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Deutsche Zusammenfassung

Einer der faszinierendsten Aspekte der Physik ist die Suche nach einer Beschreibung der
uns umgebenden Phänomene und die Erforschung der Prinzipien, die Materie, Energie,
Raum und Zeit zugrunde liegen, mit dem Ziel, die Gesetze herauszuarbeiten, die die
Phänomene des Universums von den kleinsten, subatomaren Teilchen bis hin zu den
größten, kosmischen Strukturen diktieren.

In diesem Zusammenhang besteht eine der größten Herausforderungen der gegen-
wärtigen Physik darin, das Verhalten stark wechselwirkender Materie zu untersuchen.
Die Theorie, die als primäres Werkzeug zur Aufklärung ihrer Eigenschaften und Wech-
selwirkungen dient, ist die sogenannte Quantenchromodynamik (QCD). QCD ist ein
grundlegendes Element der modernen Teilchenphysik und bietet tiefgreifende Einblicke
in die Struktur der Materie und die Kraft, die sie zusammenhält. Im Wesentlichen
beschreibt die QCD die Dynamik von Quarks und Gluonen, den Grundbausteinen von
Teilchen wie Protonen, Neutronen und anderen Hadronen.

Seit dem 20. Jahrhundert erforschen Wissenschaftler die grundlegende Struktur von
Materie, was in der Einführung des Standardmodells der Teilchenphysik mündet, eines
theoretischen Rahmenwerkes, das auf elegante Weise erklärt, wie subatomare Teilchen
interagieren und welche Kräfte ihre Handlungen bestimmen. Innerhalb dieses Mod-
ells erweist sich die QCD als die Theorie der stark wechselwirkenden Kraft; neben der
Schwerkraft, dem Elektromagnetismus und der schwach wechselwirkenden Kraft eine
der vier Grundkräfte.

Die starke Kraft, die durch Teilchen vermittelt wird, die als Gluonen bekannt sind,
ist dafür verantwortlich, Quarks zu binden und zusammengesetzte Teilchen, sogenannte
Hadronen, zu bilden. Neben dem Flavourfreiheitsgrad, der jeweils durch eine andere
Masse und elektrische Ladung gekennzeichnet ist, besitzen Quarks eine grundlegende
Eigenschaft, die „Farbladung“, die der standardmäßigen elektrischen Ladung entspricht,
jedoch eine andere Bedeutung besitzt. Tatsächlich bezieht sich „Chromodynamik“ im
Namen QCD auf die Tatsache, dass die Wechselwirkung zwischen Quarks und Gluonen
durch den Austausch von Farbladungen erfolgt, was an die mit dem Charakter der
Farbwahrnehmung verbundene Dynamik erinnert.

Obgleich die QCD beträchtliche Fortschritte zum Verständnis der Natur stark wech-
selwirkender Materie gemacht hat, einschließlich der Erklärung der Hadronenmassen
und des Verhaltens bei hohen Energien, nämlich die asymptotische Freiheit, sind mehrere
Aspekte noch unklar. Beispielsweise ist der den Farbeinschluss bestimmende Mechanis-
mus, d.h. die Tatsache, dass kein farbgeladenes Objekt beobachtet werden kann, nicht
vollständig geklärt.

Diesem Forschungsgebiet wurden sowohl theoretische als auch experimentelle Anstren-
gungen gewidmet, da die Weiterentwicklung unseres Verständnisses stark wechselwirk-
ender Materie Auswirkungen auf verschiedene Bereiche der Physik hat, vom Verständ-
nis des Zustands des frühen Universums bis hin zur Dynamik dichter und kompakter
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8 DEUTSCHE ZUSAMMENFASSUNG

Sterne.
Die Merkmale stark wechselwirkender Materie werden häufig im QCD-Phasendiagramm

dargestellt, das die erwarteten Phasen als Funktion der Temperatur und des baryochemis-
chen Potentials veranschaulicht. Diese beiden Größen werden häufig gewählt, wenngle-
ich aufgrund der noch vorliegenden erheblichen Verständnislücken es u.U. ratsam ist,
andere in Betracht zu ziehen.

Bei einem baryochemischen Potential von Null durchläuft die QCD-Materie einen
sanften Übergang von der farbeingeschlossenen hadronischen Materie hin zur Quark-
Gluon-Plasmaphase bei hohen Temperaturen, wo Farbfreiheitsgrade freigesetzt werden.
Das Phasendiagramm umfasst jedoch zusätzliche Komplikationen.

Wenn das chemische Potential der Baryonen zunimmt, werden Vorhersagen über
das Verhalten stark wechselwirkender Materie weniger sicher und stützen sich oft auf
effektive Modelle und Näherungen. Die Wiederherstellung der chiralen Symmetrie
bei hohem chemischen Potential und niedriger Temperatur, möglicherweise über einen
Phasenübergang erster Ordnung, bleibt Gegenstand von Überlegungen, die auf die Ex-
istenz eines kritischen Punktes schließen lassen.

Experimentelle Untersuchungen, insbesondere durch Schwerionenkollisionen an Ein-
richtungen wie dem Large Hadron Collider (LHC) und dem Relativistic Heavy Ion Col-
lider (RHIC) zielen darauf ab, die Eigenschaften stark wechselwirkender Materie zu er-
forschen und kritische Endpunkte im QCD-Phasendiagramm zu lokalisieren. Theoretis-
che Hilfsmittel wie Gittersimulationen und funktionale Methoden wie die funktionale
Renormierungsgruppe (FRG), tragen zum Verständnis der Feinheiten des Phasendia-
gramms bei.

In diesem Zusammenhang spielen effektive Modelle eine entscheidende Rolle bei der
Erfassung wesentlicher Merkmale der QCD, wenngleich diese Vereinfachungen vornehmen.
Das Studium effektiver Feldtheorien und -modelle ist für unser Verständnis der Physik
von entscheidender Bedeutung, insbesondere wenn wir uns mit grundlegenden Wech-
selwirkungstheorien wie der QCD befassen. Da diese effektiven Modelle insbesondere
so aufgebaut sind, dass sie wesentliche Merkmale der zugrunde liegenden Theorie unter
Verwendung einer vereinfachten Teilmenge von Symmetrien und Freiheitsgraden er-
fassen können, besteht das wesentliche Ziel darin, die kritischen Eigenschaften dieser
Modelle zu verstehen und somit eine Möglichkeit zu schaffen, einen Einblick in die
tatsächlichen kritischen Phänomene der QCD zu erhalten.

Doch selbst mit effektiven Modellen ist das Verständnis des Verhaltens von Systemen,
in denen mikroskopische Elemente stark interagieren, oft sehr schwierig und erfordert
den Einsatz geeigneter und leistungsfähiger Werkzeuge. Diese Herausforderung ver-
schärft sich, wenn das System beispielsweise einen Phasenübergang durchläuft, mit der
Einführung neuer Freiheitsgrade oder einer Änderung ihrer relativen Relevanz. Fol-
glich muss der theoretische Rahmen diese Regime konsequent überbrücken und den
Übergang zwischen verschiedenen physikalischen Skalen und den damit verbundenen
Sätzen relevanter Freiheitsgrade detailliert beschreiben.

Eine weit verbreitete Methode zur Bewältigung solcher Szenarien ist die von Wilson
entwickelte Renormierungsgruppe (RG). In Kombination mit der Störungstheorie erle-
ichtert diese Methode die Beschreibung von Systemen mit zahlreichen interagierenden
Freiheitsgraden, wobei Infrarot-Freiheitsgrade über eine kleine effektive Kopplung in-
teragieren. Allerdings stößt dieser Ansatz bei Systemen ohne geringe Kopplung oder
Systemen, bei denen sich die Identifizierung eines Störungsparameters als schwierig er-
weist, an seine Grenzen.

Eine der uns zur Verfügung stehenden Möglichkeiten, die Herausforderungen der
perturbativen RG zu überwinden, ist die sogenannte funktionale Renormierungsgruppe
(FRG), auch bekannt als exakte RG oder nicht-perturbative RG (NPRG). Die funktionale
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Renormierungsgruppe gehört, wie der Name schon sagt, zur Klasse der funktionalen
Methoden, deren Ziel es ist, erzeugende Funktionale von Korrelationsfunktionen zu
berechnen, in denen alle physikalischen Informationen enthalten sind. Die FRG verbindet
diesen funktionalen Ansatz mit dem RG-Konzept und geht schrittweise mit Schwankun-
gen von Maßstab zu Maßstab um. Durch die Umwandlung von Standardformulierun-
gen der Feldtheorie in eine funktionale Differentialstruktur verwendet die FRG eine Strö-
mungsgleichung, die sogenannte Wetterich-Gleichung als zentrales Werkzeug und bietet
so eine genaue Verbindung zwischen Korrelationsfunktionen auf der anfänglichen UV-
Skala und der Korrelationsfunktion auf der endgültigen Skala, der IR-Skala, bei der alle
Schwankungen herausintegriert wurden. Somit entspricht die Lösung dieser Strömungs-
gleichungen der Lösung der gesamten Theorie. Angesichts ihrer nicht-störungstheoretischen
Natur und ihrer Fähigkeit, Freiheitsgrade über Skalen hinweg zu verbinden, scheint die
FRG gut aufgestellt zu sein, um die Herausforderung der Beschreibung von Systemen
nahe der Kritikalität und von Phasenübergängen zu bescheiben und stellt ein zuverläs-
siges Werkzeug für die Untersuchung komplexer Phänomene wie der erwarteten QCD-
Phasenübergänge und das damit verbundene Phasendiagramm dar.

Dies ist der Grund, warum wir uns in dieser Arbeit unter der Verwendung der
Vorteile effektiver Niedrigenergietheorien dafür entscheiden, uns auf die Verwendung
der FRG-Methode zur Untersuchung effektiver Niedrigenergiemodelle für die QCD zu
konzentrieren, wobei ein besonderer Fokus auf dem chiralen Phasenübergang liegt.

Jedoch hat die funktionale Natur des FRG-Ansatzes und der Wetterich-Gleichung
zur Folge, dass ihre genaue Lösung kaum möglich ist und im Allgemeinen ein Ansatz
für die effektive Wirkung erforderlich ist. In dieser Arbeit entscheiden wir uns für die
Anwendung der lokalen Potentialnäherung (LPA), die vorschreibt, die Entwicklung nach
Gradienten der quanteneffektiven Wirkung bei der nullten Ordnung abzubrechen und
nur das quanteneffektive Potential einzubeziehen.

Eine der Hauptideen, die wir in dieser Arbeit verwenden, ist die Schlüsselbeobach-
tung, dass die FRG-Strömungsgleichung für bestimmte Modelle und Trunkierungss-
chemata in die Form einer Advektions-Diffusionsgleichung, gegebenenfalls mitsamt eines
Quelltermes, umgewandelt werden kann. Diese Art von Gleichungen gehört zu der
Klasse von Problemen, mit denen man im Zusammenhang der viskosen Hydrodynamik
konfrontiert ist. Daher besteht ein innovativer Ansatz zur Lösung der
FRG-Strömungsgleichung in der Wahl einer Methode, die speziell für die Lösung dieser
Klasse hydrodynamischer Gleichungen entwickelt wurde. Insbesondere wird das Kurganov-
Tadmor-Finite-Volumen-Schema übernommen. In dieser Arbeit wenden wir dieses Schema
für die Untersuchung verschiedener physikalischer Systeme an und zeigen die Zuver-
lässigkeit und Flexibilität dieses Ansatzes. Im ersten Teil der Arbeit diskutieren wir das
bekannte O(N)-Modell als effektives Modell, das lediglich eine Anzahl N bosonischer
Freiheitsgrade umfasst. Bei der Wahl einer geeigneten Anfangsbedingung für das UV-
effektive Potential kommt es zu einem spontanen Symmetriebruch der O(N)-Symmetrie
zur O(N-1)-Untergruppe, was zu N-1 Goldstone-Bosonen, den Pionen und einer radi-
alen Sigma Mode führt. Die O(N)-Symmetrie wird dann bei ausreichend hoher Temper-
atur oder bei ausreichend niedrigen Werten des UV-Minimums des Potentials wieder-
hergestellt, wenn der Dimensionsreduktionssatz verwendet wird. Dieser Phasenüber-
gang ist Gegenstand unserer Studie, die wir unter Verwendung der hydrodynamischen
Formulierung durchführen, um die FRG-Strömungsgleichung in der LPA-Trunkierung
zu lösen. Wir konzentrieren uns auf die Untersuchung des kritischen Verhaltens des Sys-
tems und berechnen die entsprechenden kritischen Exponenten. Besonderes Augenmerk
wird auf die Fehlerabschätzung bei der Extraktion der kritischen Exponenten gelegt, was
ein notwendiger und noch nicht umfassend erforschter Bereich ist. Die Ergebnisse sind
gut kompatibel mit Resultaten aus der Literatur, die mit unterschiedlichen störungsthe-
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oretischen und nicht-störungstheoretischen Methoden erzielt wurden, was hilft, dieses
Verfahren in seiner Güte zu beurteilen.

Im zweiten Teil der Arbeit stellen wir das Quark-Meson-Modell als niederenergetis-
ches effektives Modell in der QCD vor und richten ein besonderes Augenmerk auf
sein chirales Symmetriebrechungsmuster und die anschließende dynamische Quark-
massenerzeugung. Die LPA-Strömungsgleichung ist vom Advektions-Diffusions-Typ
mit einem zusätzlichen Quellbeitrag, der auf die Einbeziehung fermionischer Freiheits-
grade zurückzuführen ist. Wir übernehmen daher die entwickelten numerischen Tech-
niken, um das Phasendiagramm des Modells abzuleiten, welches mit dem überein-
stimmt, das mit anderen Techniken in der Literatur bereits erhalten wurde.

Wir verfolgen auch einen anderen möglichen Weg zur Untersuchung der kritischen
Eigenschaften des Quark-Meson-Modells: die sogenannte thermodynamische Geome-
trie. Dieser Ansatz basiert auf der Interpretation des Parameterraums des Systems als
Differentialmannigfaltigkeit. Aus dem Ricci-Skalar kann man dann relevante Informa-
tionen über Phasenübergänge gewinnen.

Mithilfe dieser geometrischen Technik ist es möglich, den chiralen Phasenübergang
der QCD aus einer anderen Sicht zu betrachten. Dieser Ansatz beruht auf der Berech-
nung von Größen, die von Momenten höherer Ordnung des thermodynamischen Po-
tentials beeinflusst werden, ermöglicht so eine umfassendere Analyse des Phasenüber-
gangs.

Insbesondere untersuchten wir den chiralen Crossover, indem wir das Verhalten des
Ricci-Skalars R bis zum kritischen Punkt hin untersuchten, wobei er ein Maximum am
Crossover aufweist. Wir haben diese Analyse dann im chiralen Limes wiederholt, wo er-
wartet wird, dass der Phasenübergang zweiter Ordnung ist und der Peak in eine scharfe
Divergenz übergehen sollte. Darüberhinaus bleibt der Ricci-Skalar bei niedrigen Werten
des chemischen Potentials negativ, was darauf hindeutet, dass bosonische Fluktuatio-
nen die Fähigkeit des Systems verringern, die fermionische statistische Abstoßung von
Quarks vollständig zu überwinden. Andererseits haben wir in Übereinstimmung mit
molekularfeldtheoretischen (MF) Studien festgestellt, dass R zunimmt und das Vorze-
ichen wechselt, wenn das chemische Potenzial zunimmt und sich dem kritischen Punkt
nähert.

Schließlich nutzen wir die numerischen Fortschritte, um das Problem der Wahl des
Regulators in den FRG-Berechnungen anzugehen. Dies stellt sich als besondere Heraus-
forderung heraus, wenn bestimmte Näherungen zur Lösung der FRG-Strömungsgleichung
verwendet werden, und verdient eine umfassende Untersuchung. Insbesondere haben
wir eine Vakuumparameterstudie durchgeführt und die RG-Konsistenzforderung ver-
wendet, um die Auswirkung der Wahl des Regulators auf die physikalischen Observ-
ablen und auf das Phasendiagramm des Modells zu bestimmen. Mit dieser Studie en-
twickeln wir eine systematische Methode zum Vergleich der Ergebnisse für verschiedene
Regulatoren. Wir zeigen, wie wichtig die Wahl eines geeigneten UV-Grenzwerts bei
der Bestimmung UV-unabhängiger IR-Observablen ist und welche Auswirkungen die
Trunkierung der effektiven Durchschnittswirkung und die Wahl des Regulators auf let-
ztere haben.

