal expression of HT-29 cells (72). 

MCTS contain several zones, including a necrotic inner core region, a proliferative outer rim, and 

a quiescent viable zone in between (280, 281). Therefore, it was of interest which cells actually 

express 5-LO. For this purpose, confocal microscopy images of MCTS cryosections were 

prepared and stained for the proliferation marker Ki67, the apoptosis marker caspase-3 (cleaved), 

and 5-LO. As expected, Ki67 was predominantly expressed in the outer proliferative zone (Figure 

4.27), whereas caspase-3 cleavage was found in the inner core region or the region farthest away 

from the outer rim as HCT-116 cells tend to form hollow structures (Figure 4.28). A solid 5-LO 

expression was found within the proliferative outer rim, which fits previous reports describing a 

correlation between 5-LO inhibition and cell proliferation in human pancreatic cancer cells (434–

436). Co-staining of 5-LO and Ki67 was not observed in MCTS of HT-29 cells. Instead, 5-LO-

positive cells were found to be intermixed with Ki67-positive cells. In contrast, HCT-116 cells in 

the outer rim were found to be co-stained for both proteins. Interestingly, 5-LO-positive cells with 

increased expression levels were also found in the inner necrotic core region of HT-29 spheroids. 

Increased 5-LO expression is not exclusively found in CRC but also in other tumor entities. Thus, 

cell lines derived from other solid tumors were investigated regarding their ALOX5, SP1, E2F1, 

MYBL2, and MYB expression. For this purpose, the 5-LO-positive cell lines Capan-2 (pancreas 

adenocarcinoma), U-2 OS (osteosarcoma), as well as 5-LO-negative Caco-2 (colon 

adenocarcinoma) and MCF-7 (mammary gland adenocarcinoma) cells were treated with 

PI3K/mTOR (Dactolisib) and MEK/ERK (PD184352, Cobimetinib and SCH772984) inhibitors. It 

is important to note that the literature on 5-LO expression in Caco-2 and MCF-7 cells is 

inconsistent; however, within the Steinhilber group, these cell lines are considered 5-LO negative 

under standard culture conditions (356–359). MEK/ERK inhibition strongly increased ALOX5 

levels in Capan-2 cells (Figure 4.37A) but did not lead to relevant changes in U-2 OS, Caco-2, 

and MCF-7 cells (Figure 4.37B-D). In contrast, treatment with Dactolisib induced ALOX5 

expression in Caco-2 (Figure 4.37C) and MCF-7 (Figure 4.37D) cells but not in Capan-2 (Figure 

4.37A) and U-2 OS (Figure 4.37B) cells. These results indicate that ALOX5 expression is inhibited 

by PI3K/mTOR in Caco-2 and MCF-7 cells under standard conditions, whereas the MEK/ERK 
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pathway seems to regulate ALOX5 expression in Capan-2 cells. Interestingly, either treatment 

did not affect the osteosarcoma cell line U-2 OS. Since U-2 OS cells carry a mutation in the 

RICTOR gene, which is part of mTORC-2, this might be an explanation for the poor 

responsiveness to MEK/ERK and PI3K/mTOR inhibition and also for the high basal 5-LO 

expression in these cells (415). Even though ALOX5 expression in Caco-2, Capan-2, and MCF-

7 cells was only sensitive to either MEK/ERK or PI3K/mTOR inhibition, the respective treatment 

resulted in an increased SP1 and reduced E2F1 and MYBL2 expression that was in accordance 

with the findings in HCT-116 and HT-29 cells. Taken together, these results indicate that ALOX5 

expression might also be upregulated in other solid tumor specimens as a result of MEK/ERK 

and/or PI3K/mTOR inhibition. 

5.3 5-LO activity of HT-29 and HCT-116 cells is comparable to M2 

macrophages and strongly dependent on substrate availability 

Myeloid cells express high amounts of 5-LO and its enzymatic activity is well investigated in these 

leukocyte subsets. 5-LO activity is very low in 5-LO-expressing tumor cells (see Figure 2.1), and 

factors triggering 5-LO expression and controlling its activity in solid malignant neoplasms are still 

poorly understood (72). However, many studies provided evidence that 5-LO product formation 

would benefit tumor cells, as LTB4 and 5-HETE were shown to induce cell proliferation (308, 437). 

High 5-LO activity represents a potential threat to healthy cells due to the accumulation of reactive 

oxygen species during the enzymatic reaction and the formation of highly reactive 5-LO products 

like LTA4 and FA hydroperoxides. It is indeed known that these products can trigger ferroptosis 

and form DNA adducts (438–442). Therefore, it is unsurprising that high 5-LO activity is primarily 

found in short-lived cells such as granulocytes. Based on previously shown results (Figure 2.1), 

it was investigated how 5-LO enzyme activity is potentially repressed in HT-29 and HCT-116 cells. 

Additionally, their lipid mediator profile and the amount of lipid mediators released were compared 

to 5-LO-expressing immune cells. 

As the results in Figure 2.1 show, 5-LO activity is impaired in intact HT-29 and HCT-116 cells, 

and increases after cell disruption and segregation of membrane fractions via ultracentrifugation. 

Therefore, it was considered that substrate availability might be an inhibiting factor. The 

differences between the basal and stimulated 5-LO activity were investigated using a highly 

concentrated fatty acid mix (intended 60 µM assay concentration for each FA) consisting of ARA, 

DHA, and EPA. Product formation increased by stimulation using calcium ionophore (A23187, 

2.5 µM), but only in a significant manner for 5-HETE, 5-HEPE, 15-HETE, and 5,15-DiHETE. Both 

cell lines showed no 5-LO activity without addition of exogenous substrates (Figure 4.35). 

Surprisingly, both cell lines formed higher amounts of 5-HEPE compared to 5-HETE. The 

formation of LTB5 was not determined, but LTB4 formation was quantified in both cell lines. The 

5-HEPE formation was significantly increased using calcium ionophore in both cell lines. Contrary 

to the elevated 5-HEPE formation, ARA is described as the preferred substrate for 5-LO (33). 

However, the formation of EPA over ARA products was previously described for differentiated 

and polarized human macrophages, 5-LO purified from peritoneal guinea pig PMNL, and ex vivo 

lung preparations from rabbits (42, 144, 443, 444). In contrast, calcium ionophore-stimulated 

human PMNL incubations show higher concentrations of 5-LO products derived from ARA (69). 

It is known that granulocytes can mobilize high amounts of ARA upon activation, exceeding the 
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intended ARA assay concentration and resulting in higher ARA-derived oxylipin concentrations 

(445). Additionally, ARA is more abundant in membranes than DHA and EPA (446). Therefore, 

ARA products are more likely formed within the physiological context. Furthermore, only a few 

studies investigated the product formation profile in samples with substrate competition. 

Nevertheless, this competition aspect is important since it was shown that EPA and LTB5 can 

inhibit LTB4 formation in rat alveolar macrophages and, by this, influence the lipid mediator profile 

(447, 448).  

In contrast to 5-LO products, the 15-LO product 15-HETE was preferably formed over 15-HEPE 

and 17-HDHA (Figure 4.35D). This is in line with the literature where the poor conversion of DHA 

compared to ARA and EPA is already described, e.g., for PMNL and M1 macrophages (42, 185, 

449). However, a preferred turnover of DHA was recently described for human recombinant 15-

LO-1 compared to ARA and EPA (450). 15-LO-1 and 15-LO-2 expression was determined in both 

cell lines (Figure 4.36A), but only 15-LO-1 was expressed in very low amounts. As a result, the 

15-HETE to 12-HETE ratio was 6.4-7.6:1 in HT-29 and HCT-116 cells (Figure 4.39B, C), which is 

in line with the observed ratios between 4-13:1 in literature, depending on the composition of the 

supplemented FA mix (10, 450, 451). Surprisingly, the (R)-enantiomers of 15-HETE and 17-

HDHA were preferentially formed in both cell lines (Figure 4.36B, C). This was unexpected, as 

15-LO-1 is known to predominantly produce the respective (S)-enantiomer (452). A possible 

explanation might be, e.g., the conversion of 15-(S)-HETE to other metabolites (e.g., 5,15-

DiHETE, 15-KETE), resulting in a reduced ratio between both enantiomers. Additionally, it is 

known that 15-(S)-HETE is rapidly esterified into membrane phospholipids, which also would 

result in a reduced enantiomer ratio. However, this does not identify the 15-(R)-HETE source in 

both cell lines. 15-(R)-HETE is known to be formed by either acetylated COX-2, COX-1, or 

CYP450 enzymes (170, 453). However, COX-1 was also shown to produce 15-(S)-HETE (453). 

Preliminary tests using ASA and other COX-1 and COX-2 inhibitors did not reduce the formation 

of 15-HETE in HT-29 and HCT-116 cells (data not shown). Furthermore, cells were also treated 

with high concentrations of the pan CYP450 inhibitors Ketoconazole (100 µM) (Master’s Thesis 

Marius Mathes, 2019) and Cimetidine (100 µM). This resulted in elevated 15-(R/S)-HETE 

formation using Ketoconazole, while the use of Cimetidine did not influence the 15-HETE 

formation. 15-(R)-HETE was previously detected in, e.g., clotted human whole blood samples 

where concentrations were higher than those of 15-(S)-HETE. Treatment with high concentrations 

of the COX-1 inhibitor ASA (300 µM) increased 15-(R)-HETE formation instead of inhibiting it. It 

is essential to mention that clotted whole blood samples do not express COX-2. Also, HCA7 cells 

showed 15-(R)-HETE formation, which was increasable by ASA treatment (1 mM), but those 

effects were only detectable in combination with supplementation of very high exogenous ARA 

concentrations (100 µM). The formation of 15-(R)-HETE in HCA7 cells was attributed to 

unacetylated COX-2 and dependent on high ARA concentrations (454). As the expression of both 

COX enzymes was only investigated on mRNA level (PTGS1 and PTGS2, App. Figure 7.2), it is 

unclear whether the formation of 15-(R)-HETE in HT-29 and HCT-116 cells (Figure 4.36B) is 

mediated by unacetylated COX-2 protein. Nevertheless, it would be important to investigate the 

exact source of 15-(R)-HETE and 17-(R)-HDHA in HT-29 and HCT-116 cells. 

