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Abstract
A modification of the Einstein–Hilbert theory, the Covariant Canonical Gauge
Gravity (CCGG), leads to a cosmological constant that represents the energy
of the space–time continuum when deformed from its (A)dS ground state to
a flat geometry. CCGG is based on the canonical transformation theory in the
De Donder–Weyl (DW) Hamiltonian formulation. That framework modifies
the Einstein–Hilbert Lagrangian of the free gravitational field by a quadratic
Riemann–Cartan concomitant. The theory predicts a total energy-momentum
of the system of space–time and matter to vanish, in line with the conjecture of
a “Zero-Energy-Universe” going back to Lorentz (1916) and Levi-Civita (1917).
Consequently, a flat geometry can only exist in presence of matter where the
bulk vacuum energy of matter, regardless of its value, is eliminated by the vac-
uum energy of space–time. The observed cosmological constant Λobs is found to
be merely a small correction attributable to deviations from a flat geometry and
effects of complex dynamical geometry of space–time, namely torsion and pos-
sibly also vacuum fluctuations. That quadratic extension of General Relativity,
anticipated already in 1918 by Einstein, thus provides a significant and natural
contribution to resolving the “cosmological constant problem”.
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1 INTRODUCTION

The assumption that Einstein’s cosmological constant rep-
resents vacuum energy fluctuations has caused what is
called the “cosmological constant problem” (Carroll 2001;
Weinberg 1989), or the worst theoretical estimate in the
history of science. The reason is that the calculated value

of the field-theoretical vacuum energy of matter differs
from that deduced from astronomical observations by the
huge factor of ∼ 10120. In this paper, we discuss a modifi-
cation of the Einstein–Hilbert theory, based on a rigorous
mathematical formalism, that provides a substantial con-
tribution to resolving this “problem” within the realm of
semi-classical gauge field theory of gravity.
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2 THE COVARIANT CANONICAL
GAUGE THEORY OF GRAVITY

The mathematical framework underlying CCGG is the
covariant canonical transformation theory, a framework
well-known from classical Hamiltonian mechanics,
extended to the realm of relativistic field theories. The
underlying covariant, field-theoretical version of the
canonical transformation theory in the De Donder–Weyl
Hamiltonian formalism (De Donder 1930; Struckmeier &
Redelbach 2008) provides a stringent guidance for work-
ing out a gauge theory of gravity. This means promoting a
global, that is, Lorentz-invariant action of matter fields in
a static space–time background, to a local, that is, Lorentz
and diffeomorphism-invariant description in a dynamical
space–time, thereby unambiguously fixing the coupling
between gravitational and matter fields.

In the CCGG framework, the non-degenerate1 “free”
(vacuum) gravity and matter Lagrangians are the initial
input, in conjunction with the physical postulates of dif-
feomorphism invariance (Einstein’s Principle of General
Relativity [Einstein 1955]), and the Equivalence Prin-
ciple, hence the existence of local inertial systems at
any point of space–time. The covariant canonical trans-
formation formalism then yields the coupling terms of
matter and gravitational fields that render the total sys-
tem diffeomorphism invariant (Struckmeier et al. 2017;
Struckmeier & Vasak 2021). The components of the
gauge field are thereby identified with the connection
coefficients.

Similar to all gauge theories, the dynamics of the
free gauge field—which means here the dynamics of
the gravitational field in source-free regions—is an
independent input deduced separately on the basis of
physical reasoning and subsequent experimental con-
firmation. However, in contrast to other field theories,
the current observational basis does not unambiguously
determine the Lagrangian of the free gravitational
field. Beyond the Hilbert Lagrangian also formulations
with various quadratic contractions of the Riemann or
Riemann–Cartan tensor admit the Schwarzschild-de Sit-
ter and even the Kerr-de Sitter metric as the solution of
the pertaining field equations (Stephenson 1958). Conse-
quently, a combination of Einstein’s linear ansatz with the
“Kretschmann Lagrangian”, the latter consisting of the
complete contraction of two Riemann tensors, is equally
a valid description of the dynamics of the free gravita-
tional field even if torsion is admitted. Such a squared
Riemann tensor invariant in the Lagrangian was even
anticipated by Einstein already hundred years ago and

1This means the regular Legendre transformation exists.

suggested in his letter to Weyl (Einstein 1918). And a
free gravity Lagrangian with some quadratic concomi-
tant of the Riemann tensor is in fact necessary (Benisty
et al. 2018) to ensure the existence of a corresponding
covariant DW Hamiltonian by means of a Legendre
transformation.