Wir haben diese sowohl in der Mean-Field/Large-Nc-Näherung als auch im voll-
ständigen LPA-Fall untersucht. In der MF-Näherung fanden wir eine perfekte Übere-
instimmung der Ergebnisse innerhalb verschiedener Regulatorklassen und Regulator-
formfunktionen, wie es von der Ein-Schleifen-Universalitätseigenschaft erwartet wird.
Dies bestätigt das Verfahren, mit dem wir einen RG-konsistenten UV-Ausgangszustand
gefunden haben. Im LPA-Fall haben wir den UV-Parameterraum untersucht. Let-
zterer ist nicht vollständig zugänglich und weist einige Grenzen auf, die sich in den
Grenzbereichen der zugänglichen IR-Krümmungsmasse und in den Phasendiagrammen
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widerspiegeln, die für verschiedene Regulatorformfunktionen erhalten werden. Wir
haben auch beobachtet, dass diese Banden dazu neigen, an einem einzigen Punkt in
der Grenze des divergierenden UV-Grenzwerts zu konvergieren, was darauf hindeutet,
dass man einen ausreichend großen UV-Grenzwert wählen sollte, um einen parameter-
unabhängigen Anfangszustand und damit ein regulatorunabhängiges IR-Potential zu
erhalten. Wir fanden weiter heraus, dass die Phasendiagramme, die unter Verwendung
der gleichen Regulatorformfunktionen für Bosonen und Fermionen erhalten wurden,
eine deutliche Übereinstimmung aufweisen, was wiederum darauf hindeutet, dass unser
Vergleichsverfahren tatsächlich erfolgreich war.

Mögliche zukünftige Forschungsrichtungen, die sich aus dieser Arbeit ergeben, kön-
nten sich mit der Untersuchung der Stabilität der erzielten Ergebnisse befassen, wenn
die in der funktionalen Renormierungsgruppentechnik verwendete Trunkierungsmeth-
ode verfeinert wird. Eine Möglichkeit besteht beispielsweise darin, skalenabhängige,
aber nicht feldabhängige Wellenfunktions-Renormierungsfaktoren sowohl für Boson- als
auch für Quarkfelder einzubeziehen, was zur sogenannten LPA’-Trunkation führt. Dies
wäre äußerst interessant, insbesondere angesichts der möglichen Entstehung inhomo-
gener Phasen bei hohem chemischem Potential.

Darüber hinaus besteht ein alternativer Weg zur Weiterentwicklung und tieferen Er-
forschung darin, zusätzliche Kondensationskanäle wie die Diquark-Kondensate einzubauen,
die zur Untersuchung des Phänomens der Farbsupraleitung bei hohen Dichten verwen-
det werden könnten. Diese Erweiterung erfordert die Modifizierung des Modells, um
verschiedene Freiheitsgrade abzudecken und so die Analyse verschiedener Phänomene
und Übergänge über die chirale Natur hinaus zu ermöglichen. Eine solche Erweiterung
würde zu einer umfassenderen Kartierung des QCD-Phasendiagramms beitragen, im
Einklang mit dem übergeordneten Ziel dieser Arbeit und den laufenden Bemühungen
im Bereich der Forschung in der Hochenergiephysik.
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Chapter 1
Introduction

One of the main challenges in modern physics is represented by the understanding of
the behavior of strongly interacting matter, with a particular focus both on elementary
particles, such as quarks and gluons, and on their link with the corresponding composite
objects, the hadrons. The theory we currently use to describe this kind of particles and
their mutual interactions is the so-called Quantum Chromodynamics (QCD). This theory
has achieved great results in unraveling the features of strongly interacting matter, such
as the explanation of the origin of hadrons’ mass and the understanding of the pertur-
bative behavior at high energies, with the related asymptotic freedom [1, 2]. However,
QCD presents several aspects which are still not fully understood today, like the rigorous
mechanism behind the confinement of color degrees of freedom. In general, a huge ef-
fort, both theoretically and experimentally, has been put on this research field. Being able
to deepen our current knowledge on the behavior of strongly interacting matter would
have a significant impact on several areas of physics, ranging from our understanding
of the very hot and relatively dilute early stages of our universe, to the comprehension
of the mechanisms that regulate dense and relatively cold compact stars.

The features of strongly interacting matter are usually summarized in the so-called
QCD phase diagram, in which the expected different stable phases of QCD matter are
represented as a function of temperature and baryon chemical potential. Occasionally,
also other chemical potential axes, associated to the respective conserved quantities, are
included in the phase diagram, like for example the isospin chemical potential (see,
e.g.,[3, 4] and references therein), but the most common literature studies have focused
on the two axes of temperature and baryon chemical potential. This is the case since
already the majority of the standard T-µB phase diagram is uncharted. As an example,
a sketch of the conjectured QCD phase diagram is shown in Fig.1.1.

It is well known that (see, e.g., [5, 6] and references therein) at vanishing baryon
chemical potential QCD matter experiences a smooth crossover from a low-temperature,
confined hadronic matter, in which chiral symmetry is spontaneously broken, to the
so-called quark-gluon plasma (QGP), a high-temperature phase, in which color degrees
of freedom are deconfined, quark and gluons are weakly interacting and chiral sym-
metry is approximately restored. Nevertheless, the aforementioned crossover transition
represents just the tip of the iceberg, and the QCD phase diagram incorporates many
other interesting features. As an example, around µB ∼ 1 GeV and at low temper-
atures, a first-order transition should take place between a hadron gas and a nuclear
liquid phase, which leads to ordinary nuclear matter. The first-order line should then
end in correspondence of the scale of nuclear binding energies around T ∼ 15 MeV,
with a second-order critical point. These statements are widely confirmed, both from a
theoretical and experimental point of view ( see, e.g., [7, 8, 9, 10]).

Increasing the chemical potential, the precise structure of the QCD phase diagram is
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Figure 1.1: Sketch of the conjectured phase diagram of QCD. Figure is taken from Com-
pact Stars in the QCD Phase Diagram (CSQCD) 2017 conference poster.

not certain, and the expected behavior of strongly interacting matter is deduced mostly
on the basis of effective models and approximations.

In particular, it is believed that chiral symmetry should be restored in the regime of
high chemical potential and low temperature, and that this phase transition should be of
first order (see, e.g., [11, 12, 13] and references therein). This would imply the existence
of a critical point connecting the conjectured first-order line with the known crossover at
low chemical potential. At of this point, the phase transition should become of second
order.

It has also been speculated [14] that the confinement/deconfinement-transition line
and the chiral symmetry breaking/restoration-transition line do not match for large
values of the baryon chemical potential, possibly leading to regions of the phase diagram
where chiral symmetric matter is still confined, but the question is not settled yet.

A possible phase that may exist in this regime at high chemical potential is the so-
called quarkyonic phase, where hadrons, which are still present in this phase, have such
a large overlap due to the high densities that quarks may be considered as the relevant
degrees of freedom and as almost free [15, 16].

Upon further increasing the baryon chemical potential and keeping the temperature
low, it is conjectured that quark-quark pairing may be energetically favored over quark-
anti-quark pairing, leading to diquark condensation and the so-called color-superconducting
phase [17, 18, 19, 20].

From an experimental point of view, the study of the properties of strongly interact-
ing matter and the investigation of the QCD phase diagram, and specifically the location
of the critical endpoint, are some of the main goals of modern experiments. Part of these
experiments is performed via heavy-ion collisions, like, for example, the ones that take
place at the LHC (Large Hadron Collider) and at RHIC (Relativistic Heavy Ion Collider),
which belong to the European Council for Nuclear Research (CERN, from the French
acronym), in Geneva, and to the Brookhaven National Laboratory (BNL), in Upton, New
York, respectively. In the near future, more experiments are expected to be added to
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the previous ones, namely the ones performed at FAIR (Facility for Antiproton and Ion
Research), in Darmstadt, like for example the Compressed Baryonic Matter (CBM) one,
and at NICA (Nuclotron-based Ion Collider fAcility), at the Joint Institute for Nuclear
Research (JINR), in Dubna.

From a theoretical viewpoint, a great advancement in the direction of the understand-
ing of the QCD phase diagram has been made with the introduction of lattice simula-
tions, which, as the name suggests, are able to perform non-perturbative calculations by
discretizing the theory on a lattice. In particular, lattice studies obtained stunning results
in the low chemical-potential regime, like confirming the hypothesis that the phase tran-
sition between hadronic matter and QGP is a smooth crossover in the aforementioned
regime. However, the reliability of lattice-QCD results is limited to the case of vanishing
or small chemical potential, due to the presence of the so-called sign problem: a finite
chemical potential leads to a complex weight in the probability distribution of field con-
figurations, which do not allow for the correct statistical interpretation of the action (see,
e.g., [21, 22, 23, 24]).

Thus, on one hand, the understanding of the behavior of strongly interacting mat-
ter, especially in the low-temperature and high-density regime, strictly calls for a non-
perturbative approach, like the one provided by lattice QCD. On the other hand, the sign
problem limits the availability of the latter in the desired regime. One of the possibilities
that are available to tackle this issue is the use of functional methods, which retain the
advantage of being non-perturbative and are not affected by any a-priori limitation in the
high-density regime. Recently, functional methods have indeed been used to investigate
the QCD phase diagram, see, e.g.,[25, 26, 27].

In particular, in this work we will use the Functional Renormalization Group (FRG)
method, which is a functional non-perturbative method, and has also the advantage
of linking physics at different energy scales. These features make FRG perfectly com-
patible with the task of studying non-perturbative phenomena and in particular phase
transitions, like the ones expected for strongly interacting matter.

Nevertheless, also the FRG approach has its own limitations and drawbacks, like,
for example, the need for the use of truncations and approximations in the solution of
the flow equation and the related convergence of these approximations. Furthermore,
especially in the full QCD case, calculations are very demanding and need for further
approximations, which often effectively limit the reliability of the results to the µ/T ≲ 3
region of the phase diagram (see, e.g., [25] and references therein).

From the previous discussion, we can understand why effective models shine in
this contest. They have the ability to capture some of the desired features of the full
underlying theory, with a significant simplification, which reduces the need for further
approximations. In this thesis we will focus on two models, namely the O(N) model
and the quark-meson (QM) model, which find applicability as QCD effective theories
since they are expected to capture the essential features of the chiral phase transition.
Nevertheless, no information can be extracted from these models on the extremely high
chemical-potential regime of QCD, where, for example, an extension which includes
diquarks as degrees of freedom could be considered, leading to the so-called quark-
meson-diquark (QMD) model (see, e.g., [17, 18, 28]). Furthermore, these models do
not capture the confinement/deconfinement phase transition of QCD, which could be
assessed by the inclusion of the Polyakov loop to the model, leading to the so-called
Polyakov-loop-quark-meson model (PQM) (see, e.g., [29, 30, 31]).

Due to these limitations, in this work we focus primarily on the chiral phase transition
of QCD, and in particular we adopt the FRG as a tool to investigate it. Furthermore,
we make use of a recently developed method [32], which is based on casting the FRG
flow equation into a hydrodynamic advection-diffusion equation, allowing for a more
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appropriate numerical treatment and error analysis.
This thesis is organized as follows: in Chapter 2 we provide a brief overview of QCD

and its symmetries, with a special focus on chiral symmetry; in Chapter 3 we intro-
duce the concept of the Functional Renormalization Group in the formulation given by
Wetterich; in Chapter 4 we discuss the O(N) model using the FRG approach in the local-
potential approximation (LPA), studying the critical behavior and computing the critical
exponents of the model; in Chapter 5 we focus on the QM model and its phase dia-
gram, presenting a comparison between mean-field (MF) results and FRG calculations;
in Chapter 6 we introduce the concept of the thermodynamic geometry and apply it to
the study of the phase transitions exhibited by the QM model, comparing both MF and
FRG results; in Chapter 7 we present a study of the dependence, of the choice of the FRG
regulator, of physical observables and of the phase diagram of the QM model; conclu-
sions can be found in Chapter 8. In addition to this, in App.A we establish the notations
and the conventions used throughout this work; in App. B we give an overview of the
functional approach to QFT; in App. C we present a brief derivation of the Wetterich
equation; in App. D we derive the flow equation for the O(N) model and for the QM
model; finally, in App. E we present a brief overview of conservation laws, advection-
diffusion equations and the numerical schemes which have been developed in order to
solve them.



Chapter 2
Quantum Chromodynamics and its
symmetries

2.1 Introduction to Quantum Chromodynamics

The theory that we currently use to describe strongly interacting matter is called Quan-
tum Chromodynamics (QCD). It is a quantum field theory and the fields used to repre-
sent the fundamental degrees of freedom of the theory are quarks, which are spin-1/2
fermions, and gluons, which are bosons with spin 1. From a more formal point of view
QCD is a gauge theory, meaning that, in the Lagrangian, the interaction term between
quarks and gluons is obtained by imposing an invariance under local transformations
which belong to a gauge group. In particular, the gauge group of QCD is SU(3), which
is a non-abelian group, i.e., a non-commutative group. This represents a fundamental
feature of QCD since, as we will see soon in detail, this implies the possibility for clas-
sical 3 and 4 gluon interactions. This feature is absent in abelian gauge theories, like
for example Quantum electrodynamics, whose gauge group is the abelian U(1). Quarks
can interact via the electromagnetic force since they carry an electric charge, which ap-
pears in fractions of either ±1/3 or ±2/3 of the electron elementary charge. However,
the most important aspect to us is that they carry another type of charge, the so-called
color charge, which is the reason why quarks interact via the strong interaction through
the exchange of gluons, which mediate the strong force. Formally, quarks belong to the
fundamental (vectorial) 3-dimensional representation of the SU(3), usually referred to
as "triplet", meaning that they can have 3 different colors, usually indicated as "red",
"blue" and "green", and the corresponding anti-colors for anti-quarks. These names orig-
inate from the fact that the combination of the three different (anti-)colors leads to color
singlets, or color neutrality, which is usually referred to as "white". Naturally, the com-
bination of color and its corresponding anti-color results in white as well. Also gluons
carry color charge, and they belong to the adjoint representation of SU(3), which is a
32 − 1 = 8-dimensional representation, meaning that there are 8 possible colors for glu-
ons. That’s why the adjoint representation is usually referred to as the "octet". Since the
adjoint representation can be formally obtained superposing a triplet and an anti-triplet,
3 ⊗ 3̄ = 8 ⊕ 1, gluons are usually indicated as combinations of color and anti-colors.
However, QCD shows an interesting feature, the so-called confinement property, which
implies that only white particles can be observed directly, while quarks and gluons can-
not. The white particles that we observe are the so-called hadrons. As we pointed out,
the combination quark-antiquark is one of the possibility to obtain a white object. Thus
hadrons that contain pair of a valence quark and an anti-quark are called mesons, like
pions, kaons etc.. As previously stated, another possibility for an object to have zero
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color charge is to result as the combination of three valence quarks with different colors.
Such hadrons made up of three quarks are the so-called baryons, like protons and neu-
trons. As it seems natural, there are more possibilities for color-neutral objects, like for
example tetraquarks, formed by two quark-anti-quark pairs, or pentaquarks, composed
by quark, anti-quark and three other quarks, and so on. However, these states will not
be further explored in this work, and one can refer to [33, 34, 35, 36, 37] and references
therein. Quarks also come in six different types, named flavors, which have different
masses. These flavors are usually labelled as up (u), down (d), strange (s), charm (c),
bottom (b) and top (t). The up and down quarks have a mass of approximately 3-5 MeV,
while the strange quark already has a mass of around 100 MeV. Those three flavors are
usually referred to as light flavors (mostly u and d but with a bit of stretch also s) and
will play, as we will soon see, a fundamental role when dealing with chiral symmetry.