Interestingly, the dihydroxylated ARA and EPA metabolites 5,15-DiHETE and RvE4 were also 

quantifiable in both cell lines, but again only after supplementation with the FA mix. Stimulation 

with calcium ionophore only increased the amount of 5,15-DiHETE. Furthermore, the formation 
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of those di-hydroxylated derivatives was 25-80-fold (HT-29) and 40-170-fold (HCT-116) lower 

compared to their mono-hydroxylated precursors (Figure 4.35F). This observation is not unique 

to cancer cell lines. Several publications showed very low formation of di-hydroxylated oxylipins 

derived from ARA, DHA, and EPA in calcium ionophore-stimulated PMNL and macrophages 

supplemented with respective fatty acids or macrophages exposed to pathogenic E. coli. 

Additionally, tri-hydroxylated oxylipin concentrations are even lower (42, 69, 455, 456).  

Due to the very low 5-LO product formation after supplementation with high concentrations of 

exogenous fatty acids, even after calcium ionophore stimulation, one might assume that the 

formation of 5-HETE and 15-HETE, particularly, might be driven by non-enzymatic oxidation. 

Indeed, non-enzymatic product formation was observed (e.g., 8-HETE, data not shown). 

However, cell-free non-enzymatic oxidation controls were prepared for each sample set, and 

results were subtracted from respective samples. Furthermore, additional pre-tests using NAC 

(N-acetylcysteine, 1 mM) as a ROS scavenger did not reduce lipid mediator formation in HT-29 

and HCT-116 cells (data not shown). Finally, the formation of LTB4, albeit in low amounts, and 

the elevated product formation after the segregation of membrane fractions (Figure 2.1) indicated 

5-LO enzyme activity. Even though the treatment of HT-29 homogenates using the 5-LO inhibitor 

NDGA was previously shown to abolish 5-LO product formation, partial non-enzymatic formation 

of mono-hydroxylated products should be considered and further investigated in the future using 

pharmacological 5-LO inhibition and 5-LO knockout cells (457). 

As the use of very high substrate concentrations might lead to substrate inhibition, as already 

shown for 5-LO and ARA, 5-LO activity determined by 5-HETE and LTB4 formation was 

investigated using lower concentrations (Figure 4.37) (458). However, the use of lower ARA 

concentrations led to less 5-HETE formation. In the case of HCT-116 cells, LTB4 formation was 

only observed using 60 µM ARA (20 µM was not determined), while HT-29 cells could form low 

concentrations of LTB4 with only 10 µM ARA. Nevertheless, LTB4 formation was not detectable 

using only 6 µM ARA, indicating a strong dependency on substrate availability.  

Besides substrate availability, 5-LO activity/LT formation is known to be regulated by several other 

factors within the cellular context, among them the intracellular location of the enzyme, its 

phosphorylation status, alternative splicing, and the presence of FLAP. As shown in Figure 2.1, 

5-LO is primarily localized within the cytosol of resting HT-29 and HCT-116 cells. It was not 

investigated if the stimulation using calcium ionophore properly translocates the enzyme towards 

the nuclear membrane in those cells. However, the association of 5-LO with the nuclear 

membrane is very important for the intracellular 5-LO activity (459). Additionally, phosphorylation 

of 5-LO at Ser523 was shown to inhibit the enzyme’s activity, probably by preventing the 

association with the nuclear membrane or nuclear import (77). Unfortunately, it was not possible 

to analyze this phosphorylation within this work since the respective antibody directed against the 

phosphorylation of Ser523 detected a protein similar in size to 5-LO in HT-29 and HCT-116 5-LO 

knockout cells as well as in HEK293T cells, which do not express 5-LO (data not shown). The 

expression of ALOX5 splice variants was not investigated within this work. But, since there are 

several 5-LO isoforms known today, including some that were reported to negatively regulate 5-

LO activity (34, 37), mRNA splice-variants represent another interesting research topic for future 

investigations. 
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Last but not least, 5-LO activity strongly depends on FLAP in intact cells which is thought to 

transfer the lipid substrates to 5-LO (460). Both HT-29 and HCT-116 cells express only very low 

amounts of FLAP (Figure 4.1). However, after the disruption of cellular integrity and segregation 

of membrane fractions via ultracentrifugation, 5-LO product formation was elevated in both cell 

lines (Figure 2.1). This fits existing literature, where 5-LO was shown to gain activity in broken cell 

preparations when exogenous ARA is freely available to the enzyme in solution, even in the 

absence of FLAP (116). 

With regard to the low FLAP expression in HT-29 and HCT-116 cells, lipid mediator formation 

profiles, 5-LO, and FLAP expression were compared to PMNL, M1, and M2 macrophages. As 

expected, PMNL formed very high amounts of 5-HETE and LTB4 after stimulation with calcium 

ionophore (2.5 µM) and supplementation with a FA mix (ARA, DHA, EPA, intended assay 

concentration of 60 µM for each FA), while M1 macrophages formed moderate but significantly 

lower amounts. Surprisingly, 5-LO product formation (5-HETE, 7-HDHA, 5-HEPE, LTB4) per mg 

protein was comparable between M2 macrophages and tumor cells (Figure 4.38). Interestingly, 

5-LO expression was low in HT-29 and HCT-116 cells compared to M1 macrophages. Due to 

massive protein degradation in PMNL lysates, 5-LO expression was not appropriately depictable 

for these cells. The excessive protein degradation due to abundant neutral proteases in PMNL is 

well-known and described (461). However, several protocol adaptions did not lead to appropriate 

results. FLAP was not degraded in the lysates, most probably due to its transmembrane character 

that limits the access of proteolytic enzymes. FLAP was strongly expressed in PMNL and M1 

macrophages, while it was significantly reduced in M2 macrophages. Again, this is already well 

documented in the literature. However, the observed low FLAP expression in both tumor cell lines 

and M2 macrophages might also explain the low formation of 5-HETE and LTB4. 

Interestingly, analysis of di-hydroxylated products revealed that 5,15-DiHETE was the 

preferentially formed product in each cell line (Figure 4.39D), although 5-HEPE was formed over 

5-HETE. Notably, di-hydroxylated products may also be formed by subsequent reactions of 15-

LO and 5-LO; however, this reaction is less efficient and slower (462). As the levels of di-

hydroxylated products were remarkably lower (<8 ng/mg total protein) compared to mono-

oxygenated PUFAs such as 5-HEPE, which reached up to 600 ng/mg total protein (PMNL), co-

incubation experiments were performed to investigate the influence of a transcellular metabolism. 

Co-incubations of HCT-116 cells and PMNL revealed mostly similar results as co-incubations of 

HT-29 cells and PMNL. However, an enhanced product formation was not observed. 

Furthermore, the results indicate that PMNL take up endogenous substrates of neighboring cells. 

In addition to the upregulation of 5-LO on mRNA and protein level, inhibition of the MEK/ERK 

(PD184352, Cobimetinib, SCH772984) and/or PI3K/mTOR (Dactolisib) pathways led to an 

increased 5-HETE formation in HT-29 and HCT-116 cells (Figure 4.42). However, product levels 

were lower than expected from previous experiments, which was presumably caused by a lack 

of substrate. Indeed, even control experiments showed 2-5 times less substrate (ARA and EPA) 

than expected (Figure 4.42C). Taken together, the difference between the determined ARA/EPA 

levels and the amount of formed metabolites in intact cells might be caused by the esterification 

of the substrates into cellular membranes since supernatants were used for the analysis. 

Alternatively, the substrates might stick to the cells simply by hydrophobic interactions. 

Nevertheless, this does not explain the fact that substrate levels in cell-free controls were manifold 
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lower than intended. To further investigate this issue, varying concentrations of ARA and EPA 

were prepared and analyzed. Again, the determined concentrations were substantially lower, with 

approx. 11 µM, 7.2 µM and 2 µM ARA instead of 60 µM, 20 µM and 6 µM, respectively (Figure 

4.44A). As it was seen before, EPA values were again lower, with 6.3 µM and 1 µM instead of 

60 µM and 6 µM, respectively (Figure 4.44B). These findings confirm the previous observations 

and indicate that a considerable amount of substrate does not even reach the cells. Hartung et 

al. recently evaluated concentrations in certified and non-certified oxylipin standards (463). They 

found enormous variations for non-certified 15-HETE and 17-HDHA standards with 

concentrations lower than 50% of the declared concentration. A difference between intended and 

found compound concentrations has also been shown for commercially obtained 15-HETE, 17-

HDHA, and 18-HEPE by Mainka et al. (69). When they analyzed 10 µM preparations, more than 

12 µM of 15-HETE and approx. 11 µM 18-HEPE were found. However, in samples with 17S- and 

17R-HDHA, only 7.7 µM and 5.7 µM were found, respectively. This indicates that some obtained 

substrates indeed contain concentrations close to the desired amounts, while some do not. 

Therefore, careful evaluation has to be taken in future investigations as it is unclear what causes 

these variations. A possible explanation might either be hydrophobic interactions with test tubes 

or pipette tips but also inaccurate concentration details on commercially available products. As 

ARA and EPA levels were decreased even stronger in this work compared to the 

monooxygenated substrates of Mainka et al., it seems reasonable that at least part of the 

substrate is lost due to hydrophobic interactions. Nevertheless, future studies should definitely 

include cell-free control determinations to ensure reliable results.  
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5.4 Conclusion and perspective 

This work summarizes the results and findings obtained while investigating the regulation and 

activity of 5-LO in two colorectal cancer cell lines. 3D culture revealed the upregulation of 5-LO 

along other oxygenases and members of the leukotriene cascade. The observed up-regulation of 

5-LO was inversely correlated with cell proliferation and activation of PI3K/mTORC-2– and 

MEK/ERK-dependent pathways in monolayer cultures. Further analysis revealed the involvement 

of E2F and its target gene MYBL2 in the repression of 5-LO during cell proliferation. Additionally, 

the PI3K/mTORC-2- and MEK/ERK-dependent suppression of 5-LO was also observed in other 

cancer cells lines. Therefore, a wider variety of cancer cells derived from solid malignant 

neoplasms might tightly regulate 5-LO expression by suppressing the enzyme during proliferation 

via pro-proliferative signaling pathways while up-regulating its expression upon cell stress 

conditions.  

 

Figure 5.1: Summary of the signaling pathways that control 5-LO expression in solid cancer cell lines identified in the 

present thesis.  

The Figure is adapted from (464). 
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In addition, activity analysis of both colorectal cancer cell lines revealed that LO product formation 

was not detectable in the absence of exogenous substrates. Supplementation with exogenous 

substrates, however, resulted in low product formation that was further enhanced by inhibition of 

the MEK/ERK or PI3K/mTOR pathway. This thigh regulation of 5-LO expression and activity in 

tumor cells underlines the assumed role of 5-LO in carcinogenesis. 