3 THE COSMOLOGICAL
CONSTANT

Here we review the relevant features of CCGG and show
how a term with the propertie of the cosmological constant
emerges as a combination of two coupling constants of the
theory.2 This geometrical constant eliminates the bulk of
vacuum energy of matter.

The properties of the theory and empirical insights
combine to the following reasoning:

1. In CCGG with conventions as in Misner et al. (1973),
the combined action of matter fields that interact with
gravitational fields is (Struckmeier & Vasak 2021):

S0 = ∫V
̃totd4x ≡ ∫V

(
̃Gr + ̃matter

)
d4x

= ∫V

(
̃k 𝜇𝜈

i Si
𝜇𝜈

+ 1
2

q̃ j𝜇𝜈
i Ri

j𝜇𝜈 − ̃Gr + ̃matter

)
d4x.

(1)

The integrand ̃tot is the total Lagrangian consisting
of the Lagrangians for the dynamical space–time cou-
pled to matter, with the gravity Lagrangian expressed
here as a Legendre transform of the corresponding
DW Hamiltonian density ̃Gr of free gravity. The
Greek (Latin) letters denote holonomic (anholonomic)
indices, respectively. The former are lifted or contracted
with the general metric g

𝜇𝜈

on the base manifold, the
latter with the Minkowski metric 𝜂ij = diag(1, −1, −1,
−1) on the tangent space. The expressions displayed
are the dynamical fields of space–time–torsion Si

𝜇𝜈

and
Riemann–Cartan curvature tensor Ri

j𝜇𝜈 – expressed in
terms of the vierbein field, ei

𝜇

, and the spin connection
coefficients (the gauge field), 𝜔i

j𝜈 :

Si
𝜇𝜈

= 1
2

(
𝜕ei

𝜇

𝜕x𝜈
−
𝜕ei

𝜈

𝜕x𝜇
+ 𝜔i

j𝜈e𝑗
𝜇

− 𝜔i
j𝜈ei

𝜇

)

, (2)

Ri
j𝜇𝜈 =

𝜕𝜔

i
j𝜈

𝜕x𝜇
−
𝜕𝜔

i
j𝜇

𝜕x𝜈
+ 𝜔i

n𝜇𝜔
n

j𝜈 − 𝜔
i
n𝜈𝜔

n
j𝜇. (3)

2The contribution of geometry to dark energy in CCGG has been
discussed in Benisty et al. (2021); Vasak et al. (2019); Vasak et al. (2020),
see also Chen (2010) for a related ansatz.
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The metric is given by the contraction of the
vierbein fields w.r.t. the anholonomous indices, g

𝜇𝜈

≡
𝜂ij ei

𝜇

e𝑗
𝜈

, and we use

𝜀 ≔ det ei
𝜇

≡√
−g

𝜇𝜈

, (4)

the determinant of the vierbein, for the invariant vol-
ume element and for defining relative tensors. In
the DW Hamiltonian formulation the “velocity” fields
are “traded” via the Legendre transformation for the
respective (conjugate) momentum tensor densities,

̃k 𝜇𝜈

i ≡ k 𝜇𝜈

i 𝜀 ≔ 𝜕

̃tot

𝜕ei
𝜇,𝜈

, (5)

q̃ j𝛼𝛽
i ≡ q j𝛼𝛽

i 𝜀 = 𝜕

̃tot

𝜕𝜔

i
j𝛼,𝛽

. (6)

with comma denoting partial derivative.3
2. By the necessity of the Legendre transformation

between the Lagrangian and the DW Hamiltonian den-
sities to exist, both must be non-degenerate. The free
gravity DW Hamiltonian must then include at least
the full quadratic tensor concomitant of the conju-
gate momenta (Benisty et al. 2018). Similarly to the
free-matter Hamiltonians that serve as the key input
to any gauge theory of gravitation, also the free-gravity
Hamiltonian must be known in advance. The usual
way to obtain this DW Hamiltonian is to postulate
it based on analogies with other field theories, and
to experimentally confirm the solutions of the emerg-
ing field equations thereafter. A reasonable choice for
postulating ̃Gr(q̃, ̃k, e) is the quadratic-linear ansatz
(Struckmeier & Vasak 2021)

̃Gr =
1

4g1𝜀
q̃ j𝛼𝛽

i q̃ i𝜉𝜆
𝑗

g
𝛼𝜉

g
𝛽𝜆

− g2q̃ j𝛼𝛽
i ei

𝛼

en
𝛽

𝜂nj

+ 1
4g3𝜀

̃k 𝛼𝛽

i
̃k 𝜉𝜆

𝑗

g
𝛼𝜉

g
𝛽𝜆

𝜂

ij
, (7)

where g1, g2, and g3 are fundamental coupling con-
stants, which must be adapted to observations. Notice
that no (cosmological) constant term is included here.