The Lagrangian of QCD then reads:

LQCD = Ψ̄(x) (i /D − M)Ψ(x)− 1
4

Ga
µν Ga µν . (2.1)

We now discuss the various terms that appear in the Lagrangian.
Ψ(x) is a Dirac spinor which collects all the various possible flavors and colors for

the quarks. As we discussed, quarks are in the fundamental representation of the SU(3)
group, meaning that they have 3 color d.o.f.. This implies that, since they come in six
possible flavors and have a 4-component Dirac spinor structure, Ψ(x) is a 4 ⊗ 6 ⊗ 3
spinor. Ψ̄(x) = Ψ†(x)γ0 is the Dirac adjoint of Ψ(x), where Ψ†(x) denotes the hermitian
adjoint of the spinor Ψ(x), and γ0 is the time-like gamma matrix which acts only on
the four-dimensional Dirac structure of Ψ(x). M is a (4 ⊗ 6 ⊗ 3) × (4 ⊗ 6 ⊗ 3) matrix
that contains the masses of quarks, which have electroweak origin, for various flavors
and colors, and it is diagonal both in Dirac and in flavor and in color space. The term
/D = γµDµ contains the standard gamma-matrices and the covariant derivative D that
originates imposing the local SU(3) invariance of the theory. It is diagonal in flavor space
so we can separate this contribution

D f f ′ i j
µ = δ f f ′ Di j

µ , (2.2)

where f , f ′ = 1 · · · 6 are flavor indices, i, j = 1, · · · 3 are color indices and the structure in
color space reads

Di j
µ = δi j ∂µ − i gs Aa

µ(x) Ti j
a . (2.3)

Here Aa(x) indicates the gluon fields, with a = 1, · · · N2
c − 1 = 8 (a summation over the

index a is implied), meaning that there are eight kinds of gluon. This statement follows
from what we already pointed out, since gluons transform under the 8-dimensional
adjoint representation of the SU(3) color group. Ta are eight 3 × 3 matrices and are
the generators of the SU(3) group in the fundamental representation. The quantity gs
is the QCD coupling constant and determines the strength of both quark-gluon and
gluon-gluon interactions. We thus can see that the fermionic part has the form

LDirac = Ψ̄(x) (i /D − M)Ψ(x) = LFree + LCurrent . (2.4)

Here we separated the two contributions

LFree = Ψ̄(x)(i/∂ − M)Ψ(x) , (2.5)

which is nothing but the simple Lagrangian for free Dirac fields with mass term M,
while

LCurrent = gs Ψ̄(x)γµ Aa
µ(x)TaΨ(x) (2.6)
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represents the interaction current mediated by the gluons. From the Feynman-rules
perspective, this last term corresponds to a quark-anti-quark-gluon vertex proportional
to gs. The presence of the SU(3) generators suggests the fact that a gluon’s interaction
with a quark corresponds to a rotation of the quark in SU(3) color space.

Finally,

LGauge = −1
4

Ga
µν Ga µν (2.7)

represents the pure gluonic contribution to the Lagrangian and Gµν corresponds to the
gluon field-strength tensor

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Aa

µ Ab
ν , (2.8)

where the f abc are the antisymmetric structure constants of the SU(3) group appearing
in the corresponding group algebra

[Ta, Tb] = i f abcTc . (2.9)

The presence of a quadratic term in the gluon fields in Eq.(2.8) is a direct consequence
of the theory being non-abelian, since for abelian theories the structure constants trivially
vanish. From this follows that the insertion of Eq.(2.8) into Eq.(2.7) leads to terms which
are cubic and quartic in the gluon fields. This implies that the theory allows, already
at tree level, 3-gluon and 4-gluon self interactions, which are proportional, respectively,
to gs and g2

s . Once again, this feature is not present in abelian gauge theories, like
QED, where photons do not interact with themselves (at tree level, because higher-order
diagrams lead to small photon-photon interactions).

As a final remark, as we have seen, the coupling constant gs plays a crucial role in the
theory. One of the most important features of QCD is that gs, or equivalently αs = g2

s /4π,
becomes weak for processes involving large momentum transfers (“hard processes”).
This phenomenon is usually referred to as asymptotic freedom and was shown by Gross,
Wilczek, Politzer [1, 2] in the context of perturbation theory. This behavior of the cou-
pling constant solidly justifies the use of perturbative QCD (pQCD) at high energy scales
and the reliability of the obtained results. On the other hand, when approaching lower
momentum transfers ("soft processes"), pQCD would predict the existence of the so-
called Landau pole, meaning a point where αs would diverge. The divergent behavior of
αs starts from the scale ΛQCD ∼ 200 MeV, suggesting that, below this scale, perturba-
tive approaches are bound to fail and non-perturbative methods are required. In this
work, for example, we will rely on the use of the Functional Renormalization Group (see
Chapter 3).

2.2 QCD symmetries and chiral symmetry

Besides Poincaré and CP invariance, as we already stated, QCD is a gauge theory, and
thus it is endowed with the local SU(NC) color symmetry, where Nc represents a general
number of colors, which for real QCD corresponds to Nc = 3. A special subset of the
gauge transformation is the so-called center of the SU(3) gauge group, i.e., Z3, which
corresponds to the transformations that commute with every other group element. To
this special subset is related the so-called center symmetry of QCD, whose breaking and
restoration pattern is associated to the transition between confined and deconfined QCD
matter, and whose order parameter is the Polyakov loop. In any case, this will not be
the focus of this section and of this work, so one can refer to, e.g. , [38, 39, 40, 41] and
references therein for a discussion on the subject. The type of symmetry we are more
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interested in regards the flavor space, and in particular global flavor symmetries. It is
clearly sufficient to consider just the Dirac component of the full QCD Lagrangian, since
the pure gauge sector is trivially invariant under transformations in the flavor space,
meaning that different flavors have the same strong interaction.

2.2.1 Chiral limit

As a first step, let us consider the so-called chiral limit, which means that we assume that
the bare quark masses vanish. Let us also decompose each flavor Dirac spinor into its
left-handed and right-handed Weyl spinors, using the projection

ΨL/R = PL/RΨ , (2.10)

where the operator that projects onto the chiral eigenstates is given by:

PL/R =
1 ∓ γ5

2
, (2.11)

with γ5 = iγ0γ1γ2γ3. In this way we can rewrite the Dirac Lagrangian separating the
two chiral projections

Lchiral
Dirac = iΨ̄L(x) /DΨL(x) + iΨ̄R(x) /DΨR(x) . (2.12)

First of all, from Eq.(2.12) it is clear that LDirac is invariant under the two independent
unitary flavor-space transformations UL(1) ⊗ UR(1), which act on the spinors giving
them a global phase

Ψ′
L/R(x) = UL/R(1)ΨL/R(x) = e−iθL/R ΨL/R(x) . (2.13)

In terms of the whole Dirac spinor in the chiral representation

Ψ(x) =
(

ΨL(x)
ΨR(x)

)
, (2.14)

these two symmetries translate into two corresponding symmetries, the so-called UV(1)
vectorial symmetry and UA(1) axial symmetry. Let us first look at the vectorial transfor-
mation

Ψ′(x) = UV(1)Ψ(x) = e−iθV Ψ(x) , (2.15)

which is obtained when transforming the Weyl spinors using the same angle
θR = θL = θV . The axial symmetry is instead realized when transforming the Dirac
spinor in the following way

Ψ′(x) = UA(1)Ψ(x) = e−iγ5θA Ψ(x) , (2.16)

where the γ5 matrix is a block-diagonal 4 × 4 matrix whose 2 × 2 blocks act on the Weyl
spinors, which in the chiral representation for Dirac spinors reads (see App.A)

γ5 =

( −I2×2 02×2
02×2 I2×2

)
. (2.17)

The transformation Eq. (2.16) thus relates the two angles of the corresponding Weyl-
spinor transformations such that θR = −θL = θA.

If we now turn our attention back to the chiral Dirac Lagrangian Eq. (2.12), we can
notice that it is invariant under other transformations belonging to a larger symmetry
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group. In particular, in the Weyl-spinor formulation, it possesses an SUL(N f )⊗ SUR(N f )
symmetry, under which the Weyl spinors transform as follows

Ψ′
L/R(x) = SUL/R(N f )ΨL/R(x) = e−iT⃗ ·⃗θL/R ΨL/R(x) , (2.18)

where T⃗ corresponds to the (N2
f − 1)-dimensional vector of the SU(N f ) group genera-

tors in the fundamental representation and θ⃗L/R contains the (N2
f − 1) parameters of the

transformation. Analogously to the previous case, one can reformulate the transforma-
tions Eq. (2.18) in terms of reparametrizations acting on the full Dirac spinors, obtaining
an SUV(N f )⊗ SUA(N f ) transformation defined as follows

Ψ′(x) = SUV(NF)Ψ(x) = e−iT⃗ ·⃗θV Ψ(x) (2.19)

and
Ψ′(x) = SUA(NF)Ψ(x) = e−iγ5T⃗ ·⃗θA Ψ(x) , (2.20)

where the new parameters can be defined as previously

θ⃗V = θ⃗L = θ⃗R (2.21)

and
θ⃗A = −θ⃗L = θ⃗R . (2.22)

In particular the SUV(N f )⊗ SUA(N f ) symmetry is usually referred to as chiral symmetry.
So the total symmetry group of the chiral QCD Lagrangian, referred also as the chiral
group, is given by

UL(1) ⊗ UR(1) ⊗ SUL(N f ) ⊗ SUR(N f ) , (2.23)

expressed in terms of Weyl spinors, or equivalently in terms of the chiral Dirac spinors

UA(1) ⊗ UV(1) ⊗ SUA(N f ) ⊗ SUV(N f ) . (2.24)

In particular we will focus on the latter, since it is easier to recognize which symmetries
are fulfilled and which ones are broken.

2.2.2 Finite quark masses

We now relax the hypothesis of vanishing quark masses and insert back the mass term
in the Dirac Lagrangian to see the effect on the various symmetries. Since we already
stated that Lchiral

Dirac is invariant under the chiral-group transformations, we will focus only
on the mass term

Lmass
Dirac = −Ψ̄(x) M Ψ(x) . (2.25)

We now rewrite it in terms of the right- and left-handed Weyl spinors:

Lmass
Dirac = −Ψ̄L(x) M ΨR(x)− Ψ̄R(x) M ΨL(x) . (2.26)

From this expression it is clear that the mass couples left-handed and right-handed
spinors, and thus the left and right symmetry groups cannot act independently as it was
the case in the chiral limit. This means that part of the flavor symmetry of the initial
QCD Lagrangian is said to be explicitly broken by the mass term. Thus, let us consider
more in detail how the various symmetries are modified due to the presence of the finite
mass term.
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UV(1) symmetry

The UV(1) symmetry is still realized by the QCD Lagrangian. In particular, according to
Noether’s theorem, there is a conserved current associated to this symmetry

∂µ Jµ = 0 , (2.27)

with
Jµ(x) = Ψ̄(x) γµΨ(x) (2.28)

and thus a conserved charge
d

d t
B(t) = 0 , (2.29)

with

B =
1
3

∫
R3

d3x J0(x) =
1
3

∫
R3

d3x Ψ̄(x) γ0Ψ(x) . (2.30)

This conserved charge is called baryon number, since it basically represents the difference
between the number (operator) of quarks and anti-quarks, thus representing the net
number of baryons (recalling that quarks have baryon number of 1/3). The fact that the
baryon number is a conserved charge implies that it will be conserved in every process
that is governed by the strong interaction, and that every process that violates it is not
allowed. For example this is the reason why the proton is stable and does not decay. In
fact the proton has baryon number 1 and it is the lightest baryon, implying that it would
have to decay into lighter non-baryonic particles with baryon number 0, thus violating
baryon-number conservation.

SUV(N f ) symmetry

The SUV(N f ) symmetry can still be a symmetry of the QCD Lagrangian also in the finite
quark-mass case, but it is realized only if the quark masses are equal for all flavors, i.e.,
if

M = m IN f ×N f . (2.31)

This symmetry is sometimes referred to as generalized isospin symmetry, while the stan-
dard isospin symmetry corresponds to the case N f = 2. The associated conserved
Noether current is usually referred to as the vector current and is given by

Vk
µ(x) = Ψ̄(x)γµTk Ψ(x) , (2.32)

where Tk corresponds to the k-th SU(N f ) generator. If the Lagrangian exactly possesses
a given symmetry, then particles belonging to the spectrum of the theory should arrange
in multiplets of the symmetry group, which correspond to the invariant subspaces as-
sociated with the irreducible representations of SU(N f ). Furthermore, every particle
belonging to a given multiplet should be degenerate, i.e., have the same mass. This
statement can still hold with good approximation even if the masses of the different
flavors are not exactly the same, as far as the mass difference is small compared to the
typical hadronic scale. For instance, in the case of the two flavors N f = 2 up and down,
the mass difference between up and down quark is very small compared to the hadronic
scale Mh ∼ 1GeV:

mu ≃ 2.2MeV , md ≃ 4.7MeV (2.33)

and thus
md − mu ≃ 2.5MeV ≪ Mh . (2.34)
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From this we conclude that the SUV(2) can be considered, with very good approxima-
tion, as a symmetry of the theory. This can be seen for example if we consider the isospin
doublet given by the proton and the neutron. Indeed their mass difference is very small
compared to their mass scale,

mp ≃ 938.3 MeV , mn ≃ 939.6 MeV (2.35)

and
mn − mp ≃ 1.3MeV ≪ mp, mn . (2.36)

This clearly testifies that the SUV(2) isospin symmetry is realized with very good ap-
proximation.

One can also include the strange quark, thus look at the isospin symmetry
SUV(N f = 3). Once again, the mass difference between strange and up or down quark
is, on a hadronic mass scale, comparatively small

ms ≃ 93MeV (2.37)

and
ms − mu ≃ 90MeV ≪ Mh ≃ 1GeV , (2.38)

so that one can assume, to a good approximation, also an approximate SUV(3) flavor
symmetry of the strong interaction. The SUV(3) flavor symmetry is, for example, the one
that was behind the renowned classification scheme for hadrons known as the eightfold
way, introduced by Murray Gell-Mann and Yuval Ne’eman [42, 43] and also based on
the independent work of Zweig [44, 45]. The name comes from the fact that the isospin
multiplets of the SUV(3) along which hadrons are ordered are octets (together with
singlets and decuplets). Even if the SUV(3) flavor symmetry is fairly fulfilled in QCD,
one can see from the hadron multiplets how this is more broken w.r.t. the SUV(2)
flavor symmetry. This can be clearly verified if one takes into account the SUV(3) flavor
octet in which proton and neutrons are located, and considers also other particles in the
multiplet, like for example Ξ−:

mΞ− ≃ 1322MeV , (2.39)

mΞ− − mp ≃ 382MeV ≫ mp − mn ≃ 1.3MeV , (2.40)

thus verifying that the mass difference is significantly larger in SUV(3) multiplets com-
pared to SUV(2) ones. If one keeps on increasing the number of considered flavors, for
example including also the charm quark and the SUV(N f = 4) flavor group, the sym-
metry gets increasingly more explicitly broken. Nevertheless, this symmetry can still be
taken into account for the sake of classifying hadrons with the charm quantum number.

UA(1) symmetry

The UA(1) symmetry is explicitly broken by the finite quark mass. Nevertheless, al-
though being a symmetry of the classical QCD Lagrangian, it is broken, once the theory
is quantized, also in the chiral limit. This phenomenon is usually referred to in QFT as
an anomaly, and in particular the so-called axial anomaly is the one related to the specific
case of the UA(1) symmetry of QCD. More in detail, the axial Noether current

J5,µ(x) = Ψ̄(x)γµγ5Ψ(x) (2.41)

will not be conserved due to quantum corrections

∂µ J5,µ(x) =
αs

4π
Ga

µν G̃µν a , (2.42)
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where G̃µν a = 1
2 ϵµναβGa

αβ is the dual field-strength tensor. The axial anomaly, for exam-
ple, is the reason why the ninth pseudoscalar meson, the η′ is not a pseudo-Goldstone
boson and has a large mass compared to pions [46, 47, 48, 49].