Even though this work identified the involvement of pro-proliferative pathways in 5-LO expression 

and, therefore, LT formation, several questions remain unanswered. Further research on the 

regulation and activity of 5-LO and the leukotrienes cascade in cancer cells should, therefore, 

address the following questions: 

• Which additional factors control 5-LO expression in tumor cells? 

• What leads to 5-LO upregulation downstream of PI3K/mTORC-2, MEK/ERK, and 

upstream of E2F1 and MYBL2?  

• Do the additional tested cell lines also upregulate 5-LO after spheroid formation? 

• Is the observed 5-LO upregulation in spheroids rather tied to necrosis and/or apoptosis? 

• Why is 5-LO expression effectively suppressed under stress-free conditions in some cell 

lines while other cells permanently overexpress 5-LO on a basal level? 

• Are tumor cells suppressing substrate availability and oxylipin synthesis by esterifying 

ARA, DHA, and EPA into the cell membrane? 

• Which enzyme produces 15(R)-HETE in HT-29 and HCT-116 cells? 
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6 Zusammenfassung 

Die vorliegende Arbeit beschäftigt sich mit der Regulation und Aktivität der 5-Lipoxygenase (5-

LO), dem Schlüsselenzym der Leukotrienbiosynthese, in den beiden kolorektalen Krebszelllinien 

HT-29 und HCT-116. Obwohl die Leukotrienbiosynthese positiv mit dem Fortschreiten solider 

Tumorerkrankungen korreliert ist, ist bisher nur wenig über die Rolle der 5-LO bzw. deren 

Regulierung in Tumorzellen bekannt. So konnte in Vorarbeiten bereits gezeigt werden, dass viele 

Tumorzelllinien 5-LO exprimieren, obwohl dies im gesunden Gewebe nicht der Fall ist. Allerdings 

zeigte sich hier auch, dass die Expression der 5-LO zwar vorhanden, aber eingeschränkt zu sein 

scheint, da nur eine geringe Leukotrienproduktion festgestellt wurde. Zudem konnte bereits 

gezeigt werden, dass die 5-LO auch an der Regulation verschiedener Gene in Tumorzelllinien 

beteiligt ist. Da viele Ergebnisse bisheriger Studien aus 2-dimensionalen (2D) 

Zellkulturexperimenten stammen, diese das Tumormikromilieu (engl. tumor microenvironment, 

TME) aber nur unzureichend abbilden können, wurden bereits 3-dimensionale (3D) Ansätze 

getestet. Hierbei zeigte sich, dass die Bildung von 3D Sphären aus Tumorzellen zu einer erhöhten 

Expression der 5-LO führt. Daher konzentriert sich die vorliegende Arbeit auf die Untersuchung 

der Aktivität und Regulierung der 5-LO und untersucht die Mechanismen und Bedingungen, 

welche zur erhöhten 5-LO-Expression, insbesondere in 3D-Sphären, führen. 

Zunächst wurde sichergestellt, dass die verwendeten Zelllinien, HT-29 und HCT-116, alle 

Komponenten der Leukotrienkaskade exprimierten. Untersuchungen auf mRNA und 

Proteinebene zeigten, dass alle relevanten Enzyme exprimiert wurden. Zudem bestätigte die 

Untersuchung nicht nur eine erhöhte Expression der 5-LO in 3D-Zellkulturen, sondern zeigte 

auch, dass LTA4H, LTC4S, ALOX15, PTGS1 und PTGS2 ebenfalls verstärkt exprimiert wurden. 

Nur die Expression von cPLA2 war im Vergleich zur 2D-Zellkultur verringert. Mit Hilfe einer 

alternativen Technik zur Erzeugung dreidimensionaler Sphären wurde zudem sichergestellt, dass 

die Ergebnisse nicht von der Methode beeinflusst wurden. Da ein Mediumswechsel während der 

Bildung der Sphären nicht ohne weiteres möglich war, wurden die Zellen bis zu 7 Tage im selben 

Medium gehalten. Dabei zeigte eine Gelbfärbung des im Medium enthaltenen Indikators mit 

zunehmender Inkubationsdauer eine Azidifizierung an. Ein extrazellulärer saurer pH-Wert ist in 

der Literatur einerseits mit einem vorteilhaften Effekt auf die Tumorzellproliferation assoziiert, 

gleichzeitig wird jedoch eine Inhibierung des Zellzyklus beschrieben, wenn zuvor physiologische 

Bedingungen vorherrschten. Eine erste Analyse des Zellzyklus zeigte sowohl für HT-29 wie auch 

für HCT-116-Zellen eine Anreicherung der Zellpopulation in der G0/G1 Phase im Vergleich zu 

Zellen, die unter optimalen Bedingungen kultiviert wurden. Um den Einfluss des sauren Mediums 

besser zu verstehen, wurden Inkubationen in Medien mit definierten pH-Werten (6.6 und 6.8) 

durchgeführt. Dabei zeigte sich, dass die Expression des 5-LO-Gens (ALOX5), teilweise 

signifikant, erhöht war. Da mit einer zunehmenden Inkubationsdauer auch die Zelldichte zunimmt, 

wurde zudem der Einfluss einer erhöhten Zellzahl auf die ALOX5-Expression untersucht. Auch 

hier konnte ein erhöhter ALOX5-Spiegel in beiden Zelllinien festgestellt werden. Dieser Effekt war 

in HT-29-Zellen stärker ausgeprägt als in HCT-116-Zellen. Bei der anschließenden 

Zellzyklusanalyse zeigte sich zudem, dass ein G0/G1 Arrest nur in HCT-116-Zellen beobachtet 

werden konnte. Während HT-29-Zellen bereits unter Standardbedingungen hohe 5-LO-Spiegel 

aufweisen, zeichnen sich HCT-116-Zellen durch eine geringere 5-LO-Expression, aber eine 

höhere Proliferationsrate aus. Da HCT-116-Zellen, im Vergleich zu HT-29-Zellen, zudem als 
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weniger differenziert und eher stammzellähnlich gelten, könnte dies ein Indiz dafür sein, dass die 

Expression der 5-LO mit dem Differenzierungsstatus der Zellen zusammenhängt. 

Kolorektale Krebszelllinien zeigen häufig eine Störung hinsichtlich Zellwachstum, Zellteilung, 

Überleben und ihrem Metabolismus. Diese Funktionen hängen typischerweise eng mit dem 

Status des Zellzyklus der Zellen zusammen. Da die ersten Untersuchungen bereits zeigten, dass 

der Zellzyklus einen Einfluss auf die Expression der 5-LO zu haben scheint, wurden im Folgenden 

die beiden Zellzyklus-regulierenden Signalwege MEK/ERK und PI3K/mTOR näher untersucht. 

Dazu wurden zunächst Inhibitoren der beiden Signalwege hinsichtlich ihres Effektes auf die 

Expression der 5-LO untersucht. Dabei zeigte sich, dass die Expression der 5-LO nach 

Behandlung mit dem dualen PI3K/mTOR-Inhibitor Dactolisib, den MEK-1-Inhibitoren PD184352 

und Cobimetinib, sowie dem ERK-Inhibitor SCH772984 signifikant erhöht war. Im Gegensatz 

hierzu führte die Behandlung mit dem mTOR-Inhibitor Temsirolismus, dem PI3K-Inhibitor 

Wortmannin, dem EGFR-Inhibitor Erlotinib und dem FTase-Inhibitor LB42708, wenn überhaupt, 

nur zu einer leichten Erhöhung der 5-LO-Expression. Zusätzlich zur signifikant erhöhten 5-LO-

Expression nach Behandlung mit den Inhibitoren Dactolisib, PD184352, Cobimetinib und 

SCH772984 konnte hier ebenfalls ein G0/G1-Arrest festgestellt werden. Um auszuschließen, 

dass die beobachteten Effekte durch die Toxizität der Inhibitoren verursacht wurden, wurden 

entsprechende Viabilitätsuntersuchungen durchgeführt. Für die Inhibitoren Dactolisib und 

Cobimetinib konnte zwar eine verringerte Zellviabilität beobachtet werden, jedoch war keine 

nennenswerte Zytotoxizität feststellbar. Da somit gezeigt werden konnte, dass die Inhibierung 

des PI3K/mTOR- bzw. des MEK/ERK-Signalweges einen Einfluss auf die Expression der 5-LO 

und den Zellzyklus hat, wurde eine Untersuchung des Phospholylierungsstatus der 

Proteinkinasen ERK und p70S6K in 3D-Sphären durchgeführt. Wie erwartet konnte in HT-29-

Sphären eine verringerte Phosphorylierung von ERK feststellt werden. Der 

Phosphorylierungsstatus der p70S6K hingegen konnte nicht ermittelt werden, da der verwendete 

Antikörper kein reproduzierbares Signal in HT-29-Zellen ergab. Im Gegensatz dazu konnte in 

HCT-116-Sphären eine verstärkte Phosphorylierung beider Kinasen festgestellt werden. Erneut 

zeigte sich somit ein Unterschied zwischen den beiden kolorektalen Krebszelllinien. 