3. The dynamics of the system is given by the set of canon-
ical equations arising by the variation of the action
integral. With the Hamiltonian (7) the variation w.r.t.

3The formulation of Ref. Struckmeier and Vasak (2021) is by
construction metric compatible as the affine connection is a dependent
field and can be designed to ensure metric compatibility. In the metric
formulation (Struckmeier et al. 2017) the affine connection is the
independent field rather than the spin connection, and the momentum
field ̃k

𝛼𝜈𝜇

is the conjugate of non-metricity. Which formulation is used is
irrelevant for the key message of this paper, though.

the momentum field q̃ j𝛼𝛽
i (conjugate to the connection)

leads to

q j𝛼𝛽
i = g1

(
R j𝛼𝛽

i − R
j𝛼𝛽

i

)
, (8)

where

R
i
j𝜇𝜈 ≔ g2

(
ei
𝜇

ek
𝜈

− ei
𝜈

ek
𝜇

)
𝜂kj (9)

is the Riemann curvature tensor of the maximally sym-
metric space–time, that is, de Sitter (dS) for positive,
and anti-de Sitter (AdS) for negative g2. That momen-
tum tensor thus describes deformations of the dynam-
ical geometry w.r.t. (A)dS geometry, and the parameter
g1 has a similar effect as mass has in classical point
mechanics. While it is defined in the denominator of
the quadratic momentum term in the Hamiltonian, it
multiplies the conjugate “velocity” in the field equation
(see below), and also the corresponding quadratic “ki-
netic” term in the gravity Lagrangian. Greater values of
g1 indicate a more “inert” space–time with respect to
deformation of the curvature tensor versus the (A)dS
geometry, and vice versa. Furthermore, the canonical
equation arising from the variation of Equation (7) with
respect to the momentum field ̃k 𝜉𝜆

𝑗

identifies it with the
torsion tensor:

k 𝜉𝜆

𝑗

= g3 S 𝜉𝜆

𝑗

. (10)

If we assume, for the sake of simplicity, that the
Hamiltonian (7) does not depend on the momentum
field ̃k, then the resulting geometry is torsion free and
metric compatible. The variation principle gives a set of
canonical equations of motion, that can be combined
to the so-called “consistency equation” (Struckmeier
et al. 2017; Struckmeier & Vasak 2021), a generalization
of Einstein’s field equation. Re-written in coordinate
indices and affine connection coefficients, given now by
the Christoffel symbols, it reads:

g1

(
R𝛼𝛽𝛾𝜇R 𝜈

𝛼𝛽𝛾

− 1
4

g𝜇𝜈R𝛼𝛽𝛾𝜉R
𝛼𝛽𝛾𝜉

)

− 2g1g2

(
R(𝜈𝜇) − 1

2
g𝜇𝜈R + 3g2 g𝜇𝜈

)
= 𝜃(𝜇𝜈). (11)

g1 controls the degree of “deformation” (Herranz
& Santander 2008) of the Einstein equation versus
General Relativity, and 𝜃

(𝜇𝜈) on the r.h.s. of this
equation is the symmetric portion of the canonical
energy-momentum tensor of matter.4

4Notice that the symmetrization arises from the mathematical
formalism. In presence of torsion, that is, if g3 in the last term in the
Hamiltonian (7) does not vanish, a further trace-free torsion
concomitant is added to Eq. (11). Then the skew-symmetric portions of
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4. A first crucial finding is that Equation (11) admits
both, the de Sitter-Schwarzschild and the de Sitter-Kerr
metrics, and is thus compatible with observations on
the solar scale. While for pure quadratic gravity an
integration constant 𝜆0 in the de Sitter-Schwarzschild
solution assumes the role of an arbitrary cosmological
constant, in quadratic-linear gravity

3g2 ≡ 𝜆0, (12)

is unambiguously fixed (Kehm et al. 2017). Moreover,
in the non-relativistic limit the classical Newtonian
gravitation is recovered if Newton’s gravitational con-
stant G is related to the Einstein terms on the l.h.s.
of Equation (11). This gives (Struckmeier et al. 2017;
Vasak et al. 2019) a second relation for the yet unspeci-
fied fundamental CCGG constants in the Hamiltonian
(7) to the empirical constants,

2g1 g2 ≡ 1
8𝜋G

≡ M2
p. (13)

Mp is the reduced Planck mass. Combining these two
equations yields

𝜆0 ≡ 3M2
p

2g1
. (14)

It is important to realize that the relation of 𝜆0 to Mp
emerges from the postulated quadratic-linear ansatz
for semi-classical gauge gravity, and is thus a solely
classical geometrical contribution to the cosmological
constant.