SUA(N f ) symmetry

The SUA(N f ) chiral symmetry is once again explicitly broken by the mass term. This
can be seen from the fact that the axial SUA(N f ) current

Ak
µ(x) = Ψ̄(x)γµγ5Tk Ψ(x) (2.43)

is not conserved anymore

∂µ Ak
µ(x) = 2iΨ̄(x) M γ5Tk Ψ(x) . (2.44)

One can notice that, if one can assume a small-mass limit, then the axial current could be
considered as approximately conserved. This is indeed is the reasoning behind the so-
called partial conservation of the axial current (PCAC) and the Goldberger-Treiman relations,
as we will discuss more in detail in Chapter 5.

2.2.3 Spontaneous breaking of chiral symmetry

Summarizing the statements of the previous subsection, the presence of a finite mass
term for the quarks explicitly breaks the axial symmetries of the Lagrangian, such that
the remaining symmetry group in this case is

UV(1) ⊗ SUV(N f ). (2.45)

Since in this work we are interested in describing the non-perturbative low-energy
QCD behavior via low-energy effective models, we now specialize the discussion con-
sidering only the light flavors. In particular we will not consider the strange flavor, even
if extensions of this work are possible with its inclusion, and focus on the case N f = 2,
including the up and down quark flavors and considering mu = md = m. In this case,
one can argue that the masses of up and down quarks are significantly smaller than
ΛQCD, meaning that one can assume to be in the chiral limit to sufficiently good ap-
proximation. As we pointed out via Eq. (2.44), since we are considering a small mass
term, we can assume the chiral SUA(2) symmetry to be an actual symmetry of the QCD
Lagrangian. If this would be true, then one should find a trace of it in the hadronic mass
spectrum. Namely, one would expect hadrons of the same SUA(2) multiplet, or parity
partners, to have the same mass, or at least to have small mass differences due to the
finite but small current quark mass. Nevertheless, this is far from reality. If, for example,
one considers the masses of the vector meson ρ and the corresponding chiral partner,
the axial-vector meson a1, one finds

mρ = 770MeV ma1 = 1260MeV , (2.46)

which are significantly different. The explanation to this occurrence is that the SUA(2)
chiral symmetry is not just (moderately) explicitly broken by the current quark mass,
but it is also said to be spontaneously broken. This occurs since the vacuum of QCD is not
trivial, and thus not invariant under the chiral SUA(2) transformation, even in the chiral
limit. In particular, in vacuum, the expectation value of the operator Ψ̄Ψ is not vanishing

⟨0 |Ψ̄Ψ| 0⟩ = ⟨0 |Ψ̄uΨu + Ψ̄dΨd + | 0⟩ ̸= 0 . (2.47)
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This is the so-called chiral condensate and plays a fundamental role in the study of chiral
symmetry. In particular, quarks strongly couple to the condensate, obtaining an effective
constituent mass ∼ 300MeV, which is much larger than the current quark mass. This
occurrence breaks chiral symmetry dynamically and the phenomenon is referred to as
spontaneous symmetry breaking (SSB) of chiral symmetry. In this case then, the chiral
symmetry SUV(2)⊗ SUA(2) is spontaneously broken down to the residual symmetry of
the vacuum, SUV(2). Following then the Goldstone theorem [50, 51], the system should
contain a certain number of massless spin-0 excitations, the so-called Goldstone bosons.
The number of Goldstone bosons is given by the number of generator which generate
the transformations under which the vacuum is not invariant. In the analyzed case this
group corresponds to

(SUV(2)⊗ SUA(2))− SUV(2) , (2.48)

which contains 3 generators.Thus, we expect 3 Goldstone bosons, which correspond to
the pions. Increasing temperature and/or density, one expects the quark condensate
to melt, restoring chiral symmetry. In this case, the pions become massive and are not
Goldstone bosons anymore. In particular they become degenerate with their chiral part-
ner, the σ (which is massive also in the chiral-symmetry broken phase), and the same
happens for the ρ and a1 mesons. This phase is usually referred to, in a pretty self-
explanatory way, as chirally symmetric or chirally restored phase. Nevertheless, the pattern
of spontaneous symmetry braking/restoration of the chiral symmetry is not exact in real
QCD because of the finite quark mass which explicitly breaks the symmetry. In this case,
the pions are not exactly massless Goldstone bosons, since they acquire a small but finite
mass. Since, also in this case, the biggest contribution to the breaking of chiral symmetry
is still provided by the chiral condensate, it still make sense to use the spontaneous sym-
metry breaking/restoration pattern as a valid guideline. In this case, the pions are thus
indicated as pseudo-Goldstone bosons. Since the largest component of the hadron masses
arises from the SSB of chiral symmetry, it is clear that it is fundamental to incorporate
it into the low-energy models used to study QCD. The description of the mechanism
of chiral symmetry breaking and restoration and the properties of the system close to
this transition will be the main focus of this work. This will be done by means of the
introduction of suitable low-energy effective models for QCD. These models have to be
constructed in order to be able to reproduce the symmetry breaking/restoration pattern
via the introduction of different and suitable degrees of freedom, thus possibly giving
us a hint on the physics underlying this phenomenon.
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Chapter 3
The Functional Renormalization Group

3.1 Motivation

The understanding of the behavior of systems where microscopic degrees of freedom are
strongly interacting is the main goal of many areas of physics, ranging from condensed
matter [52, 53] to elementary-particle theories [54, 55], to quantum gravity [56, 57]. How-
ever, a strictly theoretical approach to these systems is often very difficult, involving the
use of suitable and powerful tools. This difficulty becomes even more challenging if the
system is facing a phase transition, since new degrees of freedom may arise or become
relevant. In this case, the underlying theory must relate consistently the two regimes
and thus describe the transition from one set of degrees of freedom to the other.
A widely exploited theoretical method suitable to this situation is the renormalization
group (RG) introduced by Wilson [58]. This technique can be combined with perturba-
tion theory in order to describe systems where many interacting degrees of freedom are
present and the infrared degrees of freedom interact via a small effective coupling [59].
Unfortunately, this approach cannot be used in systems where such a small coupling,
or in general a small perturbative parameter simply does not exist or it is hard to iden-
tify. Furthermore the perturbative series does not converge in general and one has to
exploit some resummation techniques, often relying on the fine-tuning of some external
parameter.

On the other hand, another possible approach to critical systems are computer sim-
ulations and Monte Carlo methods, which have been successfully used to obtain high-
precision estimates of the critical exponents [60, 61]. However, one of the major issues
with these methods is the extremely large amount of computer time needed.

We also mention the existence of other methods which can be used to face critical
phenomena. Among these, the conformal-field theory approach [62] led, for example, to
a high precision on critical exponents for the Ising model, originally in 2D and later in
3D thanks to the Conformal Bootstrap (CB) technique.

In order to overcome the difficulties of the perturbative RG method and the numer-
ical simulations, a different and powerful kind of approach can be used: the so-called
Functional Renormalization Group (FRG), also referred as Exact RG or Nonperturbative RG
(NPRG). Functional methods aim at the computation of generating functionals of cor-
relation functions, such as the effective action that governs the dynamics of the macro-
scopic expectation values of the fields. These generating functionals contain all relevant
physical information about a theory, once the microscopic fluctuations have been inte-
grated out. The functional RG combines this functional approach with the RG idea of
treating the fluctuations not all at once but successively from scale to scale. Instead
of studying correlation functions after having averaged over all fluctuations, only the

27
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change of the correlation functions as induced by an infinitesimal momentum shell of
fluctuations is considered. From a structural viewpoint, this allows to transform the
functional-integral structure of standard field-theory formulations into a functional dif-
ferential structure. The central tool of the functional RG is given by a flow equation,
which describes the evolution of correlation functions and of their generating functional
under the influence of fluctuations. It connects, in an exact manner, a well-defined initial
quantity, e.g., the microscopic correlation functions in a perturbative domain, with the
desired full correlation functions after having integrated out the fluctuations. Hence,
solving the flow equation corresponds to solve the full theory. Thanks to the fact that
it is non-perturbative and to its underlying logic of connecting degrees of freedom at
different scales, it seems clear that the FRG approach is well suited to face the issue of
describing systems approaching criticality and phase transitions, and thus a reliable tool
to investigate the QCD phase diagram.

3.2 Wetterich formulation of the Functional Renormaliza-
tion Group

The goal of this chapter is to give an overview of the Functional Renormalization Group
(FRG) approach in the formulation given by Wetterich et al. [63, 64, 65, 66, 67]. For fur-
ther references one can also see [68, 69, 70, 71, 72]. The original idea which is at the basis
of the FRG approach can be dated back to the concept of spin coarse-graining introduced
by Kadanoff [73] and the continuous generalization implemented via momentum-shell
integration by Wilson [58, 74, 75, 76, 77] and others, see, e.g., Refs. [78, 79].

The central object of the FRG approach is the effective action Γ[ϕ], which is the gen-
erating functional of 1PI vertex functions (see App. B). In principle one could just solve
the path integral Eq. (B.1) and from that derive the effective action using its definition
via Eq. (B.11). Thus, this approach would correspond to integrate all quantum (or ther-
mal) fluctuations at once. Nevertheless, as one can imagine, this can almost never be
achieved due to the complexity of solving the path integral, except for very special
cases, e.g 0-dimensional theories, where the path integral simply reduces to a standard
integral [80, 81, 82]. Thus, instead of integrating fluctuations all at once, one can use
the FRG approach and follow the idea by Wilson of integrating fluctuations in momen-
tum shells. Then, in order to compute Γ[ϕ] within the FRG framework, one introduces
another functional, the so-called effective average action Γk[ϕ]. This quantity depends on
the parameter k, which is a coarse-graining scale with physical dimension of a momen-
tum, indicating the momentum shell beyond which fluctuations have been integrated
out. From a practical perspective one can think of Γk as an effective action depending on
coarse-grained fields, averaged in momentum space over a volume in momentum space
∼ kd [83]. In this way, the momentum components of the averaged fields which are
larger than the shell-scale k can be considered as effectively integrated out. In particular,
k → ∞ corresponds to the case where no fluctuations have been integrated out while
k = 0 signals the full quantum theory, where all the fluctuations have been integrated
out. For this reason, it seems natural that the previously mentioned RG-scale dependent
effective action Γk[ϕ] has to coincide with the bare action Sbare[ϕ] in the limit k → ∞,
which we will also refer to as the ultraviolet (UV) limit, while it has to coincide with the
full quantum effective action Γ[ϕ] when k → 0, which we will indicate as the infrared
(IR) limit. So we have:

Γk→∞[ϕ] = Sbare[ϕ] , Γk→0[ϕ] = Γ[ϕ] . (3.1)
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In practice, one may not always be able to send k → ∞ either from a purely mathematical
point of view or for a physical reason, meaning that the theory is valid up to a certain
energy scale. Therefore, one usually introduces a UV cutoff scale Λ, which is chosen
to be sufficiently large, i.e., much larger than any other physical scale of the theory,
and assumes that the bare classical action describes the underlying theory at this scale.
However, using a finite cutoff is an approximation and one has to ensure that the results
are independent of the choice of Λ, e.g., by respecting Renormalization Group (RG)
consistency [84], which we will investigate in Chapter 7.

We now explain how the effective average action is constructed starting from the stan-
dard functionals used in QFT, defined in App. B, via the introduction of a dependence
on the RG-scale k.

The first step in order to construct the effective average action is to define an IR-
regulated generating functional

Zk[J] ≡
∫

Λ
Dφ e−S[φ]−∆Sk[φ]+

∫
Jφ , (3.2)

where we have introduced the regulator term

∆Sk[φ] =
1
2

∫ dDq
(2π)D φ(−q) Rk(q) φ(q) , (3.3)

which is quadratic in φ and plays the role of an FRG-scale dependent mass term.
The function Rk(q) is called regulator function and should be chosen in order for Γk to
satisfy the requirements in Eq. (3.1), i.e., smoothly interpolate between the microscopic
action Sbare, for k = Λ, and the effective action of the original model Γ, for k = 0.
Therefore it has to satisfy the following conditions:

1.
lim

k2→Λ2→∞
Rk(q) → ∞ (3.4)

This condition is necessary to recover the classical limit in the UV, i.e., when fluc-
tuations are not integrated. In particular, condition Eq. (3.4) ensures that the func-
tional integral is saturated for the classical equation of motion. Therefore, all fluctu-
ations are then frozen for k = Λ, as in Landau’s mean-field theory, and this justifies
the use of a saddle-point approximation, which just singles out the classical field
configuration and the bare action, which allows us to conclude Γk→Λ → S + const.

2.
lim

k2/q2→0
Rk(q) = 0 (3.5)

This ensures the recovery of the physical limit in the k → 0 case. In fact, for
k → 0, all fluctuations are taken into account and the effective average action has
to coincide with the full effective action of the original model, Γk→0 = Γ.

3.
lim

q2/k2→0
Rk > 0 (3.6)

This requirement provides the IR regulation to the theory. In this way, we ensure
that the regulator suppress the soft modes with momenta q2 ≲ k2. In fact, Rk
acts like a scale-dependent mass contribution for low momenta, such that low-
momentum modes effectively decouple. This can be clearly seen from the fact that
one can assume Rk ∼ k2 for q2 ≪ k2, meaning that the regulator behaves like a
mass term m2 ∼ k2 and screens the IR modes.
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Usually, the regulator is written in a more convenient form in terms of a dimensionless
regulator function r(y) which depends on a dimensionless variable y = q2/k2:

Rk(q2) = q2r(y) . (3.7)

This shape function is most useful due to the role of Rk as a mass-like term, since in this
way it is easier to recover the dispersion relations of the particles involved. We will see
this aspect in more detail after we introduced the FRG flow equation. Obviously, the
constraints (3.4)-(3.6) translate into the corresponding requirements for r(y):

r(y → 0) ∼ 1
y

, r(y → ∞) → 0 . (3.8)

There exist several types of regulator, depending on the choice of the regulator shape
function r(y) and also on the structure of the regulator itself, as we will investigate later
in this work. This implies that the choice of the specific shape of the regulator is a delicate
issue and can be optimized depending on the problem, see, e.g., Refs. [85, 86, 87, 88] for
details.

We now continue with the task of constructing the effective average action. Proceed-
ing as one does for Eq. (B.6), let us consider the connected generating functional

Wk[J] = ln Zk[J] . (3.9)

Following the same line of reasoning which leads to Eq. (B.11), we can define the
interpolating effective action Γk by a modified Legendre transform which includes the
regulator term [83, 89]:

Γk[ϕ] = sup
J

(∫
Jϕ − Wk[J]

)
− ∆Sk[ϕ] . (3.10)

It is worth noticing that, in this case, the source value J = Jsup = Jk[ϕ] for which the
supremum is approached is k-dependent. In a parallelism with statistical field theory,
here ϕ = ϕk plays the role of an "order-parameter" field while we have to consider Jk[ϕ]
as an external current functional of ϕ which is singled out by the sup condition. In order
to find the meaning of ϕ (compare to Eq. (B.13)), we choose J = Jsup thus obtaining:

δ

δJ

[(∫
Jϕ − Wk[J]

)
− ∆Sk[ϕ]

]
J=Jsup

= 0 , (3.11)

which leads to

ϕ(x) = ⟨φ(x)⟩J =
δWk[J]
δJ(x)

. (3.12)

This implies that ϕ corresponds to the scale-dependent expectation value of the field
φ in the presence of the source J. That is why ϕ is usually referred to as the scale-dependent
classical field. As a final remark, we note that, in general, the addition of the regulator
term in the definition Eq. (3.10) spoils the property of convexity of the Legendre trans-
form, which is recovered in the limit k → 0, when the regulator has to vanish. However,
the addition of the regulator term helps removing trivial terms that would develop in
the flow equation, as one can see for example in studying the Polchinski equation for
the Schwinger functional [78]. This is the reason why, sometimes in the literature, a dis-
tinction is made between the scale-dependent effective action, which contains only the
Legendre transform term of Eq. (3.10), and the proper scale-dependent effective average
action, which corresponds to the definition Eq. (3.10) where we have the additional reg-
ulator term. We are now ready to introduce the equation that describes the evolution of
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the effective average action as one integrates out fluctuations with increasingly smaller
momenta, i.e., the equation that describes the evolution of Γk[ϕ] as k runs from the UV,
k → ∞, to the IR, k → 0. This is the so-called Wetterich equation, or Exact Renormalization
Group flow equation, or simply FRG flow equation [63, 83, 90],

∂kΓk[ϕ] = Tr
[(1

2
∂kRk

)(
Γ(2)

k [ϕ] + Rk
)−1
]
= , (3.13)

where the trace indicates an integral over momenta and a sum over all internal degrees
of freedom of the theory, such us color, flavor, spin etc.. The FRG flow equation is
the central object of the FRG approach and will be the starting point for any further
investigation in this work. One of the first features one can point out from the FRG flow
equation is that it has an exact one-loop structure, since it contains the full propagator
Gk[ϕ] = (Γ(2)

k [ϕ] + Rk)
−1. This one-loop structure of the flow equation is due to the

fact that the regulator term we added to the classical action, ∆Sk, is quadratic in the field
operator φ, and it is indicated by the Feynman-diagram representation on the right-hand
side. Here, the black line represents the full propagator Gk[ϕ] = (Γ(2)

k [ϕ] + Rk)
−1 and the

crossed circle stands for the insertion of the regulator via the term 1
2 ∂kRk.