Da frühere Untersuchungen bereits zeigen konnten, dass die Behandlung von verschiedenen 

Krebszelllinien mit gentoxischen Substanzen zu einer p53-abhängigen Regulation des ALOX5-

Gens führt, sollte überprüft werden, ob dies auch hier der Fall ist. Zusätzlich zum p53-Gen (TP53) 

wurde dabei auch das BAX-Gen untersucht, welches ebenfalls durch p53 reguliert wird. Die 

folgende qPCR-Analyse ergab, dass, mit Ausnahme von Erlotinib, alle Inhibitoren zu einer 

erhöhten Expression von TP53 führten, wogegen ein Effekt auf die BAX-Expression nicht 

festgestellt werden konnte. Da trotz eines erhöhten TP53-Spiegels kein Einfluss auf die BAX-

Expression zu beobachten war, wurden die Zellen mit Pifthrin-α, einem p53-Inhibitor, und NSC 

66811, einem MDM2-Antagonisten, behandelt. Eine Regulierung der 5-LO-Expression konnte 

jedoch auch hier nicht festgestellt werden. Um sicherzustellen, dass die verwendeten Inhibitoren 

Pifithrin-α und NSC 66811 nicht ebenfalls die 5-LO-Expression unterdrücken, wurden weitere 

Untersuchungen in p53-Knock-out-Zellen (HCT-116 p53 -/-) durchgeführt. Da diese von sich aus 

eine verringerte 5-LO-Expression aufwiesen, konnte eine Zunahme der Expression nach 

Inhibierung der MEK/ERK-Achse nur auf mRNA-Ebene festgestellt werden. Dennoch war eine 

erhöhte Zellpolulation in der G0/G1-Phase zu beobachten. Allerdings war der Effekt in HCT-116 

p53 -/- Zellen schwächer ausgeprägt als in HCT-116 wt p53 Zellen.  
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Da die Inhibierung von MEK/ERK bzw. PI3K/mTOR auch in p53-Knock-out-Zellen zu einer 

Verschiebung des Zellzyklus führte und zumindest auf mRNA-Ebene teilweise eine verstärkte 

ALOX5-Expression beobachtet werden konnte, wurden die beiden Signalwege genauer 

untersucht. Hierzu wurde der shRNA-vermittelte Knock-down verschiedener Proteine der beiden 

Signalwege im Hinblick auf die ALOX5- bzw. 5-LO-Expression untersucht. Wie sich zeigte, führte 

der Knock-down der PI3K-Untereinheiten p110α und p110γ zu einer verringerten 5-LO 

Expression. Im Gegenteil dazu zeigte der Knock-down von mTOR wie erwartet eine leichte, 

jedoch nicht signifikante, Erhöhung der 5-LO-Expression. Zudem zeigte der Knock-down von 

RICTOR, der Hauptkomponente der mTOR Untereinheit mTORC-2, eine signifikant erhöhte 5-

LO-Expression in beiden Zelllinien, während Knock-down von RAPTOR, der Hauptkomponente 

der mTOR-Untereinheit mTORC-1, zu unterschiedlichen aber nicht signifikanten Ergebnissen 

führte. Da somit mTORC-2 für die beobachteten Effekte durch Inhibierung des PI3K/mTOR-

Signalweges auf die Expression der 5-LO mitverantwortlich sein dürfte, wurde PRKCZ, ein 

bekanntes nachgeschaltetes Protein von mTORC-2 untersucht. Jedoch zeigte sich, dass der 

Knock-down von PRKCZ keinen Einfluss auf die Expression der 5-LO in HT-29-Zellen hatte und 

in HCT-116-Zellen sogar zu einer verringerten Expression führte. Als Nächstes wurde der 

MEK/ERK-Signalweg untersucht. Hier zeigte sich jedoch, dass die Knock-down-Experimente die 

beobachteten Inhibitoreffekte nicht abbilden konnten. So führte der Knock-down von MAP2K1, 

auch als MEK-1 bekannt, zu einer leicht erhöhten 5-LO-Expression in HCT-116-Zellen, wogegen 

die Expression in HT-29-Zellen nicht beeinflusst wurde. 

Um weiter zu untersuchen, über welchen Mechanismus die 5-LO Expression gesteuert wird, 

wurden weitere Transkriptionsfaktoren, die in Verbindung zur Regulation des Zellzyklus oder dem 

DREAM-Komplex stehen, näher betrachtet. Zunächst wurden hierbei die beiden Zelllinien, in 

einem Zellrasenexperiment, erneut mit den bereits verwendeten Inhibitoren behandelt und die 

Expression der Transkriptionsfaktoren auf mRNA-Ebene analysiert. Wie bereits für die 

Expression der 5-LO beobachtet werden konnte, zeigte sich auch hier, dass die Inhibierung von 

EGFR mit Erlotinib und FTase durch LB42708 keinen nennenswerten Einfluss auf die 

Transkriptionsfaktoren hatte. Bei der Behandlung mit den MEK/ERK-Inhibitoren zeigte sich, dass 

Cobimetinib und SCH772984 zu vergleichbaren Effekten bei allen Transkriptionsfaktoren führten, 

während der Effekt des dritten MEK/ERK-Inhibitors, PD184352, abwich. Nach Behandlung mit 

Cobimetinib und SCH772984 wurden erhöhte Werte von SP1, FOXO1 und FOXO3 sowie 

verringerte Mengen an MYBL2 und E2F1 in beiden Zelllinien gefunden. Darüber hinaus war die 

Expression von E2F1/2 und MYB in HCT-116-Zellen und MYC in HT-29-Zellen verringert. Bei der 

Inhibierung des PI3K/mTOR-Signalweges durch Dactolisib konnte ein sehr ähnliches 

Expressionsmuster festgestellt werden, mit Ausnahme von MYC, E2F1 und MYB. Basierend auf 

den erhaltenen Ergebnissen, wurde die Expression von E2F1, MYBL2, MYB und SP1 in 3D-

Sphären der beiden Zelllinien weiter untersucht. In HT-29-Zellen wurden vergleichbare 

Ergebnisse zur MEK/ERK-Inhibierung mittels Cobimetinib/SCH772984 beobachtet, obwohl die 

Effekte auf E2F1 und SP1 weniger stark ausgeprägt waren. Auch die Ergebnisse der 

PI3K/mTOR-Inhibierung waren insgesamt recht ähnlich, auch wenn hier eine leicht erhöhte MYB-

Expression anstatt einer Verringerung festgestellt wurde. Grundsätzlich lieferten auch die 3D-

Sphären der HCT-116-Zellen ein ähnliches Bild. So wichen nach Inhibierung des PI3K/mTOR-

Signalweges nur die Expression von E2F1 und MYB, sowie nach Inhibierung des MEK/ERK-

Signalweges die Expression von E2F1 ab. 
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Da zuvor bereits beobachtet werden konnte, dass eine höhere Zelldichte mit einer erhöhten 

Expression der 5-LO einhergeht, wurde der Effekt auf E2F1, MYB, MYBL2 und SP1 ebenfalls 

untersucht. Dabei zeigte sich, dass die Expression von E2F1 und MYB verringert war. Um den 

Zusammenhang zwischen E2F1 und 5-LO auch auf Proteinebene zu verifizieren, wurde der pan-

E2F-Inhibitor HLM006474 verwendet. Dieser führte in beiden Zelllinien zu einer Erhöhung der 5-

LO-Expression, auch wenn diese nur in HCT-116-Zellen signifikant war. Um den Effekt von MYB 

weiter zu untersuchen, wurden durch Doxycyclin induzierbare, stabil transfizierte b-Myb (MYB) 

Überexpressionszelllinien erstellt. Hier zeigte sich, dass 48 h nach Induktion der b-Myb-

Expression, durch Doxycyclin, eine verringerte 5-LO-Expression vorlag, auch wenn die Daten nur 

in HT-29-Zellen signifikant waren. In 3D-Sphären war dieser Effekt jedoch nicht zu beobachten. 

Hier führte die Überexpression von b-Myb stattdessen zu einer veränderten Sphären-

Morphologie. Um dennoch zu untersuchen, ob b-Myb mit der Regulierung der 5-LO in 

Tumorzellsphären zusammenhängt, wurden Reportergenexperimente durchgeführt. Da bereits 

bekannt ist, dass sowohl die Promotorsequenz wie auch die kodierende Sequenz der 5-LO eine 

c-Myb-Bindestelle enthalten und zudem bereits gezeigt werden konnte, dass b-Myb und c-Myb 

an dieselben DNA-Konsensussequenzen binden, wurden die beiden Bereiche näher analysiert. 

Dabei zeigte sich, dass ein verkürzter Promotor in beiden Zelllinien zu einem verringerten 

Luciferasesignal führte. Die Entfernung der vermeintlichen b-Myb-Bindestelle im Promotor lieferte 

dagegen jedoch zelllinienabhängige Ergebnisse. In HCT-116-Zellen wurde eine erhöhte 

Luciferaselumineszenz festgestellt, während HT-29-Zellen ein verringertes Signal aufwiesen. Bei 

der Analyse der vermeintlichen b-Myb-Bindestelle der kodierenden Sequenz wurden hingegen 

nur sehr schwache Signale erhalten, weshalb eine genauere Auswertung nicht möglich war. 

Da die bisherigen Untersuchungen zeigten, dass eine erhöhte Expression der 5-LO zusammen 

mit einer Zunahme an Zellen in der G0/G1-Phase auftritt, wurden Experimente mit 

Zellzyklusinhibitoren durchgeführt. In der Tat bewirkte der CDK4/6-Inhibitor Palbociclib einen 

starken Arrest in der G0/G-Phase sowie eine erhöhte 5-LO-Expression, während der CDK1-

Inhibitor Ro-3306 zu einer Verschiebung der Zellpopulation in die G2/M-Phase führte und keinen 

nennenswerten Einfluss auf die 5-LO Expression zeigte. Insgesamt zeigten beide Zelllinien eine 

vergleichbare Reaktion auf die Manipulation des Zellzyklus. 

3D-Zellkultursphären lassen sich in unterschiedliche Bereiche wie dem nekrotischen inneren 

Kern, dem proliferierenden äußeren Rand sowie einem Bereich aus gesunden Zellen in der Mitte 

aufteilen. Daher wurde als nächstes untersucht, in welchem Bereich die Expression der 5-LO 

auftritt. Wie erwartet, zeigten Konfokalmikroskopiebilder eine verstärkte Expression im 

proliferierenden äußeren Bereich. Allerdings konnten auch einige Zellen mit erhöhter 5-LO-

Expression im nekrotischen Kern beobachtet werden. Interessanterweise zeigten sich jedoch 

Unterschiede zwischen den beiden Zelllinien. Während in HCT-116-Zellen eine Co-Lokalisation 

der 5-LO-Expression und dem Proliferationsmarker Ki67 beobachtet werden konnte, bestand der 

äußere Rand der HT-29-Sphären aus einer Mischung an Zellen, die jeweils nur die Expression 

eines der beiden Proteine zeigten. 

Da eine erhöhte Expression der 5-LO in soliden Tumoren nicht auf Kolonkarzinome beschränkt 

ist, wurden die 5-LO-positiven Zelllinien Capan-2 (Pankreaskarzinom) und U-2 OS 

(Osteosarkom) sowie die 5-LO-negativen Zelllinien MCF-7 (Mammakarzinom) und Caco-2 

(Kolonkarzinom) ebenfalls untersucht. Dazu wurden die Zelllinien ebenfalls mit den Inhibitoren 

des PI3K/mTOR- bzw. MEK/ERK-Signalweges behandelt und der Effekt auf die ALOX5-
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Expression analysiert. Hierbei zeigte sich, dass die Inhibierung des MEK/ERK-Signalweges nur 

in Capan-2-Zellen zu einer stark erhöhten ALOX5-Expression führte. Die Inhibierung des 

PI3K/mTOR-Signalweges hingegen führte zu einer erhöhten ALOX5-Expression in den Zelllinien 

Caco-2 und MCF-7. Interessanterweise führte jedoch keine der Behandlungen zu einer Änderung 

der ALOX5-Expression in U-2 OS-Zellen. 