5. As shown earlier (Struckmeier et al. 2017), the
l.h.s. of Equation (11) is the negative canonical
energy-momentum tensor, −ϑ𝜇𝜈 , of space–time as
derived from the Noether theorem in analogy to
that of matter (Struckmeier et al. 2020). Energy and
momentum of matter and space–time appear to cancel
each other (“Zero-Energy Universe”, see for example,
Cooperstock & Israelit (1995); Feynman et al. (1995);
Hamada (n.d.); Jordan (1939); Levi-Civita (1917);
Lorentz (1916); Melia (2022); Rosen (1994)), in analogy
to the stress–strain relation in elastic media:

𝜗

𝜇𝜈 + 𝜃𝜇𝜈 = 0.

In absence of matter with even the vacuum energy of
matter vanishing, we expect space–time to sit in its
static ground state where the momentum fields of grav-
ity vanish. For vanishing momenta of space–time the

the Ricci tensor and, if present, the stress-energy tensor, determine the
dynamics of torsion.

canonical equations yield

q j𝛼𝛽
i = 0 ⇒ Ri

j𝛼𝛽 = R
i
j𝛼𝛽 ; (15a)

k 𝛼𝛽

i = 0 ⇒ S j𝛼𝛽
i = 0, (15b)

where R
j𝛼𝛽

i is defined in Equation (9). By substituting
R

j𝛼𝛽
i for R j𝛼𝛽

i on the l.h.s. of Equation (11) all terms
built from the curvature tensor add up to 6g1g2

2g𝜇𝜈 ,
giving indeed 𝜗

𝜇𝜈

vac = 0. This holds for both, positive
and negative values of g2, that is, for the dS and AdS
space–times, respectively.

6. If, on the other hand, matter exists but is globally in
its (quantum) vacuum state, or infinitely far away from
any real matter distribution, the stress-energy tensor
reduces to

𝜃

𝜇𝜈 = g𝜇𝜈𝜃vac.

Now the second crucial point is the observation that
space–time is flat (Minkowski) and static in such a
configuration, that is, R j𝛼𝛽

i = 0, yielding from Equation
(11)

−𝜗𝜇𝜈flat = −
𝜆0

8𝜋G
g𝜇𝜈 = g𝜇𝜈𝜃vac, (16)

or with Equation (14)

−
3M2

p

2g1
= 𝜃vac

M2
p
. (17)

This fixes, with the naive estimate 𝜃vac ≈ Mp
4 of

the quantum zero-point energy of matter based on a
Planck-scale ultra-violet cutoff, the value of the cou-
pling constant g1 ≈−3/2. Since g1 and g2 must be con-
stants and by Equation (13) have the same sign, the
ground state of the Universe is the AdS geometry in this
case. In general, we infer that observing the physical
geometry of space–time to be Minkowskian in absence
of real matter allows to fix the physical value of the
constant g1 by the given value of the vacuum energy of
matter (Vasak et al. 2019, 2020).

7. In the following, we consider the general situation
of a system of real matter embedded in a dynamical
space–time with torsion. The total stress-energy ten-
sor in Equation (11) consists now of real particular
matter and radiation and of the related bulk vacuum
energy:

𝜃

𝜇𝜈 ≡ 𝜃𝜇𝜈tot = 𝜃
𝜇𝜈

real + g𝜇𝜈𝜃vac. (18)
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Then with the relations (12) and (13) the trace of
Equation (11) reduces to

R − 4𝜆0 = 8𝜋G𝜃tot, (19)

as the quadratic gravity and torsion tensor terms are
trace-free and 𝜃… ∶= g

𝜇𝜈

𝜃

𝜇𝜈

… is used. Now in this gen-
eral case, we also have to take into account effects of
the more complex dynamical geometry and of graviton
vacuum fluctuation, giving

R − 4𝜆0 ≡ RLC + Rgeom + Rquant − 4𝜆0

= 8𝜋G (4𝜃vac + 𝜃real) . (20)

Here RLC is the “classical”, Levi-Civita version of the
Ricci tensor as known from General Relativity, Rgeom
denotes contribution from dynamical space–time
geometry, in the first place from torsion dynamics
which is determined by the canonical equations with
the full gravity Hamiltonian including the last term
in Equation (7). Rquant stands for graviton vacuum
fluctuations. This compares directly with the trace of
Einstein’s field equation with the observed cosmologi-
cal constant Λobs and the stress-energy tensor 𝜃𝜇𝜈real that
is void of vacuum energy:

RLC − 4Λobs = 8𝜋G𝜃real. (21)

Combining now Equations (17), (20) and (21) implies

1
4
(

Rgeom + Rquant
) ≡ −Λobs. (22)

The concluding statement is thus that in the
linear-quadratic gravity ansatz the vacuum energy of
matter is eliminated, due to the law of Zero-Energy Uni-
verse, by the space–time vacuum 𝜆0 constructed from
the fundamental coupling constants of the theory. The
observed cosmological constant is merely the current
value of a small residual correction of geometrical origin
with possible contributions from quantum fluctuations of
gravitons. It is a dynamical entity that might be called the
dark-energy function.

4 DISCUSSION

The above reasoning shows that the “cosmological con-
stant problem” can be explained by an elimination mech-
anism of the bulk vacuum energies of space–time and
matter. At the first sight that appears as another “fine
tuning” exercise for g1 of O(10−120). At a second sight, it

is quite natural, though, to assign values to fundamental
constants in order to reproduce empirical findings. Here,
fixing the pair g1, g2 versus G, 𝜃vac goes back to alignment
with the weak gravity limit, and to ensuring that static
space–time in absence of, or in infinite distance from, any
real matter is inertial.

The observed value of the cosmological constant then
emerges as a snapshot of a dynamical dark-energy term
based on the dynamics of torsion5, and potentially also
with contributions from residual quantum fluctuations.

However, uncertainties about the actual value of the
constants g1 and g2 remain due to the yet unknown
value of the vacuum energy of matter. Albeit the naive
estimate, of 𝜃vac ≈Mp

4 is at the heart of the cosmologi-
cal constant problem, it is not supported by all field- or
string-theoretical calculations, and can vary in value and
sign almost arbitrarily. Assuming for example the extreme
case supported by the string theory, 𝜃vac → 0, then accord-
ing to Equation (17) we find (Vasak et al. 2019) g1 → ∞.
A vacuum energy density of matter in the meV range, a
value discussed previously for example in Reference Prat
et al. (2022), leads to g1 ∼−10119.

5 CONCLUSION

The motivation for this paper was to shed new light on
the cosmological constant problem derived originally by
Weinberg (Weinberg 1989) from the naive assessment of
the vacuum energy of matter, 𝜃vac ∼Mp

4, based on the
Planck energy cutoff.

The facts collected here stand to reason that the
combination of linear (Einstein–Cartan) and (trace-free)
quadratic gravity in the classical gauge-field theory of
gravity, and the empirical knowledge of Newton’s constant
and astronomical observations, can explain both the exis-
tence and to a significant extent also the magnitude of the
cosmological constant. In fact, the above reasoning is valid
regardless of the actual value of 𝜃vac, for a compensating
value of g1 can always be found as the solution of Equation
(17).

5The impact of the torsion-related corrections of the Einstein equation
on cosmology has been discussed in Capozziello et al. (2001);
Capozziello and Stornaiolo (2007); Kranas et al. (2019);
Minkowski (1986); Popławski (2010); Tsamparlis (1981); Vasak
et al. (2020). Cosmology with a homogeneous spin density (aka
Weyssenhoff fluid) were addressed in Refs. Brechet et al. (2007);
Böhmer and Bronowski (2010); Obukhov and Korotkii (1987); Obukhov
and Tresguerres (1993); Popławski (2018); Unger and Popławski (2019)
A time-dependent cosmological constant has been also derived from a
naive estimate of vacuum fluctuations (Santos 2010), string theory
(Basilakos, Mavromatos, & Sola, n.d.), and by the renormalization group
method (Myrzakulov et al. 2015).



6 of 6 VASAK et al.

This is accomplished by applying a rigorous mathe-
matical framework in a consistently designed gauge field
theory of gravity to derive a geometrical term eliminating
the bulk of quantum vacuum energy of matter. The resid-
ual, physical cosmological constant turns out to be just a
snapshot of an underlying dynamical entity, a dark-energy
function built from torsion of space–time and quantum
fluctuations of gravitons.

However, ambiguities remain in the value of the
vacuum energy of matter and the exact form of the
geometrical and matter-related vacuum corrections.
Designing independent measurements of g1 and analyzing
a wider variety of dynamical torsion models furnishing the
dynamics of the cosmological dark energy will thus be the
next key steps to resolving those remaining ambiguities.

Work along these lines is in progress (van de Venn &
Kirsch n.d.).
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