One can also point out the fact that the RG-trajectory, i.e., the RG-time or RG-scale
evolution of the effective average action governed by the Wetterich equation Eq. (3.13),
can be also viewed as a trajectory in the so-called theory space, which is the space
spanned by all possible operators which possess a symmetry compatible with the exam-
ined theory. This trajectory clearly depends on the choice of the regulator, but property
Eq.(3.5) ensures that the ending point is always the full quantum effective action Γ. Any-
way, as we will discuss later in much more detail, this reasoning is not valid anymore
if we use approximations in solving the FRG flow equation, which may be, for exam-
ple, the presence of a finite UV cutoff Λ, the use of truncations for the effective action
and/or the existence of a finite IR scale kIR > 0 as the final point reachable during the
RG-evolution.

We already pointed out the IR-regulation function of the regulator, but it also serves
as a UV regularization, due to the term ∂kRk in Eq. (3.13). In fact, ∂kRk can usually be
considered to be small except for values q2 ∼ k2, implying also that the main contribution
to the momentum integral comes from this momentum shell, thus also implementing the
concept of the Wilsonian momentum-shell integration.

As a final consideration, for the sake of convenience, let us introduce the RG time t
and the following abbreviations:

t = − ln
(

k
Λ

)
⇐⇒ k = Λ e−t , (3.14)

from which follows

∂

∂t
= −k

∂

∂k
. (3.15)

With respect to the standard literature definition, we added an extra minus sign in
Eq. (3.14). This is just a convention chosen in order to have a positive RG-time evo-
lution, which flows from t = 0 (UV) to t → ∞ (IR), following the natural scaling of a
variable which resembles time. This will be especially useful in the process of identi-
fying the FRG flow equation as a hydrodynamic equation, as we will investigate in the
following chapters.
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3.3 Approximation schemes

The exactness of the FRG flow equation is a very striking feature, since it means that
UV and IR quantities are linked in an exact way, and thus solving the flow equation
corresponds to solving the theory. However, despite its deceptively simple form, the
Wetterich equation is a functional integro-differential equation, and as such it cannot
be solved exactly for an arbitrary Γk[Φ], because this would imply, in general, to find
an exact generic solution for an infinite system of coupled integro-differential equations
(one equation for each operator, compatible with the symmetry of the theory, that spans
the theory space). Thus, it is clear that some approximation has to be made. Every kind
of expansion of the effective action, in order to be reliable, should have two important
properties:

1. systematicity, which means that there exists a hierarchy which establishes a definite
order of relevance in the expansion;

2. consistency, in the sense that all the terms up to the chosen order in the expansion
have to be taken into account.

We will introduce the two main approximation schemes used in literature, which are
usually referred to as method of truncations: the vertex expansion and the operator expansion.
Since none of these approximations rely on the existence of a small coupling parameter,
the FRG approach retains its non-perturbative nature.

3.3.1 Vertex expansion

The vertex expansion was developed by Tim R. Morris et al. [65, 91]. It represents a
valid and widely used approach in condensed-matter physics and also in low-energy
QCD studies [70, 71, 92, 93, 94]. The key idea is an expansion of the effective average
action in powers of the field ϕ

Γk[ϕ] =
∞

∑
n=0

1
n!

∫
dDx1 · · · dDxn Γ(n)

k (x1 · · · xn) ϕ(x1) · · · ϕ(xn) , (3.16)

where Γ(n)
k are the scale-dependent 1PI vertex functions defined in Eq. (C.7). Once we

insert this expansion into the Wetterich equation Eq.(3.13), we obtain a tower of coupled
flow equations for the different Γ(n)

k , which will then interpolate between the bare and the
fully dressed vertex functions. The tower contains an infinite number of equations and,
due to the structure of the Wetterich equation, each equation couples the evolution of Γ(n)

k

to the Γ(n+2)
k vertex function. Thus, this tower needs to be truncated at some order via

an approximation, in a similar fashion to the Dyson-Schwinger equations [95, 96, 97, 98].
One of the main advantages of this approximation consists of its relative simplicity,
such that sometimes it is also used in combination with the derivative expansion to
further simplify the solution of the flow equation [99, 100, 101, 102, 103, 104]. One
of the downsides of using the vertex expansion is that it assumes regularity of Γk[ϕ],
since Γk[ϕ] has to be differentiable at least n + 2-times in order to obtain the vertex
functions. Anyway, it has been shown that this property of analyticity may be violated
near phase transitions, where the effective action develops discontinuities or points of
non-analyticity during the FRG flow [32, 105, 106]. For this reason it is preferable to
adopt a different truncation scheme when approaching this kind of phenomena in order
to correctly capturing the non-analytic behavior of the effective action.
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3.3.2 Operator and Derivative Expansion

A second popular scheme used in order to obtain approximate solutions of the flow
equations is the operator expansion, which approximates the effective action using op-
erators of increasing mass dimension. In particular we will focus on the derivative oper-
ators, obtaining the so-called derivative expansion of the effective action [71, 72, 107, 108],
which consists of expanding the effective average action Γk[ϕ] in terms of all composite
operators constructed from space-time derivatives (in principle of arbitrary order) of the
fields. These composite operators must be compatible with the symmetries of the theory.

As for the vertex-expansion case, one obtains an infinite system of coupled integro-
differential equations which needs to be truncated at a certain order of space-time deriva-
tives of the fields. As an example, for a theory with one real scalar field, a possible
derivative-expansion truncation for the effective action would read

Γk[ϕ] =
∫

dDx
[

Vk(ϕ) +
1
2
Zk(ϕ)(∂µϕ)2 +O(∂4)

]
, (3.17)

where
Vk(ϕ) =

1
Vol

Γk[ϕ]ϕ=const (3.18)

corresponds to the effective potential and Zk(ϕ) is called wave-function renormalization
factor. Vol indicates the D-dimensional space-time volume.

In particular

Γk[ϕ] =
∫

dDx
[

Vk(ϕ) +
1
2
(∂µϕ)2

]
(3.19)

is usually referred to as local potential approximation (LPA), since the only scale depen-
dence of the effective average action comes from the effective potential, and the wave
function renormalization factor is trivially set to one, Zk(ϕ) = 1. The subsequent im-
provement of the LPA is the so-called LPA’

Γk[ϕ] =
∫

dDx
[

Vk(ϕ) +
1
2
Zk (∂µϕ)2

]
(3.20)

in which the wave function renormalization factor is reintroduced in a non trivial way,
since it is considered to be RG-scale but not field-dependent. Thanks to the presence
of the non-trivial wave function renormalization function, this truncation is extremely
useful when dealing with a large variety of physical phenomena, such as Mott regimes,
(color-)superconductivity, inhomogeneous phases and in general all those systems which
exhibit behavior characterized by a non-trivial dispersion relation [109, 110, 111, 112,
113, 114]. In general, the derivative expansion turns out to be very useful when used
to understand, as we will see, the low-momentum (or, equivalently, long-wavelength)
behavior, such as in critical phenomena. It is one of the most used approximation tech-
niques in the literature and its features have been largely discussed (for example in
[69, 71, 108, 115, 116]). In particular, since in this work we are interested in capturing the
correct physical behavior of phase transitions and critical phenomena in general, as pre-
viously pointed out, we have to employ a method which allows to treat discontinuities
and non-analyticities in the FRG flow of the effective action. The derivative expansion
fulfills this requirement, even in the most simple truncation, the aforementioned LPA.
Thanks to this feature and to the relatively simple calculations to which it leads, the LPA
will be the main truncation we will use throughout this work. Naturally, one can check
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the systematic error on the obtained results using higher-order truncations (LPA’, full
2nd-order expansion etc...), but this is beyond the scope of the present thesis and part of
an ongoing work.



Chapter 4
The O(N) model

This chapter is mainly based on [117].

4.1 Introduction and motivation

In this chapter we begin our investigation of QCD effective field theories by studying
the O(N) model and in particular its behavior close to a second-order phase transition
and the related critical exponents.
Let us consider the O(N) model in D-dimensional Euclidean space-time. The theory
describes a collection of N scalar fields ϕa(x) with a = 1, · · · , N and the associated bare
action is

S[ϕ⃗] =
∫

dDx
{
(∂µϕa)

2 + V(ρ)
}

, (4.1)

where ϕ⃗ = (ϕ1, · · · , ϕN), V(ρ) is the self-interacting potential and ρ = 1
2 ϕaϕa. The O(N)

symmetry is represented on the field space as an orthogonal transformation

ϕa → Oabϕb . (4.2)

According to this symmetry, the O(N)-invariant terms are those constructed by the mod-
ulus of the fields ϕaϕa . That is the reason why the potential is restricted to depend only
on O(N)-invariant terms, namely the combination ρ = 1

2 ϕaϕa.
Despite being a rather simple model, the O(N) model can describe a significantly

large variety of physical systems at different energy scales. The reason behind such
a wide range of applicability of this relatively simple model is due to the well-known
universal behavior of physical systems close to criticality, i.e., close to a second-order
phase transition. Under these circumstances, the microscopic degrees of freedom cease
to be relevant and only the main features, like the symmetry of the model, play a role in
the description of the physical behavior of the system.

For example, the main reason why we consider the O(N) model is that for N = 4 it
can describe the chiral phase transition in Quantum Chromodynamics (QCD) with two
quark flavors [118]. Furthermore, for N = 3 it belongs to the universality class of the
Heisenberg model, describing a ferromagnetic phase transition [119]. The N = 2 case
can be used to describe the XY-model [120] and N = 1 belongs to the Ising universality
class [121].

For the previous reasons, the O(N) model can be effectively considered as a prototype
model to study in detail the mechanisms that govern a phase transition.

The reason why we choose to investigate such a physical phenomenon via the FRG
approach is fact that phase transitions involving a change in the degrees of freedom

35
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at different scales are highly non-perturbative phenomena. Thus, thanks to the fact
that it is non-perturbative and connects degrees of freedom at different scales, the FRG
approach is well suited to address the issue of describing systems approaching criticality
and phase transitions, and thus a tool for the computation of critical exponents, cf.
Refs. [122, 123, 124, 125, 126, 127, 128, 129, 130].

As we stated at the beginning of this section, our goal is to study both the critical
behavior and the critical exponents for this model. However, the critical exponents of
the O(N) model have already been studied within the FRG approach several times, see,
e.g., Refs. [124, 127, 128, 130, 131]. There are essentially two reasons why we chose to
redo such a study. The first one is given by the recent development of a new approach to
the solution of the FRG flow [32]. This approach is based on the key observation that the
FRG flow equation, under specific approximations and truncations, can be rearranged
into the form of a hydrodynamic advection-diffusion equation. This thus strongly pushes
towards the use of specific numerical techniques, which are well-known from hydro-
dynamics, to solve that equation, see Refs. [80, 81, 105, 106, 132, 133, 134] as well as
Refs. [135, 136, 137, 138, 139, 140, 141] for some early developments. To be more specific,
a key feature of hydrodynamic conservation laws is that they allow for the formation
of discontinuities or, more general, non-analyticities in the solution of the differential
equation. This requires that the applied numerical scheme has to be able to capture and
properly handle such non-analyticities. In the previously cited work, Ref. [32], a dis-
continuous Galerkin method was used to solve the FRG flow equation. In contrast here
we will exploit a well-established finite-volume central scheme, the so-called Kurganov-
Tadmor (KT) algorithm, which is designed to have a high-order accuracy, preserving
stability and introducing negligible dissipation, while allowing to treat discontinuities
in the solution (see App. E and Ref. [142] for more details). The second reason why we
chose to repeat such an investigation is to provide a more systematic study of various
sources of errors in determining the critical exponents of the O(N) model, since the pre-
vious studies which used the FRG approach in the LPA for such calculations lack this
kind of extensive error study. It is also worth mentioning that, as already specified, there
are more advanced truncations available for high-precision calculations of the critical ex-
ponents of O(N) models via the FRG, and/or different approaches (using, for example,
fixed-point equations) [127, 128, 130, 131], and the scope of this chapter is not to provide
results that can rival that precision. However, some of these works combine the use of
fixed-point equations with the approach we employed, thus making the error analysis
of wider interest.

We now proceed to analyze the flow equation that describes the k (or equivalently t)
evolution of the average effective action. As already mentioned in Chapter 3, to do so
we need to truncate the effective action, i.e., we need to choose an ansatz. We will use
a derivative expansion and in particular the LPA, where the only space-time derivatives
of the fields appear in the kinetic term and the effective potential Vk(ρ) is the only scale-
dependent quantity. In particular, as we stated in the introduction, we choose to use the
derivative expansion over the vertex expansion since the latter assumes regularity of the
effective action, which is clearly not the case in the proximity of phase transitions, where
the effective action can develop discontinuities or points of non-analyticity during the
FRG flow [32, 105, 106]. This requirement is particularly strict in our case, since the other
goal of this chapter is the calculation of the critical exponents for a second-order phase
transition, and discontinuities and non-analyticities in the effective action are expected
in this case.
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4.2 The flow equation in the LPA

As we established in the previous section, the first step to study the critical behavior
of the O(N) model will be to derive the flow equation that describes the k-evolution of
the effective average action. As already mentioned, we will consider the easiest approx-
imation one can make for the effective action, i.e., the LPA. This approximation is really
useful since it leads to simple expressions while capturing many features of the theory.
Furthermore, it becomes exact in the limit N → ∞ [143]. The LPA ansatz for the effective
action is given by

Γk[ϕ⃗ ] =
∫

dDx
[1

2 (∂µϕa)
2 + Vk(ρ)

]
, (4.3)

where Vk(ρ) is the effective potential, which is the only quantity depending on the FRG
momentum scale k, and ρ = 1

2 ϕaϕa is the previously defined O(N) invariant. If one
would try to improve the truncation, the next order in the derivative expansion would be
the LPA′, which includes a non-trivial scale-dependent wave-function renormalization
factor. For different and better truncations in models with properties similar to the O(N)
model, see, e.g., Refs. [144, 145, 146, 147]. In this chapter and in the whole thesis, the
wave function renormalization factor is set to Zk = 1 identically.

Once the ansatz for the effective action is specified, we can insert it into the right-
hand side of the Wetterich equation (3.13) to derive a PDE for the effective potential
Vk(ρ).

For a concrete result, we have to choose a regulator which satisfies the conditions
(3.6)-(3.4). It is possible to prove (see [148]) that, in the case of the LPA, an optimal
choice for the regulator, in terms of stability of the kernel of the FRG flow equation, is
the Litim regulator

Rk(q, p) = (2π)D δ(D)(q + p) p2 rk(p) , (4.4)

where rk(p) is the corresponding regulator shape function

rk(p) =
(

k2

p2 − 1
)

Θ
(

k2

p2 − 1
)

. (4.5)

Once both the ansatz for the effective average action and the regulator have been
fixed, one can plug them into the flow equation Eq.(3.13) and arrive at the flow equation
for the effective potential in the LPA:

∂kVk(ρ) = AD kD+1
(

N − 1
k2 + V′

k(t, ρ)
+

1
k2 + V′

k(t, ρ) + 2ρV′′
k (t, ρ)

)
, (4.6)

where we introduced the notation

V′
k(ρ) = ∂ρVk(ρ) , V′′

k (ρ) = ∂ρV′
k(ρ) = ∂2

ρρVk(ρ). (4.7)

Furthermore, we defined the factor

AD =
ΩD

(2π)DD
, (4.8)

where

ΩD =
2πD/2

Γ(D
2 )

(4.9)
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is the volume of a D − 1 dimensional sphere. In this context, Γ indicates the usual
Gamma function. More details about the steps we followed for the derivation of the
flow equation Eq. (4.6) are provided in App.D.1.