Nach den Untersuchungen zur Regulation der ALOX5-, bzw. 5-LO-Expression wurde die Aktivität 

des Enzyms näher betrachtet. Da Vorarbeiten bereits zeigen konnten, dass die Aktivität der 5-LO 

nach Störung der zellulären Integrität erhöht ist, wurde ein Problem mit der Substratverfügbarkeit 

untersucht. In der Tat zeigte sich, dass die Zelllinien nur nach Zugabe von exogenem Substrat 

(60 µM Mix an Arachidonsäure (ARA), Eicosapentaensäure (EPA) und Docosahexaensäure 

(DHA)) in der Lage waren entsprechende Produkte zu bilden. Die Produktbildung war allerdings 

vergleichsweise gering, ließ sich jedoch durch zusätzliche Inkubation mit Calciumionophor 

A23187 teilweise erhöhen. Neben den monohydroxylierten Produkten von ARA und EPA, 5-

HETE und 5-HEPE, konnten auch die dihydroxylierten Produkte 5,15-DiHETE und RvE4
 detektiert 

werden. Allerdings lag die Produktbildung der dihydroxlierten Verbindungen in HT-29-Zellen um 

das 25-80-fache und in HCT-116-Zellen um 40-170-fache unter der der monohydroxylierten 

Produkte. Um eine Substratinhibition der 5-LO ausschließen zu können, wurden die Inkubationen 

mit einem geringer konzentrierten Substratmix wiederholt. Es zeigte sich jedoch, dass eine 

geringere Substratkonzentration auch mit einer verringerten Produktbildung einherging. Da die 

Aktivität der 5-LO ebenfalls mit der Expression des 5-LO-aktivierenden Proteins, kurz FLAP, 

korreliert, wurden das Lipidprofil sowie die Expressionslevel von 5-LO und FLAP der beiden 

Zelllinien HT-29 und HCT-116 bestimmt und mit denen von M1- und M2-Makrophagen sowie 

polymorphonukleären Leukozyten (PMNL) verglichen. Wie erwartet zeigten PMNL eine starke 

FLAP-Expression und die höchste Lipidmediatorbildung. M1-Makrophagen zeigten ebenfalls eine 

moderate Produktbildung, die jedoch deutlich unter der der PMNL lag, während die Bildung von 

5-LO-Produkten (5-HETE, 5-HEPE und 7-HDHA) in M2-Makrophagen vergleichbar mit denen der 

Tumorzelllinien war. Wie erwartet zeigten M1-Makrophagen eine starke 5-LO- und FLAP-

Expression, während M2-Makrophagen deutlich weniger exprimierten. Wie bereits in der Literatur 

beschrieben ist, neigen PMNL dazu, 5-LO abzubauen, weshalb eine Bestimmung des 

Expressionlevels der 5-LO hier nicht durchgeführt werden konnte. Der Vergleich der 

Lipidmediatorprofile zeigte in allen Zellen, dass das 5-LO-Produkt 5-HEPE bevorzugt gebildet 

wurde. Während 5-HETE, gebildet aus ARA, ebenfalls in deutlichen Mengen gebildet wurde, 

konnten nur Spuren des DHA-Produktes 7-HDHA gefunden werden. Bei den 15-LO-Produkten 

15-HETE, 15-HEPE und 17-HDHA war hingegen kein klarer Trend erkennbar. Während die 

Tumorzelllinien HT-29 und HCT-116 bevorzugt 15-HETE bildeten, war in PMNL die Bildung von 

17-HDHA am höchsten. Dagegen bildeten M2-Makrophagen präferiert 15-HEPE und in M1-

Makrophagen war keine nennenswerte Produktbildung festzustellen. Trotz der unterschiedlichen 

Substratpräferenzen bei monohydroxylierten Produkten, war 5,15-DiHETE das bevorzugte 

dihydroxylierte Produkt in sämtlichen Zellen. Da Tumorzellen dafür bekannt sind, einen 

transzellulären Metabolismus mit benachbarten Zellen zu vollziehen, wurden Co-

Inkubationsexperimente mit PMNL und jeweils einer der beiden Tumorzelllinien durchgeführt. 

Dabei konnte eine Steigerung an hydroxlierten Produkten durch Co-Inkubation jedoch nicht 

festgestellt werden. 
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Um zu untersuchen, ob die Inhibierung des PI3K/mTOR- bzw. MEK/ERK-Signalweges auch mit 

einer erhöhten 5-LO-Aktivität einhergeht, wurden die beiden Herangehensweisen kombiniert. 

Tatsächlich zeigte die Inhibierung des MEK/ERK-Signalweges in HT-29-Zellen eine erhöhte 

Produktbildung an 5-HETE und LTB4, während die Inhibierung von PI3K/mTOR lediglich die 5-

HETE-Bildung steigerte. Zwar konnte in HCT-116-Zellen keine LTB4-Bildung festgestellt werden, 

die Bildung von 5-HETE war jedoch unter allen Bedingungen erhöht. 

Zusammenfassend zeigen die Ergebnisse der vorliegenden Dissertation, dass die Expression 

und Aktivität der 5-LO in den kolorektalen Tumorzellinien HT-29 und HCT-116 streng reguliert 

sind. Während der Zellproliferation scheinen die Expression und Aktivität der 5-LO unterdrückt zu 

sein, während zellulärer Stress zu einer Hochregulierung führt. Die 5-LO könnte somit eine Rolle 

bei der Entwicklung oder Unterstützung eines tumorfördernden Mikromilieus spielen. 
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7 Appendix 

7.1 App. Results 

 

App. Figure 7.1: Densitometric analysis of the protein expression of 5-LO and other members of the LT cascade in 

MCTS.  

Protein expression of 5-LO, cPLA2α, LTA4H, and FLAP in HT-29 (A) and HCT-116 (B) cells analyzed via Western blot. 

MCTS were either grown for 4 or 7 days in 96-well low adherence plates or 24-well plates coated with ultra-pure agarose 

(1%). Respective monolayer controls were seeded in 12-well plates. Identical cell amounts (0.05x106 cells/well) were 

used. The subconfluent monolayer controls (co) were seeded in 100 mm dishes (3x106 per dish), received a medium 

change after 24 h, and were harvested after 48 h. Densitometric values were determined using the Image Studio 

Software (V 5.2). Densitometric values were normalized to the loading control ɑ-tubulin followed by normalization to 

the DMSO vehicle control (co). Results are depicted as mean + SEM from 3 independent experiments. Asterisks 

indicate significant changes vs. DMSO vehicle control determined by student’s t-test with Welch’s correction * (P<0.05), 

** (P<0.01), *** (P<0.001). 
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App. Figure 7.2: mRNA expression of PTGS1 and PTGS2 in MCTS.  

MCTS were either grown for 4 or 7 days in 96-well low adherence plates or 24-well plates coated with ultra-pure agarose 

(1%). Respective monolayer controls were seeded in 12-well plates. Same cell amounts (0.05x106 cells/well) were 

used. The subconfluent monolayer controls (co) were seeded in 6-well plates (0.4x106 cells per well), received a 

medium change after 24 h, and were harvested after 48 h. (A) Gene expression determined via qPCR analysis was 

normalized to the housekeeping gene ACTB and the respective monolayer control (2-ΔΔCT method). (B) Comparison of 

monolayer gene expression normalized to ACTB (2-ΔCT). Results are depicted as mean + SEM from 3 independent 

experiments. Asterisks indicate significant changes vs. co determined by student’s t-test with Welch’s correction. * 

(P<0.05), ** (P<0.01), *** (P<0.001). 
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App. Figure 7.3: Representative plots of the gating strategy for cell cycle analysis and respective histograms resulting 

from cell cycle analysis.  

Values are percentages of the parent population. Doublets are excluded before cell cycle analysis by plotting PI-A 

against PI-W. Gating and cell cycle analysis was performed using FlowJo V10, and the Watson Pragmatic algorithm 

was applied.  
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App. Figure 7.4: Reversible cell cycle synchronization via serum deprivation. 

HT-29 cells (A) or and HCT-116 cells (B) were seeded in their respective CGM or RGM. Pictures were taken employing 

a light microscope. One representative picture out of 3 independent experiments is shown. Cells were analyzed via 

flow cytometry, and cell cycle analysis was performed using FlowJo software 10. Results are depicted as mean + SEM 

from 3 independent experiments. Asterisks indicate significant changes vs. co determined by two-way ANOVA coupled 

with Dunnett's post-test for multiple comparisons. * (P<0.05), ** (P<0.01), *** (P<0.001). 5-LO expression was analyzed 

via Western blot. One representative out of 3 blots is shown. Results are depicted as mean + SEM from 3 independent 

experiments. 
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App. Figure 7.5: Structural overview of compounds used for the inhibition of various targets of the PI3K/mTOR, 

MEK/ERK, and p53 signaling.  
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App. Figure 7.6: 5-LO expression after MCTS of HCT-116 p53 -/ cells and cell viability and cytotoxicity after 24 h of 

treatment with inhibitors of the PI3K/mTOR and MEK/ERK in monolayer grown HCT-116 p53 -/- cells. 

Cells were cell cycle synchronized by serum starvation using RGM 22 h before treatment. Then, the medium was 

changed to CGM for 2 h and cells were treated for 24 h with the indicated inhibitors Dactolisib (Dac) 3 µM; LB42708 

(LB) 1 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 1 µM. The vehicle control (co) 

received DMSO instead. Cell viability was determined using a WST-1 assay (A). Results were normalized to the 

respective DMSO control (100%). Compound cytotoxicity was determined using an LDH assay (B). To determine the 

percentage of cytotoxicity, average absorbance of the respective background control was subtracted from each sample. 

Then, samples were normalized to the Triton-X-100 control (100%) and the respective DMSO control (0%). 5-LO and 

p53 protein expression of HCT-116 p53 -/- cells cultured in 24-well plates coated with ultra-pure agarose (1%) for 7 

days for MCTS formation. Monolayer-cultured HCT-116 p53 -/- and HCT-116 p53 wt cells served as controls (co). 

Results shown in are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes 

vs. control determined by unpaired two-tailed student’s t-test with Welch’s correction * (P<0.05), ** (P<0.01), *** 

(P<0.001). 