As we stated in the introduction, the choice of the UV cutoff Λ in Eq. (4.6) should be
guided by the fact that Λ ≫ any scale of the problem, such that in the limit k → Λ ∼ ∞
one recovers Γ[ϕ] ≃ Sbare[ϕ]. In our calculation we will use Λ = 1 GeV, which can be
considered as sufficiently larger than the scales involved in the model.

Already at this level, we can point out some features of this flow equation and its
structure, which are strictly related to the physical content of the theory.

1. First of all we can notice that the r.h.s. of Eq. (4.6) is independent of Vk(t, ρ). We
will take further advantage of this observation when discussing the conservative
formulation of the flow equation.

2. The two terms that compose the r.h.s of the flow equation very closely resemble
the structure of the propagator for a scalar field in momentum space:

G(p)scalar ≃
1

p2 + m2 . (4.10)

However, this is not just a resemblance, since the two terms arise from the loop
involved in the flow equation, which is specified by inversion of the regularized
two-point function Γ2

k + Rk, which, by definition, represents the scale-dependent
full propagator.

3. The previous point allows us to identify two different type of particles, the pions
and the radial sigma mode, to which correspond two different masses whose values
depend on the effective potential:

m2
π = V′

k(t, ρ) , m2
σ = V′

k(t, ρ) + 2 ρ V′′
k (t, ρ) . (4.11)

4. If the physical point, i.e., the global minimum of the effective potential, is located
at ρ = 0, we can observe that both the sigma and the pion modes are massive and
their masses coincide m2

π = m2
σ. In this case the theory still possesses the O(N)

symmetry and thus we will refer to this case as the symmetric phase.

5. When the radial sigma mode acquires a non-vanishing expectation value, which
means that V′(t, ρ) = 0 for ρ ̸= 0, this leads to a spontaneous symmetry breaking of
the O(N) symmetry, leaving an O(N − 1) residual symmetry. Thus we will refer to
this case as the broken phase. Under these circumstances, the Goldstone theorem
predicts the presence of exactly N − 1 massless bosons, the so-called Goldstone
bosons. Indeed in this case the pion modes become massless since V′(t, ρ) = 0,
and we have exactly N − 1 pion modes, which then play the role of the Goldstone
bosons related to this spontaneous breaking of symmetry. From this discussion
thus follows the original choice of naming the pion and the sigma loops in this
way.

4.2.1 Formulation in terms of the field σ and boundary conditions

The formulation we followed so far for the partial differential equation (PDE) Eq. (4.6)
for the effective potential involves the use of the O(N)-invariant ρ. However, this specif-
ically leads to some issues related to the boundary condition of the discretized version
of Eq. (4.6). In particular, the numerical solution of a PDE with a scheme that requires a
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discretization of the spatial dimension(s), exploits a stencil of points close to the consid-
ered one, where the value of the solution of the PDE is defined. When the considered
points are located at the edge of the spatial domain, the knowledge of the (discretized
version of the) boundary conditions is needed, which usually is provided by the physics
underlying the PDE. In the analyzed case, in particular, this stencil is also required at
the boundary ρ = 0, which means that the knowledge of the value of Vk(ρ) for some
negative value of ρ, which does not exist, is demanded by the numerical scheme.

A possible solution is to reformulate the equations above in terms of the field expec-
tation value

σ =
√

2ρ (4.12)

Thus, we will consider Vk(σ), ∂σVk(σ), and ∂2
σσVk(σ) instead of Vk(ρ), ∂ρVk(ρ), and

∂2
ρρVk(ρ). With this change of notation we can put Eq. (4.6) in the following form:

∂kVk(σ) = AD kD+1
[

N − 1
k2 + 1

σ ∂σVk(σ)
+

1
k2 + ∂2

σVk(σ)

]
. (4.13)

This equation will be the reference point for our further investigations in the LPA for the
O(N) model. Using this formulation the problem of the boundary conditions at ρ = 0
is now easily solved, since we now have access to values of Vk(σ) at the points close to
σ = 0: we just need to exploit the O(N) symmetry of the model and in particular the Z2
symmetry of the effective potential:

Vk(σ) = Vk(−σ) , (4.14)

which leads to a Z2 antisymmetry for ∂σV(σ)

∂σVk(σ) = −∂σVk(−σ) (4.15)

and to a Z2 symmetry for ∂2
σσV(σ)

∂2
σσVk(σ) = ∂2

σσVk(−σ) . (4.16)

A second boundary condition that has to be specified is the one at large field values.
This is related to the fact that it is not generally possible to numerically solve the flow
equation on the whole domain σ ∈ [0, ∞). Therefore, one has to choose a given maxi-
mum value of σ, that we will call σmax, and on this point we are also required to know
the value of the effective potential, i.e., we need Vk(σmax).

The criterion according to which one should choose σmax can be obtained via some
considerations on the symmetries of the model and on the structure of the flow equation
Eq. (4.13). In particular at the UV cutoff scale, k → Λ → ∞, the effective action coincides
with the bare action. This means that the effective potential Vk(σ) is given by the cor-
responding interaction term in the bare action Sbare, which is oftentimes parameterized
as polynomial in powers of the field σ. If the theory, and thus the effective potential, is
Z2-symmetric, this implies that the only allowed powers of σ are the even ones. Thus,
in order for the theory to describe some non trivial interactions, the potential has to
be at least of fourth order in σ, i.e., Vk=Λ(σ) ∼ σ4. From this naturally follows that
∂σVk=Λ(σ) ∼ σ3 and ∂2

σσVk=Λ(σ) ∼ σ2. From the structure of the FRG flow equation
Eq. (4.13) we can thus observe that its right-hand side becomes smaller and smaller for
larger values of σ, scaling with a power at least of order ∼ σ−2. From this piece of
information we can thus deduce that we must choose σmax large enough to neglect the
right-hand side of the flow equation Eq. (4.13). This implies that the evolution of the
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effective potential at the boundary is negligible and thus one can assume that Vk(σmax)
does not change under the FRG flow and keeps its original UV value. A detailed discus-
sion on the boundary conditions and how to implement them can also be found in Ref.
[80].

4.2.2 Conservative formulation

As we already pointed out, Eq. (4.13) for the evolution of Vk(σ) is independent of the
value of the potential itself, and this seems intuitive since the value of the potential is
related to the undetectable zero-point energy and only the differences and derivatives
of the effective potential are observable. This opens the possibility, from a mathematical
point of view, for the flow equation to be expressed solely in terms of the derivative(s) of
the effective potential. Before proceeding, it is convenient to replace the k-dependence of
Vk(σ) by the equivalent dependence on the RG-time variable t. Thus, we define V(t, σ) =
Vk(σ) and we use this convention in the following. So, as previously mentioned, we now
introduce the derivative of the potential as new variable

u(t, σ) = ∂σV(t, σ) (4.17)

and in an analogous way

u′(t, σ) = ∂σu(t, σ) = ∂2
σσV(t, σ) . (4.18)

As a next step, we thus take a derivative of Eq. (4.13) with respect to σ and rearrange
the terms, obtaining

∂tu(t, σ) +
∂

∂ σ

[
(N − 1) AD

(Λe−t)D+2

(Λe−t)2 + 1
σ u(t, σ)

]
=

∂

∂ σ

[
AD

(Λe−t)D+2

(Λe−t)2 + u′(t, σ)

]
. (4.19)

Thus, we obtained an equation for the derivative of the potential u(t, σ) of the form

∂tu(t, σ) + ∂σ f (t, σ, u) = ∂σg(t, u′) , (4.20)

where we introduced the advection flux

f (t, σ, u) = (N − 1)AD
(Λe−t)D+2

(Λe−t)2 + 1
σ u(t, σ)

(4.21)

and the diffusion flux

g(t, u′) = −AD
(Λe−t)D+2

(Λe−t)2 + u′(t, σ)
, (4.22)

which we will shortly analyze in more detail. For the sake of convenience in the notation,
we omitted the explicit t and σ dependence of u(t, σ) and u′(t, σ) when considered as
the flux arguments.

Equation (4.20) is exactly in the form of an advection-diffusion equation Eq. (E.11),
a PDE which is typical of fluid dynamics and whose general features are presented in
App. E. If we let us then guide by the interpretation of the FRG flow equation as an
advection-diffusion equation, t can be considered as a time variable for the FRG flow,
while σ can be interpreted as a spatial variable. It is clear that, once the association
between the FRG flow equation and and advection-diffusion equation has been demon-
strated, we are then allowed to exploit all the wide and well-established toolbox of pow-
erful numerical methods that have been developed to solve hydrodynamic equations.
This thus provides us with the main advantage of being sure to use a well-suited nu-
merical method, specifically developed for this kind of equations. In particular we will
use the so-called Kurganov and Tadmor scheme (KT), which is described in [142] and in
App.E.
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Advection and diffusion fluxes

We now solidify the analogy between the FRG flow equation and an advection-diffusion
equation by turning to a more detailed analysis of the previously defined fluxes. For
similar studies and description of the properties of this equation in the FRG framework
one can also refer to Refs. [32, 80, 81, 105, 106, 132, 133, 134]. We start noticing that
Eq.(4.20) is in the conservative form (cf. Eq.(E.11)). In order to further deepen our study,
we evaluate the σ derivatives, thus casting it into its primitive form (cf. Eq. (E.14)):

∂tu(t, σ) + ∂u f (t, σ, u) u′(t, σ) + ∂σ f (t, σ, u) = ∂u′g(t, u′) u′′(t, σ) , (4.23)

where, intuitively, u′′(t, σ) = ∂σu′(t, σ). This form shows more clearly the structure of an
advection-diffusion equation. In this specific case u(t, σ) plays the role of a fluid "den-
sity" whose transport properties are governed by the two contribution that we labeled
as advection and diffusion.

Even though Eq. (4.23) is not a conservation law in a strict sense, since it involves
also dissipative contributions, we will refer to u(t, σ) as the "conserved quantity" of this
generalized conservation law.

We can now analyse in more detail the advection flux, which is due to the pion loop.
If we want to isolate only this contribution in Eq. (4.23), this can be formally done by
rescaling the equation by a factor N and then taking the limit N → ∞, which is then
regarded as the inviscid limit. In a more crude way, we can just neglect the diffusion
term, and therefore we are left with an advection equation

∂tu(t, σ) + ∂u f (t, σ, u) u′(t, σ) + ∂σ f (t, σ, u) = 0 , (4.24)

where the advection coefficient is given by

∂u f (t, σ, u) = −AD (Λe−t)D+2 N − 1
σ[(Λe−t)2 + 1

σ u(t, σ)]2
< 0 ∀σ > 0 . (4.25)

Following the analogy with the hydrodynamic framework, the advection term is respon-
sible for the bulk motion of the conserved quantity . In particular the direction towards
which this transport is oriented is given by the sign of the advection coefficient, which in
general may change depending on the value of σ, t and u(t, σ). However, as it is already
highlighted in Eq. (4.25), the sign of ∂u f (t, σ, u) is simply the opposite of the σ one. This
means that this contribution transports the conserved quantity from higher values (in
absolute value) of σ toward σ = 0. Furthermore, the change in sign at σ = 0, and thus
the change in the direction of the characteristic curves, may lead to the formation of
shocks or rarefaction waves.

To a more careful analysis, one notices that actually Eq. (4.24) is not purely ad-
vective, since the flux f (t, σ, u) depends also explicitly on σ, thus producing an extra
term ∂σ f (t, σ, u) when taking the σ derivative. However, this term acts like a u(t, σ)-
dependent sink or source, and it does not have a specific direction, i.e., it is not oriented.
This means that the previous considerations hold without major changes.

We now move to a more detailed description of the diffusive term in Eq.(4.23), which
arises from the σ loop. As can be seen from Eq. (4.19), Eq. (4.23) can be reduced to a
purely diffusive equation, like the heat equation, considering the N = 1 case, which
thus is usually referred as the viscous limit. In this case Eq. (4.23) reduces to

∂tu(t, σ) = ∂u′g(t, u′) u′′(t, σ) , (4.26)
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Figure 4.1: The effective potential Vk(σ) (right panel) and its derivative u(t, σ) (left panel),
for N = 3 at RG time t = 3, for different values of σ0|t=0 =

√
2ρ0|t=0 in the LPA.

For lower values of σ0|t=0 the system, in the IR limit, ends up in the symmetric phase
(σ0|IR = 0), while for higher values of σ0|t=0 the symmetry is not restored (σ0|IR > 0)
and the potential exhibits a plateau. The UV cut-off scale is Λ = 1.0, the grid size
is [0, σmax] = [0, 2.0], while the grid spacing is ∆σ = 0.005 (corresponding to 400 grid
points).

which, as anticipated, is a purely diffusive equation. From a fluid-dynamical perspective,
diffusion is related to a smearing of the solution, since it depends on the gradient of
the solution itself, thus transporting the conserved quantity from regions in the spatial
domain where it is more concentrated, i.e., the value of the solution is high in absolute
value, to regions were it is less concentrated, i.e., where it has a lower absolute value.
The crucial aspect is that this line of reasoning can only be followed if the diffusion
coefficient is positive, otherwise the solution would be concentrated instead of being
smeared, thus leading to singularities. This means that having a positively defined
diffusion coefficient is crucial in terms of both the (numerical) stability and the well-
posedness of the problem. Advantageously for us, the diffusion coefficient in Eq. (4.26)
is

∂u′g(t, u′) = AD (Λe−t)D+2 1
[(Λe−t)2 + u′(t, σ)]2

> 0 (4.27)

and thus clearly positively defined. As we will see in the next section, both the advection
and the diffusion terms play a fundamental role in the symmetry-restoration dynamics.

As a final remark, one can easily check that, using the formulation of the flow equa-
tion in terms of the invariant ρ as in Eq.(4.13), we do not find a u-dependent source term
in the advection contribution, since f (t, σ, u(t, σ)) ⇔ f (t, u(t, ρ)), where u(t, ρ) = V′

k(ρ).
However, the trade-off would be the appearance of a source-like and an advection-like
term in the diffusive contribution, since now g would also depend on both u and ρ

explicitly: g(t, u′(t, σ)) ⇔ g(t, ρ, u(t, ρ), u′(t, ρ)), where u′(t, ρ) = V′′
k (ρ).

The next section will be devoted to the analysis of the critical behavior of the O(N)
model.
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4.3 Critical behavior

The first thing we have to do, in order to study the critical behavior of the O(N) model,
is to fix the UV potential at the cutoff scale Λ, which means to fix the initial condition
for the RG flow equation at t = 0. In particular, we choose the well-known ϕ4 potential:

Vk=Λ(ρ) =
λ

4

(
ρ − ρ0|t=0

)2
, (4.28)

where ρ0|t=0 is the minimum of the potential at the cutoff scale Λ. Whether or not the
system is in the symmetric or spontaneously broken phase is indicated by ρ0|t=0. In fact
ρ0|t=0 = 0 corresponds to the symmetric phase, while ρ0|t=0 > 0 signals a symmetry-
broken phase.

In particular, as we already pointed out, in the case of ρ0|t=0 > 0, the N-component
ϕ⃗ field develops a non-vanishing expectation value and thus the theory exhibits a spon-
taneous symmetry breaking of the O(N) symmetry group. However, the symmetry is
not completely broken since the rotations in field space in the N − 1-dimensional hy-
perplane perpendicular to the direction in which the field acquires a finite expectation
value are still symmetries for the theory. Thus, the O(N) symmetry of the theory is
spontaneously broken down to an O(N − 1) subgroup. This means that, out of the
N(N − 1)/2 generators of the O(N) group, or better the continuous counterpart SO(N),
N − 1 will generate a transformation under which the theory is not anymore invariant.
These generator are the one belonging to SO(N)/SO(N − 1) and indeed are exactly
N(N − 1)/2 − (N − 1)(N − 2)/2 = N − 1. According to the Goldstone theorem then,
these generators will form a vector multiplet of the unbroken SO(N − 1) subgroup, to
which will correspond exactly N − 1 massless fields, which we identified as the pion
modes, forming again a vector multiplet of SO(N − 1). The remaining field then, the
radial mode that we called sigma, will also be part of an SO(N − 1) multiplet, but in this
case of the trivial scalar one, and develops a mass which is proportional to the minimum
ρ0|t=0 [149].

What is more interesting from a physical perspective is that the O(N) symmetry is
then restored at sufficiently high temperature via a second-order phase transition. The
latter will be the focus of our study.

4.3.1 Dimensional reduction

We mentioned that the phase transition should occur at a given finite temperature. This
means that, in order to study the critical behavior of the system, we need to generalize
the flow equation (4.13) to finite temperature. However, this step is actually not necessary
since we can exploit the well-known phenomenon of dimensional reduction [150, 151,
152, 153]. We can justify this in many ways. For example, as we will investigate in the
next chapters, the finite-temperature flow equation displays the discrete Matsubara sum
over the discrete frequencies ωn instead of a continuous integral over p0. If one then
looks at the scale-dependent propagators at finite temperature, they have the following
structure:

Gk(p; T) ∼ 1
1 + ω2

n(T)/k2 + m̃2 , (4.29)

where m̃ = m/k and the bosonic Matsubara modes are given by ωn(T) = 2πnT.
The propagators are then inserted into the loops, where a sum over the frequencies
and a (D − 1)-momentum integral have to be performed. This means that, effectively,
the finite-temperature generalization corresponds to an infinite number of copies of a
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Figure 4.2: The effective potential Vk(σ) (right panels) and its derivative u(t, σ) (left
panels), for N = 3 in the LPA for different RG time values at σ0|t=0 = 0.39 (upper
panels) and at σ0|t=0 = 0.36. For for σ0|t=0 = 0.36 the system, in the IR limit (t = 10)),
ends up in the symmetric phase (σ0|IR = 0), while for σ0|t=0 = 0.39 the symmetry is
not restored (σ0|IR > 0) and the potential exhibits a plateau. The UV cut-off scale is
Λ = 1.0, the grid size is [0, σmax] = [0, 2.0], while the grid spacing is ∆σ = 0.000133
(corresponding to 1500 grid points).
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Figure 4.3: The effective potential Vk(σ) (right panel) and its derivative u(t, σ) (left panel),
at RG time t = 3, for σ0|t=0 = 0.38 for different values of N in the LPA. For lower values
of N the system, in the IR limit, ends up in the broken phase (σ0|IR > 0) and the potential
exhibits a plateau, while for higher values of N the symmetry is restored (σ0|IR = 0).
The UV cut-off scale is Λ = 1.0, the grid size is [0, σmax] = [0, 2.0], while the grid spacing
is ∆σ = 0.004 (corresponding to 500 grid points).

(D − 1)-dimensional theory, each one differing by an extra temperature-dependent mass
contribution given by ω2

n(T)/k2. This leads to the fact that, in the limit of high tem-
peratures, or more precisely, when the temperature is much larger than the FRG flow
parameter, T ≫ k, the non-zero Matsubara modes with mass ∼ 2πnT/k, n ̸= 0, decou-
ple from the evolution, leaving a (D − 1)-dimensional effective theory involving only
the zero Matsubara mode. Changing the point of view, one can notice that the length
scale associated with the system, the correlation length, diverges approaching criticality,
and thus is much bigger than the inverse temperature, which gives the extent of the
compactified Euclidean time dimension. This means that it is not possible to resolve
the aforementioned compactified Euclidean time dimension, leading to a dimensionally
reduced effective theory. Thus, in the particular case of interest for us, i.e., for D = 3+ 1,
it is not necessary to use a finite-temperature D = 3 + 1 flow equation in order to inves-
tigate the critical dynamics of the system and the related phase transition. Instead, it is
sufficient to employ the D = 3 zero-temperature flow equation (4.13).

4.3.2 Order parameter

It is well known, on the basis of universality-class arguments [154, 155, 156, 157], that the
parameters that can bring the O(N) model towards criticality are, in general, two: tem-
perature and external magnetic field. This can be immediately understood considering
as an example the ferromagnetic spin Ising model with a discrete symmetry Z2 = O(1),
where we know that the parameters that drive the system towards the phase transition
are precisely the temperature and external magnetic field. Since we are considering our
theory in the chiral limit (no external sources or masses, i.e., no external field) only one
relevant eigenvalue from the linearized RG equations is left, the temperature (see, e.g.,
[128] and references therein). However, we are exploiting the dimensional-reduction
theorem and working with a zero-temperature field theory, thus we need to identify the
temperature-like relevant variable. In our case the role of the temperature that decides
whether the system ends up in the symmetric or broken phase at t = ∞, is the UV
minimum of the potential ρ0|t=0: if ρ0|t=0 is larger than a critical value ρc

0|t=0 (which is
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equivalent to T < Tc) the system will end up in the broken phase with a flat potential
and a finite minimum σ0|IR > 0, otherwise if ρ0|t=0 < ρc

0|t=0 (which corresponds to
T > Tc), the symmetry will be restored and σ0|IR = 0. This discussion thus allows us
to identify ρ0|t=0 as the temperature-like variable that drives the phase transition and
σ0|IR as the order parameter of the phase transition, since σ0|IR > 0 in the broken phase
and σ0|IR = 0 in the symmetric one. Solving the FRG flow equation, one can get a
quantitative confirmation of the previous argument. The results of this numerical so-
lution are displayed in Figs. 4.1, 4.2, and 4.3 where the effective potential Vk(σ) and its
derivative u(t, σ) are shown as different parameters are changed. In particular, in Fig.4.1
we show the effective potential Vk(σ) (right panel) and its derivative u(t, σ) (left panel)
for different values of σ0|t=0 =

√
2ρ0|t=0 at the FRG time t = 3. This time has been

chosen such that the related RG scale k is sufficiently small, i.e., we are sufficiently far in
the IR, such that the evolution of the effective potential given by the flow equation does
not change the position of the observables we are interested in, i.e., the minimum of the
potential itself and the curvature mass at the minimum, by an appreciable amount. A
more detailed discussion on the choice of the IR scale and the errors on the calculated
quantities is given in Sec. 4.4. It is then possible to observe that small values of σ0|t=0
will bring the system to the symmetric phase in the IR (σ0|IR = 0), while for larger values
of σ0|t=0 the symmetry is not restored in the IR (σ0|IR > 0) and, due to the convexity of
the effective potential, see for example Ref. [158], the potential exhibits a plateau. Sim-
ilar conclusions can be drawn by looking at Fig. 4.2, where the effective potential Vk(σ)
(right panels) and its derivative u(t, σ) (left panels) are shown for different values of the
FRG time t in the N = 3 case. In particular we considered two different values of σ0|t=0

around the critical value σc
0|t=0

√
2ρc

0|t=0 = 0.37136655: the upper panel shows the result
for σ0|t=0 = 0.39 > σc

0|t=0, leading to a broken phase, while in the lower panel we used
σc

0|t=0 = 0.36 < σc
0|t=0, meaning that the system will be in the symmetric phase in the

IR. This figure also confirms that the differences between t = 3 and t = 10 are negligible
since the two curves overlap almost perfectly in every depicted case. We can also notice
that, due to the already described properties of the different fluxes that form the flow
equation, the effect of time evolution on the effective potential is always a shift of the
minimum of the potential towards smaller values of σ either reaching zero or freezing
into a finite value of σ. Finally, in Fig. 4.3 we show the effective potential Vk(σ) (right
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panel) and its derivative u(t, σ) (left panel), at a fixed RG time scale t = 3, for a given
fixed value of σ0|t=0 = 0.38, for different values of N. In particular we can observe that
for lower values of N, the system ends up in the broken phase (σ0|IR > 0) in the IR,
while for higher values of N the symmetry is restored (σ0|IR = 0). This is due to the
fact that, increasing N, the advection flux becomes more dominant and tends to restore
the symmetry in a stronger way, due to its structure. In order to contrast this effect, the
critical value of σc

0|t=0 has to increase for higher values of N. This is depicted in Fig.4.4,
where we show the critical value σc

0|t=0 and the corresponding ρc
0|t=0 as function of N.

4.3.3 Critical scaling

Since we are treating a second-order phase transition, we expect an infrared fixed point
of the renormalization group, close to which the theory is scale-invariant [154, 155, 156,
157]. Thus, the critical behavior has to be described by a scale-independent solution of
the RG flow equation. Now, guided by the previous reasoning, we fix λ to an arbitrary
value λ = 0.5, which is, however, an irrelevant quantity from the RG perspective (see,
e.g., [128]), and adjust ρ0|t=0 at t = 0 in order to find the so-called scaling solution, i.e.,
a k-independent solution of the flow equations for sufficiently small k. In particular,
the closer ρ0|t=0 is to ρc

0|t=0 in the UV, the closer the solution will be to the scaling
one towards the IR, where for the scaling solution the t-dependence vanishes. This
implies that properly rescaled dimensionless quantities will exhibit a constant behavior
at sufficiently large t. In particular, the dimensionless minimum

ρ̃0,k = k2−Dρ0,k (4.30)

tends to a constant (fixed-point) value as ρ0|t=0 approaches ρc
0|t=0. The previously de-

scribed qualitative behavior can be quantitatively validated simply by solving the FRG
flow equation, the result of which is depicted in Fig. 4.5 (cf. Ref. [128]). Here we plot
the t-evolution of the dimensionless minimum Eq.(4.30) for different initial values ρ0|t=0.
One observes that, during the FRG flow, ρ̃0,k approaches the critical trajectory, the asymp-
totic fixed-point value of which is shown by the red line, thus meaning that the system
reaches the scaling solution at a given RG time. However, the system will eventually
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move out of the scaling phase, meaning that the rescaled minimum deviates either up-
wards or downwards. Let us try to give a better qualitative and quantitative description
of this behavior specifying our results for the case D = 3. We can divide it into three
regimes:

1. 0 < t < tG. Close to t = 0 the minimum moves towards the critical value associated
to the fixed-point. The scale at which the scaling regime is reached is tG, the so-
called Ginzburg scale. This corresponds to the scale at which the rescaled coupling
λ̃k = λ kD−4 = λ/k is of the order of one, i.e., λ̃k ∼ 1, thus signaling the breaking
of perturbation theory.

2. tG < t < t∗. The value of the minimum is close to the fixed-point value and its
time evolution is very slow. The scale t∗, and thus the corresponding value k∗, is the
scale that signals the end of the scaling regime and it depends on the correlation
length k∗ ∼ ξ−1. In particular the time spent by the system on the scaling trajectory
depends on how close the initial value ϱ0|t=0 is to the critical value ϱc

0|t=0, since the
closer ϱ0|t=0 is to the critical value ϱc

0|t=0, the larger is the correlation length and
thus the value of t∗ where the deviation from the scaling solution occurs.

3. t > t∗. Once the fluctuations have been integrated up to the scale of the correlation
length, the system can arrange itself into one of the following three possibilities:

(a) if ρ0|t=0 > ρc
0|t=0, the fluctuations will not be able to destroy the finite value of

the minimum, thus resulting in the broken phase. In analogy to the behavior
of the Ising model, this phase is called ferromagnetic. In this case ρ0,k tends to
a constant value ρ0|IR > 0 while k → 0, implying that ρ̃0,k = (ρ0,k/k) → +∞.
So the broken phase corresponds to the curves deviating upwards (the green
ones in Fig.4.5).

(b) if ρ0|t=0 < ρc
0|t=0, the fields appear coarse-grained and a finite expectation

value is present until the integration in fluctuations reaches the correlation
length scale. Once this is reached, the fluctuations will destroy the finite value
of the minimum, thus resulting in the symmetric phase. Following once again
the analogy to the Ising model, one refers to this phase as the paramagnetic
one. In particular ρ0,k goes to 0 for a finite value of k ≲ k∗ and this means that
ρ̃0,k → 0. This implies that the symmetric phase corresponds to the curves
deviating downwards (the purple ones in Fig. 4.5). This is deeply in contrast
with a naive mean-field analysis, since in that case the symmetric phase is
reached only for ρ0|t=0 = 0, while every finite value of ρ0|t=0 > 0 would
result in a broken phase.

(c) if ρ0|t=0 = ρc
0|t=0 exactly, then the rescaled minimum will follow the scal-

ing behavior ρ0,k ∼ k. This implies that ρ̃0,k =
ρ0,k

k will tend to a constant
fixed-point value as k → 0. In this case the correlation length diverges, cor-
responding to k∗ = 0, which is associated to the so-called Wilson-Fisher fixed
point of the RG. This is the case of the scaling solution, depicted in red in
Fig.4.5.

As one would expect, not only ρ̃0,k exhibits a scaling behavior, but all other properly
rescaled quantities reach and leave the critical trajectory at given RG times, which de-
pends on ρ0|t=0. However, we choose to analyze the behavior of ρ̃0,k since the minimum
of the potential is the most striking feature that characterizes the phase transition, being
the order parameter.
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4.3.4 Critical exponents

The physics of phase transitions has been extensively investigated due to its relevance
for the description of the behavior of several physical systems. In particular, one of its
most known aspects [70, 154, 155, 156, 157, 159] is the possible divergence of some of
the physical quantities derived from the partition function, or equivalently from the free
energy of the system, approaching a phase transition. In our dimensionally reduced
system, the critical region corresponds to the case ρ0|t=0 → ρc

0|t=0. In particular, one ob-
serves that the aforementioned observables exhibit a power-law behavior approaching
criticality. This behavior is then characterized by specific exponents, which are usually
referred to as critical exponents. Their most striking feature is that they do not depend on
the specific microscopic details of the system, but on more general features, like the di-
mensionality and on the symmetries of the system itself. This well-known phenomenon
is referred to as universality and the value of the set of the critical exponents defines the
so-called universality class of the theory. In the standard formulation of the theory of
scaling, one counts six critical exponents: α, related to the specific heat, β, related to the
order parameter, γ, related to susceptibility, δ, related to the external field, ν, related to
correlation length and η, related to the correlation of critical fluctuations. One useful
property of critical exponents is that only two of them are independent, since they are
constrained by four relations, which can be obtained via scaling arguments. Indeed,
these relations are called scaling laws or scaling relations and can be listed as:

α = 2 − Dν Josephson law , (4.31)

γ = ν(2 − η) Fisher law , (4.32)

γ = β(δ − 1) Widom law , (4.33)

α + 2β + γ = 2 Rushbrooke law , (4.34)

where D represents the dimension of the system. We will now focus on the calculation of
two of these six critical exponents: β and ν. In particular, we will discuss how to extract
them from the solution of the FRG flow equation. Since only two critical exponents are
independent, one can calculate the remaining four using the scaling relations, or test if
the scaling relations are satisfied or not and to which extent by assuming η = 0 in the
LPA.

1. Critical exponent β

As we already hinted, the critical exponent β is associated to the critical behavior
of the order parameter, which we already discussed being σ0|IR for the analyzed
phase transition. In particular, close to criticality, it is described by the following
behavior

σ0|IR =

{
0 ρ0|t=0 < ρc

0|t=0
∼ (ρ0|t=0 − ρc

0|t=0)
β ρ0|t=0 > ρc

0|t=0
. (4.35)

One can obtain the value on β by taking the logarithm of both sides of Eq. (4.35)
when the value of the order parameter is finite, i.e., in the broken phase, and then
the critical exponent can be read off from the slope of ln(σ0|IR) as a function of
ln (ρ0|t=0 − ρc

0|t=0):

ln(σ_0|IR) = β ln (ρ0|t=0 − ρc
0|t=0) + const . (4.36)

This procedure is shown in Fig. 4.6 using as an example the results obtained for
N = 3. In particular, looking at Fig. 4.6, one can observe that, for small values of
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Figure 4.6: Double-logarithmic plot of Eq. (4.35) (violet dots) in the LPA case for N = 3
and D = 3. The estimate for the value of the critical exponent β is given by the slope of
the blue line. Other parameters of the calculation are the same as for Fig.4.5.

ln(ρ0|t=0 − ρc
0|t=0), ln(σ0|IR) deviates from the scaling behavior given by Eq. (4.36).