Appendix 160 
 

 

App. Figure 7.7: Rictor protein cleavage and cellular morphology of stable HT-29 and HCT-116 RICTOR knockdown 

and non-mammalian shRNA control cells.  

(A) Rictor expression in stable knockdown (KD) HT-29 and HCT-116 cells determined via Western blot. Respective 

non-mammalian shRNA expressing control cells are indicated as co. Shown are samples of 3 different passages. 

Arrows indicate the respective full-length Rictor size and the assumed cleaved variant. (B) Pictures of HCT-116 Rictor 

knockdown cells and the respective non-mammalian shRNA expressing control cells were taken employing a light 

microscope (scale bar: 100 µm). One representative picture out of 3 is shown. 



161 Appendix 
 

 

App. Figure 7.8: mRNA expression of E2F4 and E2F5 after 24 h of treatment with inhibitors of the PI3K/mTOR and 

MEK/ERK pathway in monolayer grown cells.  

HT-29 (A) and HCT-116 (B) cells were cell cycle synchronized by serum starvation using RGM 22 h before treatment. 

Then medium was changed to CGM for 2 h and cells were treated for 24 h with the indicated inhibitors Dactolisib (Dac) 

3 µM; Erlotinib (Erlo) 5 µM; LB42708 (LB) 1 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; SCH772984 (SCH) 

1 µM. The vehicle control received DMSO instead. mRNA expression was determined via qPCR analysis. Expression 

was normalized to the housekeeping gene ACTB and the respective vehicle control (2-ΔΔCT method). Results are 

depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes vs. DMSO co 

determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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App. Figure 7.9: mRNA expression of E2F1, MYBL2, MYB, and SP1 after 24 h of treatment with inhibitors of the 

PI3K/mTOR and MEK/ERK pathway in monolayer grown cells.  

HCT-116 p53 -/- cells were seeded (0.4x106 cells/well, 6-well plate) and cell cycle synchronized by serum starvation 

using RGM 22 h before treatment. Then, the medium was changed to CGM for 2 h and cells were treated for 24 h with 

the indicated inhibitors Dactolisib (Dac) 3 µM; LB42708 (LB) 1 µM; PD184352 (PD) 1 µM; Cobimetinib (Cobi), 0.5 µM; 

SCH772984 (SCH) 1 µM. The vehicle control received DMSO instead. mRNA expression was determined via qPCR 

analysis. Expression was normalized to the housekeeping gene ACTB and the respective vehicle control (2-ΔΔCT 

method). Results are depicted as mean + SEM from 3 independent experiments. Asterisks indicate significant changes 

vs. DMSO control determined by unpaired two-tailed student’s t-test with Welch’s correction. * (P<0.05), ** (P<0.01), 

*** (P<0.001). 

 

App. Figure 7.10: Structural overview of compounds used for the inhibition of CDK1, CDK4/6, and E2Fs.  
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App. Figure 7.11: MCTS confocal microscopy tile scan overview.  

MCTS were grown for 7 days in 96-well low adherence plates. 14 µM cryosections were co-stained with primary 

antibodies directed against Ki67 (B) and 5-LO (C). Afterwards, samples were probed with secondary fluorophore-

conjugated antibodies (Alexa Fluor™ Plus 488, Alexa Fluor™ Plus 647). DAPI (D) was used for nuclear 

counterstaining. The sections were analyzed by confocal microscopy using 3x3 (HT-29) or 4x4 (HCT-116) tile scans. 

Single-channel fluorescence tile scan images (B-D) are displayed in black and white for better contrast, while channel 

overlay (A) is presented in color (Ki67 red, 5-LO green, DAPI blue). Identical linear histogram adjustments were applied 

to each channel to adjust brightness and contrast. Scale bars are provided within the figure. One representative of 3 

independent experiments is shown. 
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App. Figure 7.12: MCTS confocal microscopy tile scan overview. 

MCTS were grown for 7 days in 96-well low adherence plates. 14 µM cryosections were co-stained with primary 

antibodies directed against cleaved caspase 3 (B) and 5-LO (C). Afterwards, samples were probed with secondary 

fluorophore-conjugated antibodies (Alexa Fluor™ Plus 488, Alexa Fluor™ Plus 647). DAPI (D) was used for nuclear 

counterstaining. The sections were analyzed by confocal microscopy using 3x3 (HT-29) or 4x4 (HCT-116) tile scans. 

Single-channel fluorescence tile scan images (B-D) are displayed in black and white for better contrast, while channel 

overlay (A) is presented in color (cleaved caspase 3 red, 5-LO green, DAPI blue). Identical linear histogram adjustments 

were applied to each channel to adjust brightness and contrast. Scale bars are provided within the figure. One 

representative of 3 independent experiments is shown. 

 

 

App. Figure 7.13: b-Myb and 5-LO protein expression in b-Myb overexpressing cells. 

Samples of stable transfected (pSBbiGP_MYBL2) HT-29 (A) and HCT-116 (A) and respective control (CV) cultures 

from several passages (P2, P3, P5) were analyzed via Western blot. Densitometric values of 5-LO expression were 

determined and values were normalized to the loading control ɑ-tubulin followed by normalization to the respective 

control vector cells (CV). Recombinant purified 5-LO (r5-LO) served as a control. Results are depicted as mean + SEM 

from 3 independent experiments. Asterisks indicate significant changes vs. DMSO vehicle control determined by 

unpaired two-tailed student’s t-test with Welch’s correction * (P<0.05), ** (P<0.01), *** (P<0.001). 
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App. Figure 7.14: Firefly luciferase reporter gene assay response testing in stably transfected reporter cells. 

Stable transfected (pSBGP_pN10LUC) HT-29 and HCT-116 reporter cells were seeded in black 96-well plates with a 

clear bottom (0.03x106 cells/well) and were cell cycle synchronized by serum starvation using RGM 22 h before further 

treatment. Then, the medium was changed to CGM for 2 h, and cells were treated for 24 h with Apicidin in the indicated 

concentrations. The vehicle control received DMSO instead. (A) Unnormalized firefly luciferase activity (counts/sec) in 

HT-29 and HCT-116 cells stably transfected with the pN10 (pN10LUC; -843 relative to the translation start (ATG)) 

reporter and a control vector (LUC). (B) GFP signal in stably transfected HT-29 and HCT-116 cells (pSBGP_pN10LUC; 

pSBGB_LUC) given in relative fluorescence units (RFU). (C) Normalized reporter gene results given as relative light 

units (RLU) obtained by dividing the unnormalized firefly activity signal with the GFP signal. Results are depicted as 

mean + SEM of 4 independent experiments. Asterisks indicate significant changes vs. co-determined by unpaired two-

tailed student’s t-test. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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7.2 App. Methods 

LC-MS/MS parameters Frankfurt 

All provided parameters were developed and validated by the Fraunhofer Institute for 

Translational Medicine and Pharmacology, Department of Clinical Research (Biomedical 

Analysis) Frankfurt am Main (LC-MS/MS unit).  

App. Table 32:Calibration ranges of all quantified analytes 

Analyte Concentration 

11-dehydro-TXB2 8 – 2400 pg 

12-HEPE 8 – 2400 pg 

12-HETE 8 – 2400 pg 

14-HDHA 16 – 4800 pg 

15-HEPE 8 – 2400 pg 

15-HETE 8 – 2400 pg 

15R-HETE 100 – 20000 pg 

15S-HETE 100 – 20000 pg 

16-HDHA 16 – 4800 pg 

17-HDHA 16 – 4800 pg 

17R-HDHA 20 – 4000 pg 

17S-HDHA 20 – 4000 pg 

18-HEPE 8 – 2400 pg 

20-HETE 40 – 2400 pg 

5-HETE 8 – 2400 pg 

5S,15S-DiHETE 4 – 1200 pg 

5S-HEPE 16 – 2400 pg 

6-epi-LXA4 8 – 2400 pg 

6-keto-PGF1alpha 16 – 4800 pg 

7-HDHA 16 – 4800 pg 

8S,15S-DiHETE 20 - 1200 pg 

LTB4 16 – 4800 pg 

LXA4 /15-epi-LXA4 8 – 2400 pg 

LXA5 4 – 1200 pg 

LXB4 - 

Mar1 8 – 2400 pg 

PD1 16 – 4800 pg 
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Analyte Concentration 

PDX 16 – 4800 pg 

PGD2 4 – 1200 pg 

PGE2 4-1200 pg 

PGF2alpha 8 – 2400 pg 

PGJ2 / delta-12-PGJ2 4 – 1200 pg 

RvD1 / AT-RvD1 20 - 1200 pg 

RvD2 8 - 1200 pg 

RvD5 4 – 1200 pg 

RvE1 8 - 1200 pg 

RvE4 4 – 1200 pg 

TXB2 8 – 2400 pg 

 

Reversed phase analysis 

App. Table 33: LC gradient parameters for reversed phase lipid mediator analysis 

Time (min) A% B% Flow (mL/min) 

0.00 75 25 0.4 

0.50 75 25 0.4 

9.00 15 85 0.4 

10.00 15 85 0.4 

10.01 75 25 0.4 

12.00 75 25 0.4 

App. Table 34: MS parameters for reversed phase analysis 

Parameter Value 

Curtain gas  40 

Collision gas  medium 

IonSpray voltage  -4500 

Temperature 500 

Ion source gas 1 50 

Ion source gas 2  70 
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App. Table 35: MRM settings 

1 = Quantifier, 2 and 3 = Qualifier, Q1 = precursor ion, Q3 = product ion, declustering potential (DP), entrance potential 

(EP), collision energy (CE), collision cell exit potential (CXP). 

Analyte Q1 Q3 DP EP CE CXP 

PGE2 1 351.2 315 -40 -10 -16 -21 

PGE2 2 351.2 271.1 -40 -10 -26 -13 

PGD2 1 351.2 189 -40 -10 -26 -17 

PGD2 2 351.2 233 -40 -10 -14 -21 

PGF2alpha 1 353.1 193 -85 -10 -34 -13 

PGF2alpha 2 353.1 309.2 -85 -10 -26 -13 

PGJ2/delta-12-

PGJ2 1 

333.2 233.1 -50 -10 -14 -15 

PGJ2/delta-12-

PGJ2 2 

333.2 271.1 -50 -10 -20 -13 

6-keto-

PGF1alpha 1 

369.2 163 -40 -10 -36 -17 

6-keto-

PGF1alpha 2 

369.2 245.1 -40 -10 -34 -25 

TXB2 1 369.2 169.1 -55 -10 -24 -13 

TXB2 2 369.2 195 -55 -10 -20 -11 

11-dehydro-

TXB2 1 

367.2 305.2 -55 -10 -22 -17 

11-dehydro-

TXB2 2 

367.2 161 -55 -10 -26 -15 

LTB4 1 335.2 195.2 -50 -10 -22 -14 

LTB4 2 335.2 129.1 -50 -10 -28 -16 

5-HETE 1 319.2 115 -50 -10 -20 -11 

5-HETE 2 319.2 257.2 -50 -10 -20 -13 

12-HETE 1 319.2 179.1 -50 -10 -20 -7 

12-HETE 2 319.2 208.1 -50 -10 -20 -15 

15-HETE 1 319.2 175.1 -50 -10 -20 -13 

15-HETE 2 319.2 257.2 -50 -10 -20 -13 

20-HETE 1 319.2 289.1 -50 -10 -26 -21 

20-HETE 2 319.2 245.1 -50 -10 -22 -21 

5-HEPE 1 317.2 115 -60 -10 -16 -12 

5-HEPE 2 317.2 255 -50 -10 -16 -21 

12-HEPE 1 317.2 179 -70 -10 -18 -15 

12-HEPE 2 317.2 255 -50 -10 -16 -21 

15-HEPE 1 317.2 219 -50 -10 -16 -15 
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Analyte Q1 Q3 DP EP CE CXP 

15-HEPE 2 317.2 255 -50 -10 -16 -21 

18-HEPE 1 317.2 215.3 -50 -10 -20 -11 

18-HEPE 2 317.2 255 -50 -10 -16 -21 

5S,15S-

DiHETE 1 

335.2 115 -50 -10 -16 -11 

8S,15S-

DiHETE 1 

335.2 155 -50 -10 -20 -12 

8S,15S-

DiHETE 2 

335.2 235 -50 -10 -20 -19 

7-HDHA 1 343.2 281.3 -65 -10 -16 -23 

7-HDHA 2 343.2 141 -65 -10 -16 -9 

14-HDHA 1 343.2 161.2 -50 -10 -22 -8 

14-HDHA 2 343.2 281.3 -50 -10 -20 -13 

16-HDHA 1 343.2 233.2 -70 -10 -18 -15 

16-HDHA 2 343.2 189.2 -70 -10 -22 -15 

17-HDHA 1 343.2 201 -50 -10 -19 -10 

17-HDHA 2 343.2 245 -50 -10 -16 -12 

LXA4/15-epi-

LXA4 1 

351.2 235.1 -60 -10 -18 -11 

LXA4/15-epi-

LXA4 2 

351.2 58.9 -60 -10 -46 -7 

LXA4/15-epi-

LXA4 3 

351.2 115 -60 -10 -20 -15 

6-epi-LXA4 1 351.2 115 -60 -10 -20 -15 

6-epi-LXA4 2 351.2 58.9 -60 -10 -46 -7 

6-epi-LXA4 3 351.2 235.1 -60 -10 -18 -11 

LXA5 1 349.2 114.9 -25 -10 -20 -13 

LXA5 2 349.2 215 -25 -10 -18 -15 

LXB4 1 351.2 129.1 -50 -10 -28 -10 

LXB4 2 351.2 221.2 -50 -10 -23 -11 

RvD1/AT-RvD1 

1 

375.2 215 -35 -10 -26 -10 

RvD1/AT-RvD1 

2 

375.2 141 -35 -10 -20 -8 

RvD2 1 375.2 277.1 -70 -10 -19 -15 

RvD2 2 375.2 175 -70 -10 -31 -15 

RvE1 1 349.2 195.1 -80 -10 -21 -15 

RvE1 2 349.2 161 -80 -10 -24 -15 
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Analyte Q1 Q3 DP EP CE CXP 

RvE4 1 333.2 115 -40 -10 -16 -11 

RvE4 2 333.2 173 -40 -10 -18 -15 

RvD5 1 359.2 199.1 -60 -10 -20 -15 

RvD5 2 359.2 141 -60 -10 -18 -12 

Mar1 1 359.2 177.1 -35 -10 -23 -14 

Mar1 2 359.2 123.1 -35 -10 -23 -10 

PD1 1 359.2 206 -50 -10 -22 -10 

PD1 2 359.2 153.1 -30 -10 -22 -11 

PDX 1 359.2 206 -50 -10 -22 -10 

PDX 2 359.2 153.1 -30 -10 -22 -11 

PGE2-d4 1 355.2 319.1 -40 -10 -16 -33 

PGE2-d4 2 355.2 275.1 -40 -10 -24 -19 

PGD2-d4 1 355.2 319.1 -40 -10 -16 -33 

PGD2-d4 2 355.2 275.1 -40 -10 -24 -19 

TXB2-d4 1 373.2 173 -55 -10 -28 -9 

TXB2-d4 2 373.2 199 -55 -10 -22 -17 

11-dehydro-

TXB2-d4 1 

371.2 309.2 -55 -10 -24 -19 

11-dehydro-

TXB2-d4 2 

371.2 353.1 -55 -10 -20 -17 

PGF2alpha-d4 

1 

357.1 313.2 -85 -10 -28 -11 

PGF2alpha-d4 

2 

357.1 197 -85 -10 -36 -25 

6-keto-

PGF1alpha-d4 

1 

373.2 167.3 -40 -10 -37 -8 

6-keto-

PGF1alpha-d4 

2 

373.2 249.4 -40 -10 -39 -10 

LTB4-d4 1 339.1 197 -50 -10 -24 -9 

LTB4-d4 2 339.1 59.1 -50 -10 -46 -5 

5-HETE-d8 1 327.2 116 -50 -10 -20 -7 

5-HETE-d8 2 327.2 309.3 -50 -10 -16 -15 

12-HETE-d8 1 327.2 184.2 -50 -10 -22 -17 

12-HETE-d8 2 327.2 214.1 -50 -10 -20 -13 

15-HETE-d8 1 327.2 226.2 -50 -10 -18 -3 

15-HETE-d8 2 327.2 182 -50 -10 -22 -25 
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Analyte Q1 Q3 DP EP CE CXP 

20-HETE-d6 1 325.2 281.1 -50 -10 -22 -25 

20-HETE-d6 2 325.2 251.3 -50 -10 -24 -11 

15-HEPE-d5 1 322.2 168 -50 -10 -15 -12 

15-HEPE-d5 2 322.2 180 -50 -10 -19 -15 

17-HDHA-d5 1 348.2 201 -50 -10 -19 -10 

17-HDHA-d5 2 348.2 286 -50 -10 -17 -12 

LXA4-d5 1 356.2 114.9 -60 -10 -20 -11 

LXA4-d5 2 356.2 58.8 -60 -10 -50 -33 

AT-RvD1-d5 1 380.2 220.2 -35 -10 -28 -15 

AT-RvD1-d5 2 380.2 141.1 -35 -10 -30 -15 

RvD2-d5 1 380.2 175.2 -70 -10 -30 -15 

RvD2-d5 2 380.2 141.1 -35 -10 -30 -15 

Mar1-d5 1 364.2 177.1 -35 -10 -23 -14 

Mar1-d5 2 364.2 123.1 -35 -10 -23 -10 

 

Chiral analysis 

App. Table 36: LC gradient parameters for chiral reversed phase lipid mediator analysis 

Time (min) A% B% Flow (mL/min) 

0.00 85 15 0.7 

1.00 85 15 0.7 

1.50 65 35 0.7 

2.50 65 35 0.7 

4.00 40 60 0.7 

6.50 40 60 0.7 

9.00 25 75 0.7 

9.01 25 75 1.0 

11.50 25 75 1.0 

16.50 5 95 1.0 

20.50 5 95 1.0 

20.51 5 95 0.7 

21.00 85 15 0.7 

25.00 85 15 0.7 
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Lipid mediator panel Wuppertal 

Following oxylipins were analyzed but not detected in any samples presented in Figure 4.40 

and Figure 4.41: 

App. Table 37: Analytes assessed within the oxylipin panel at Wuppertal.  

Analytes were analyzed, but values were <LOD 

Analytes   
17(18)-EpETE 7,17-DiHDPA 2,3-dinor-TxB2 

14(15)-EpETE LTB3 TxB3 

8(9)-EpETE 17-HETE 13,14-dihydro-15-keto-tetranor-PGE2 

15,16-DiHODE RvE1 RvE3 

9,10-DiHODE RvD3 11,12-DiHETE 

12,13-DiHODE LxA5 PGD3 

9(10)-EpODE 7-epi-MaR1 PGE3 

12(13)-EpODE MaR1  

17(RS)-RvD4 20-OH-PGE2  

10,17-diH-n3DPA 2,3-dinor-TxB1  

 

The following oxilipins were analyzed and quantified in all of the samples presented in Figure 

4.40 and Figure 4.41. 

App. Table 38: Analytes assessed within the oxylipin panel at Wuppertal with respective LOD and LLOQ values per 

analyte. 

Analyte LOD (nM) LLOQ (nM) 

5-HETE 0.000875 0.00175 

8-HETE 0.00468 0.0117 

9-HETE 0.01325 0.019875 

11-HETE 0.0010925 0.002185 

12-HETE 0.005 0.0125 

15-HETE 0.0055 0.011 

16-HETE 0.005 0.0125 

18-HETE 0.005 0.0125 

19-HETE 0.05 0.125 

20-HETE 0.0125 0.025 

5(S),15(S)-DiHETE 0.0025 0.005 

8(S),15(S)-DiHETE 0.02525 0.063125 

5(S),6(R)-DiHETE 0.000975 0.00195 

5(S),6(S)-DiHETE 0.001115 0.00223 

LxA4 0.025 0.05 

LxB4 0.025 0.05 
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Analyte LOD (nM) LLOQ (nM) 

8(9)-EpETrE 0.0125 0.025 

11(12)-EpETrE 0.0025 0.005 

14(15)-EpETrE 0.005 0.0125 

5,6-DiHETrE 0.0025 0.005 

8,9-DiHETrE 0.0017 0.0034 

11,12-DiHETrE 0.0016 0.0032 

14,15-DiHETrE 0.0005 0.00125 

PGD2 0.025 0.05 

PGE2 0.005 0.0125 

PGF2 0.0125 0.025 

5-HEPE 0.001475 0.00295 

8-HEPE 0.0015 0.003 

9-HEPE 0.005 0.0125 

11-HEPE 0.00155 0.0031 

12-HEPE 0.0025 0.005 

15-HEPE 0.0025 0.005 

18-HEPE 0.0025 0.005 

20-HEPE 0.05 0.1 

LTB5 0.0125 0.025 

14,15-DiHETE 0.00125 0.0025 

17,18-DiHETE 0.004125 0.0055 

4-HDHA 0,0025 0.005 

7-HDHA 0,0025 0.005 

8-HDHA 0,0019 0.00475 

10-HDHA 0,00125 0.0025 

11-HDHA 0,005 0.0125 

13-HDHA 0.0025 0.005 

14-HDHA 0.00275 0.006875 

16-HDHA 0.005 0.0125 

17-HDHA 0.017 0.0425 

20-HDHA 0.005 0.0125 

RvD5 0.005 0.0125 

7(8)-EpDPE 0.021775 0.0326625 

10(11)-EpDPE 0.0005 0.00125 

13(14)-EpDPE 0.0025 0.005 
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Analyte LOD (nM) LLOQ (nM) 

16(17)-EpDPE 0.005 0.0125 

19(20)-EpDPE 0.0125 0.025 

7,8-DiHDPE 0.0125 0.025 

10,11-DiHDPE 0.0025 0.005 

13,14-DiHDPE 0.0025 0.005 

16,17-DiHDPE 0.0025 0.005 

19,20-DiHDPE 0.0125 0.025 
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Primer sequences, combinations, and used templates 

Table 39: Primer names and sequences used for cloning 

Primer name 5´-3´ 

TG001 GCG GAA AGA TCG CCG TGT AAG GCC TGT CAG GCC AAG CTT C 

TG002 GTG GGC TTG TAC TCG GTC ATG GGG CCA GGA TTC TCC TCG A 

TG003 ATG ACC GAG TAC AAG CCC AC 

TG004 ATG TTT TTG GCG TCT TCC ATG TCT AGA TAG CGG ACC CCT T 

TG005 ATG GAA GAC GCC AAA AAC ATA AAG 

TG006 TTA CAC GGC GAT CTT TCC GC 

TG007 GTG GAG AAG GTT TCG CGC CGT CTA GAT AGC GGA CCC CTT AC 

TG008 GTA CTG TTG GTA AAG CCA CCA TGG AAG ACG CCA AAA ACA TAA AGA 

TG009 GGC GCG AAA CCT TCT CCA 

TG010 GGT GGC TTT ACC AAC AGT ACC 

TG011 GGC GGT CCA GGT GTC CGC ATG TCT AGA TAG CGG ACC CCT TAC 

TG012 ATG CGG ACA CCT GGA CCG 

TG013 CAG TCT GGA ATT CCC GTA CCG TCT AGA TAG CGG ACC CCT T 

TG014 GGT ACG GGA ATT CCA GAC TGC 

TG017 GAA CTT AGT GTA TGT AAA CTT C 

TG026 GAA TGC GGC GAT GTT TCG GTA AGG GGT CCG CTA TCT AGA CAT GCC CTC CTA CAC GGT C 

TG024 GAA GTT TAC ATA CAC TAA GTT CGG TGT GGA AAG TCC CCA G 

TG025 CTT TAT GTT TTT GGC GTC TTC CAT TTG CCG TGT TTC CAG TTC 

TG027 CCG AAA CAT CGC CGC ATT CTG CAG AGG AGT CTA GCT CAG AGG CAG AGG 

TG028 GAA GAC GCC AAA AAC ATA AAG 

TG029 GAA TTT GGT CAT CTC GGG CCG AAT GTA CGC GTC CAT CCC TCA G 

TG030 GCC CGA GAT GAC CAA ATT CAC ATT CTC AAG CAA CAC CGA CGT AAA GAA CTG GAA ACA 

CGG CAA ATG GAA GAC GCC AAA AAC ATA AAG 

TG031u CTT TAT GTT TTT GGC GTC TTC CAT ATC GCC GGT GAT CCA GC 

TG035 GAT CAA GGT ACC GGT GTG GAA AGT CCC CAG 

TG036 GTT CTT CTC GAG TAG CTC AGA GGC AGA GG 

TG037 GTC TAG ATA GCG GAC CCC 

TG038 AGA TCT GCG ATC TAA GTA AGC 

TG039 CTT ACT TAG ATC GCA GAT CTC TCG AGG GAG CAG CGA GC 

TG040 CAA TGT CCA GGT TTA TAA TGA ATT ACT TTT TAA TAA GGT GTC AAG ACA ACG C 

TG041 CAT TAT AAA CCT GGA CAT TGA TTC TAG TCC 

TG042 AAG GGG TCC GCT ATC TAG ACC TGG GTG TTC ACC TCT TG 

TG043 GAG TTT AAA TGT ATT TGG CTA AG 
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Primer name 5´-3´ 

TG044 CAT TTT TAT TAT ACT TCA AGT TCT AGG GGT ACC CAA TTT TAA CAA AAT ATT AAC GCT TAC 

TG045 GGC CTC TGA GGC CAC CAT GGA TGT CTC GGC GGA CGC G 

TG046 AGA ATT GAT CCC CAA GCT TTC AGG ACA AGA TGA GGG TCC G 

TG050 CTT TGA ACA TCT TTT CAC ATG CTT GTT G 

TG051 GCG GTT AGC TCC TTC GGT C 

 

Table 40: Summary of plasmid preparations 

Cloned Plasmid Primers & Enzymes Template Used for 

pSBbiGP_MYBL2 TG045 + TG046 

NcoI + HindIII-HF 

human cDNA clone of b-Myb 

pSBbiGP 

MYBL2 insert 

open backbone 

pSBGP_BaxLUC TG008 + TG013 

TG010 + TG014 

pSBGP_LUC 

pGL3B_BAX-Luc 

linear backbone 

Bax promoter 

pSBGP_LUC TG001 + TG002 

TG003 + TG004 

TG005 + TG006 

pSBtetGP 

pSBtetGP 

pGL3B_pN10 

backbone part 1 

backbone part 2 

firefly LUC insert 

pSBGP_p53LUC TG010 + TG012 

TG008 + TG011 

pGL3B_pN10_IntG 

pSBGP_LUC 

p53 promoter 

linear backbone 

pSBGP_pN0LUC KpnI/XhoI 

XhoI/BamHI 

TG043+TG044 & BamHI/KpnI 

pGL3Basic_pN0 

pSBGP_pN10LUC 

PCR + Digest with pSBGP_pN10LUC 

pN0 promoter 

backbone part 1 

backbone part 2 

pSBGP_pN10LUC TG007 + TG008 

TG009 + TG010 

pSBGP_LUC 

pGL3B_pN10 

linear backbone 

pN10 promoter 

pSBGP_pN10p53LUC TG009 + TG010 

TG007 + TG008 

pN10_IntG 

pSBGP_LUC 

pN10 promoter with 

p53 RE 

linear backbone 

pSBGP_pN6LUC TG042 + TG039 

TG038 + TG037 

pGL3Basic_pN0 

pSBGP_pN10LUC 

pN6 promoter 

linear backbone 

pSBGP_pN6ΔMYBLUC EcoRV-HF/PvuI-HF 

TG041 + TG051 

TG040 + TG050 

pSBGP_pN6LUC 

pSPGP_pN6LUC 

pSBGP_pN6LUC 

open backbone 

pN6 promoter part 1 

pN6 promoter part 1 

pSBGP_SV40_5LOcds 

1600delLUC 

TG024 + TG027 

TG025 + TG026 

TG017 + TG028 

pcGlobin2_SB100X 

pcDNA3.1_5LO 

pSBGP_pN10LUC 

SV40 promoter 

5LOcds1600del 

linear backbone 
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Cloned Plasmid Primers & Enzymes Template Used for 

pSBGP_SV40_5LOcds 

1600delmutMYBLUC 

TG024 + TG027 

TG017 + TG028 

TG026 + TG029 

pcGlobin2_SB100X 

pSBGP_pN10LUC 

pcDNA3.1_5LO 

bought as oligo = TG030 

SV40 promoter 

Backbone 

5LOcds part 1 

5LOcds part 2 

pSBGP_SV40_5LOcds 

1699delLUC 

TG024 + TG027 

TG026 + TG031 

TG017 + TG028 

pcGlobin2_SB100X 

pcDNA3.1_5LO 

pSBGP_pN10LUC 

SV40 promoter 

5LOcds1699del 

Linear backbone 

pSBGP_SV40_LUC TG035 + TG036 & KpnI/XhoI 

XhoI/BamHI 

TG043+TG044 & BamHI/KpnI 

pcGlobin2_SB100X 

pSBGP_pN10LUC 

PCR + Digest with pSBGP_pN10LUC 

SV40 promoter 

backbone part 1 

backbone part 2 

pSBtetGP_LV NcoI/HindIII-HF 

NcoI/HindIII-HF 

pSBbiGP 

pSBtetGP 

Empty MCS 

Open backbone 

pSBtetGP_MYBL2 TG045 + TG046 

NcoI + HindIII-HF 

human cDNA clone of b-Myb 

pSBtet_LV 

PCR insert MYBL2 

Open backbone 

 

 

Plasmid Maps 

   

 

App. Figure 7.15: pSBbiGP_LV construct map. 
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App. Figure 7.16: pSBbiGP_MYBL2 construct map. 

 
App. Figure 7.17: pSBGP_LUC construct map. 
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App. Figure 7.18: pSBGP_BaxLUC construct map.  

This construct was cloned and transfected during this work but not further tested. 

 

App. Figure 7.19: pSBGP_p53LUC construct map.  

This construct was cloned and transfected during this work but not further tested. 
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App. Figure 7.20: pSBGP_pN0LUC construct map.  

This construct was cloned and transfected during this work but not further tested. 

 

App. Figure 7.21: pSBGP_pN10LUC construct map. 
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App. Figure 7.22: pSBGP_pN10p53LUC construct map.  

This construct was cloned and transfected during this work but not further tested. 

 

App. Figure 7.23: pSBGP_pN6LUC construct map. 
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App. Figure 7.24: pSBGP_pN6ΔMYBLUC construct map. 

 

App. Figure 7.25: pSBGP_SV40_5LOcds1600delLUC construct map. 
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App. Figure 7.26: pSBGP_SV40_5LOcds1600delmutMYBLUC construct map. 

 

App. Figure 7.27: pSBGP_SV40_5LOcds1699delLUC construct map. 
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App. Figure 7.28: pSBGP_SV40LUC construct map. 

 

App. Figure 7.29: pSBtetGP_LV construct map. 
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App. Figure 7.30: pSBtetGP_MYBL2 construct map. 
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