This can be justified by the finite precision we have at our disposal in the determi-
nation of ρc

0|t=0. In particular, the closer the initial ϱ0|t=0 is to the approximately
determined critical value, the more the resulting ln(σ0|IR) is sensitive to deviations
from the actual critical value caused by the finite numerical precision, and thus
one simply does not follow the critical behavior anymore. On the other hand, the
deviation observed for large values of ln (ρ0|t=0 − ρc

0|t=0) is due to the fact that
one is simply too far away from the critical region, such that the scaling behav-
ior of Eq. (4.36) does no longer apply. Before moving to the description of the
critical exponent ν, we can make a final remark: if we had worked with the finite-
temperature theory, σ0|IR would have been a function of temperature. In particular,
close to criticality it would have been proportional to (T − Tc)β. Thus ρc

0|t=0 is what
defines the critical temperature in three dimensions.

2. Critical exponent ν

It is known that, given two points x and y, whose space-time distance is very large,
the field correlator exhibits an exponential decay:

G(x − y) = ⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ(x)⟩⟨ϕ(y)⟩ ∼ e−|x−y|/ξ for |x − y| ≫ ξ , (4.37)

where ξ is called correlation length, since it measures the range of correlations. Close
to the criticality, it has the following divergent behavior

ξ(T) ∼ (T − Tc)
−ν , (4.38)

In our three-dimensional reduced theory, this behavior translates into

ξ(ρ0|t=0) ∼ (
∣∣ρ0|t=0 − ρc

0|t=0
∣∣)−ν . (4.39)

Thus, ν is the critical exponent which describes the divergence of the correlation
length close to criticality. In order to compute ν, one can take advantage of the link
between the correlation length and the renormalized mass m. In particular,

ξ ∼ m−1 . (4.40)
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D = 3. The estimation for the value of the critical exponent ν is given by the slope of the
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If one considers the symmetric phase, the renormalized curvature mass is given by

m2 = lim
k→0

u′(σ = 0, k) = lim
k→0

V′′(σ = 0, k) . (4.41)

In particular, Eq. (4.40) is fulfilled by the so-called screening mass, which is indeed
the one responsible for spatial modulations of the two-point function. On the other
hand, in Eq. (4.41) we are considering the curvature mass, arising from the second
field derivative of the effective potential. In principle, curvature and screening
mass do not have to coincide, but conveniently for us, they do coincide in the LPA
for zero-temperature calculations [160]. In this case, the pole mass (given by the
pole of the propagator in the case of vanishing 3-momenta), the curvature mass,
and the screening mass are identical [160]. Thus, we will compute m2 via Eq. (4.41)
and then combine it with Eq. (4.40) and Eq. (4.39), resulting in

m2 ∼ (
∣∣ρ0|t=0 − ρc

0|t=0
∣∣)2ν . (4.42)

In this way we can obtain ν as the slope of ln m2 as a function of ln(
∣∣ρ0|t=0 −

ρc
0|t=0

∣∣):
ln m2 = 2ν ln(

∣∣ρ0|t=0 − ρc
0|t=0

∣∣) + const . (4.43)

We have to notice that one has to make sure to reach the symmetric phase before
stopping the t-evolution, because only in this way one can be sure that m2 > 0 at
σ = 0.

In Tabs. 4.1 and 4.2 we show our results for β and ν, respectively, obtained within
the LPA for D = 3 and various values of N, in comparison to results obtained within
similar frameworks, as well as results from different approaches. Results obtained within
the same FRG framework but including a non-trivial RG-scale dependent wave-function
renormalization [128] are denoted as “RG’ ”. Results obtained from Monte Carlo (MC)
simulations [161, 162] are listed under “MC”, those from perturbative RG are denoted
as “PT” [163], while those from the ε-expansion at order ε6 are shown under “ε–exp.”
[164]. Results from Conformal Bootstrap (CB) are denoted as “CB” [165, 166, 167], and
finally those from a derivative expansion up to fourth order as “DE4” [127]. One can
conclude that the results obtained in this work are overall in good agreement with the
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Figure 4.8: Critical exponents β (purple dots) and ν (red dots) as a function of N and
D = 3. The dashed lines correspond to the value of the corresponding critical exponent
in the limit N → ∞. Other parameters of the calculation are the same as for Fig.4.5.

ones obtained with other approaches. As compared to the results of RG’, which is, from
a technical perspective, the closest to our approach, we improve the precision by one
order of magnitude and, in addition, we provide an error estimate. A more detailed
analysis of the various error sources is presented in the next section. Although RG’
includes a non-trivial wave-function renormalization, while our approach does not, our
results for the values of the critical exponents are not significantly worse than RG’ in
comparison to the other methods. As a final remark for this section, we point out that
the values we obtained for the critical exponents at finite N nicely tend to converge to
the ones expected in the large-N limit as N is increased. This is in agreement with the
known fact that the LPA becomes exact in the limit N → ∞ [65]. This behavior can be
clearly deduced from Fig.4.8, where we show the value of the different calculated critical
exponents as a function of N and the corresponding large-N limit, reported in Tab.4.3.

4.4 Testing the method: numerical precision and error es-
timates

As already pointed out, the critical exponents for the O(N) model have been extensively
studied with the use of several techniques. However, we decided to use them as a test
ground for the capabilities and limitations of our hydrodynamic method. Guided by this
goal, in this section we discuss the numerical precision of our results and provide error
estimates. One possible source of error, which we are not going to further discuss in this
work, arises undoubtedly from the use of the LPA as a truncation [124, 127]. This is a
systematic kind of error and the only way to estimate it is by improving the truncation
beyond LPA [127, 128, 130, 131].

The other errors we will discuss and that can be put under better control are the
following:

• general fit errors, which result from the way the critical exponents are determined
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N LPA RG’ MC PT ε−exp. CB DE4

1 0.3486(59) 0.32 0.32643(6) 0.3258(10) 0.32599(32) 0.326419(2) 0.3263(4)

2 0.3659(45) 0.35 0.34864(5) 0.3470(11) 0.3472(6) 0.34872(5) 0.3485(5)

3 0.3838(58) 0.37 0.3689(3) 0.366(2) 0.366(1) 0.3697(12) 0.3691(7)

4 0.4046(34) 0.40 0.3873(4) 0.3834(35) 0.3834(18) 0.3877(47) 0.3874(6)

10 0.4541(45) 0.45 0.4398(7) 0.4523(2) 0.4489(6)

Table 4.1: Order-parameter exponent β obtained via various methods, for different val-
ues of N and for D = 3.

N LPA RG’ MC PT ε−exp. CB DE4

1 0.634(8) 0.64 0.63002(10) 0.6304(13) 0.6292(5) 0.629971(4) 0.62989(25)

2 0.7057(14) 0.69 0.67169(7) 0.6703(15) 0.6690(10) 0.6718(1) 0.6716(6)

3 0.744(19) 0.74 0.7112(5) 0.7073(35) 0.7059(20) 0.7120(23) 0.7114(9)

4 0.780(20) 0.78 0.7477(8) 0.741(6) 0.7397(35) 0.7472(87) 0.7478(9)

10 0.901(13) 0.91 0.859(1) 0.8842(3) 0.8776(10)

Table 4.2: Correlation-length exponent ν obtained via various methods, for different
values of N and for D = 3.

β ν η δ α γ

Large N 0.5 1.0 0 5 −1.0 2.0

Table 4.3: Critical exponents in the large-N case for D = 3.
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Fig.4.5.

and thus affects both critical exponents;

• error on the determination of the curvature mass in the IR, which influences the
value of ν;

• error on the determination of the position of the minimum in the IR σIR
0 , which is

inherent to the extraction of β.

Let us now analyze each contribution in detail.

4.4.1 General fit error

As already discussed, a linear fit to the data is performed in order to extract the value
of the critical exponents from the resulting slope. This procedure inevitably leads to
some error due to the fact that, as mentioned in the previous section, some points do
not follow the critical scaling and thus deviate from the linear fit. This implies the
strict need for a criterion which enables us to select which points we should take into
account for the fit. This is definitively a non-negligible issue, since, as can be seen from
Figs. 4.10 and 4.12, the value of a particular critical exponent and the relative fit error
may change a lot if only a single data point is added to (or subtracted from) the fit. So
in order to find the aforementioned criterion, let the physics of phase transitions guide
us. Since our goal is to extract the critical exponents from the scaling region, here a
linear behavior of the observables (in case of the logarithm of the IR minimum and the
logarithm of the curvature mass) as a function of ln

∣∣ρ0|t=0 − ρc
0|t=0

∣∣ is expected. This
means that it seems reasonable to use for the fit those consecutive points which exhibit
the highest degree of collinearity, which we can obtain using as a criterion, for example,
the Pearson correlation coefficient. However, even considering the most collinear data
points, the number of points which are taken into consideration still have a significant
impact on the value of the critical exponents. This is exactly what can be deduced from
Figs.4.10 and 4.12, where the critical exponents are shown as a function of the number of
consecutive most aligned points. This is mainly due to two factors. First of all, the region
that we are supposed to use for the fit and where the consecutive most aligned points are
contained can move while modifying the number of points. Secondly, the fitting region
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Figure 4.10: Critical exponent ν as a function of the number of the most aligned points
Np taken into consideration in the fit, for the case N = 3 and D = 3. Other parameters
of the calculation are the same as for Fig.4.5.

can include points which are increasingly further away from a desired straight fitting
line. One can clearly realize this by looking Fig. 4.9, where we show how the fitting
region changes if one modifies the corresponding number of most aligned consecutive
points, for both β (left panel) and ν (right panel).

This implies that we still have to establish a reliable criterion according to which the
number of the consecutive most collinear points can be selected.

We also have to remark that the previously described behavior shown in Figs. 4.10
and 4.12 is not affected by the variation of what we can define as the point density, i.e.,
the number of points per unit interval of the fitting region. This feature can be deduced
from Fig. 4.11, where we repeat the same procedure described in Figs. 4.10 and 4.12 but
changing the point density, indicating that the values of the critical exponents depend
on the size of the fitting region rather than on the number of points contained in it.

Ideally, if the scaling relations were perfectly satisfied, all points would belong to the
scaling region since all of them would exhibit perfect collinearity. Thus, this implies that
the critical exponents would become completely independent of the fitting region.

Guided by this piece of information, we can formulate our criterion for the selection
of the points to consider in the fit. We will thus identify the scaling region by searching
for the range on the abscissa in Figs. 4.10 and 4.12 where the critical exponent is least
dependent on the number of consecutive collinear points and thus on the considered
fitting region. Once this range is identified, we reasonably assume that the actual value
of the critical exponent lies somewhere between the highest and the lowest value of the
critical exponent in that range. Thus we identify the contribution to the total error on
the critical exponent arising from the fitting procedure as being half the difference of the
highest and the lowest value in that range. If we now analyze separately the case of β and
ν, we observe that finding such a range of consecutive collinear points is straightforward
in the case of β: if the number of points in the range considered is too small, the range
moves a lot along the abscissa when it is extended. Therefore, we discard the leftmost
points in Fig. 4.12 (left panel). From a certain size onward the range does not move
anymore, but merely grows within the critical region. However, if the range is too large,
also points from outside the critical region are included, which is clearly seen by the
jump in Fig. 4.12 (left panel) at Np ≃ 130. Hence, this clearly restricts the size of the
critical region.
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On the other hand, in the case of ν, if the fitting region is too large, the exponent
starts to change more rapidly, indicating that the corresponding fitting region includes
points which do not follow a straight line in Fig. 4.7. Thus, we can discard those points
and restrict the fit to a maximum value of Np ≃ 180. However, from Fig.4.10 it is clearly
visible that it is much harder, if not almost impossible, to identify a critical region,
because ν strongly depends on the fitting interval and the change is rather continuous.

As as final remarks for this subsection, we state that the error originating from the
choice of the fitting region is much larger than the error of the fit itself, i.e., the one
extracted from the maximum deviation of the points in the fitting region from a straight
line. Indeed, this error is at least one order of magnitude smaller than the error from the
choice of the fitting region. Second, as we will soon discuss, the error coming from the
KT scheme and the determination of the curvature mass, which is required for extracting
ν is much smaller than the previously described one obtained from choosing the correct
fitting region. This statement will not hold for β, since the discretization error, which
results in an uncertainty on the position of the minimum, is instead comparable to the
error arising from the determination of the size of the critical region.

4.4.2 Error on m2

In order to obtain a numerical solution of the flow equation Eq. (4.19), or to a general
PDE, we need a discretization in the field space. In this subsection we thus analyze how
such a discretization in field space influences the value of the renormalized mass m2 and
the corresponding error. In particular, since we chose a uniformly spaced grid whose
spacing is ∆σ, we will assess the impact of ∆σ on our results. In Fig. 4.13, we show the
squared curvature mass m2 (left panel) and its relative deviation (right panel)

∆m2
rel(∆σ) = 1 − m2(∆σ)

m2(∆σmin)
(4.44)

from the value m2(∆σmin) calculated for the smallest cell size ∆σmin (which in our case
is 10−4), as a function of ∆σ. We should point out that each point in these figures
corresponds to a result of the numerical solution of the FRG flow evolution, obtained



4.4. TESTING THE METHOD: NUMERICAL PRECISION AND ERROR ESTIMATES 57

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

 0.39

 0  50  100  150  200  250  300

β

Np

 0.383

 0.3835

 0.384

 0.3845

 0.385

 0  20  40  60  80  100  120  140

β

Np

Np= 10     β=0.3832
Np= 130   β=0.3844

 0.383

 0.3835

 0.384

 0.3845

 0.385

 0  20  40  60  80  100  120  140

β

Np

Np= 70    β=0.3838(6)

Figure 4.12: Critical exponent β as a function of the number of the most aligned points
Np taken into consideration in the fit (left panel). The right panel is zooming in on the
region where the value of the critical exponent is least dependent on Np. In both plots
N = 3 and D = 3. Other parameters of the calculation are the same as for Fig.4.5.

 0

 5

 10

 15

 20

 25

 30

 35

 40

-4 -3.5 -3 -2.5 -2 -1.5 -1

m
2
*
1

0
5

Log10(Δσ)

-12

-10

-8

-6

-4

-2

 0

 2

-4 -3.5 -3 -2.5 -2 -1.5 -1

ln
(Δ

m
2
re

l)

Log10(Δσ)

Δσ2.0354

Figure 4.13: Squared curvature mass in the IR, m2 (left panel), and its relative deviation
from the value calculated for the smallest cell size (right panel), as functions of the cell
size ∆σ. Here, N = 3, D = 3, Λ = 1.0, and σmax = 2.0.



58 CHAPTER 4. THE O(N) MODEL

for σ0|t=0 = 0.3 in the symmetric phase (σIR
0 = 0) at final time tIR = 25 (kIR ∼ 10−11).

Our goal is to determine the region in ∆σ such that the value of m2 does not change
anymore upon changing the value of ∆σ, i.e., from a plateau region in Fig. 4.13. From
Fig. 4.13 we observe that this happens for values of ∆σ ≲ 10−2.5. Thus, in order to
get a reasonable compromise between computational resources and needed precision,
we use ∆σ = 0.0005 (corresponding to the fourth point from the left in the left panel
of Fig. 4.13). Looking at the corresponding region in the right panel of Fig. 4.13, one
concludes that this choice leads to a relative error in the determination of m2 of the
order of ∼ e−7 ≃ 10−3.

As we have already hinted, from the right panel of Fig.4.13 one can obtain an estimate
of the order of magnitude of the relative errors on each point contained in the left panel.
This is especially useful if one considers those points which belong to the plateau in
the left panel of Fig. 4.13, since it gives us a possible criterion to select the value of ∆σ.
Still, from the right panel of Fig. 4.13, we can observe that the relative differences scale
as ∆σα, with α > 2. This is a direct consequence of the numerical scheme used, the KT
scheme, which has second-order precision in the spatial resolution. In this way we have
the possibility to significantly reduce the error in the determination of m2 by choosing
a sufficiently small ∆σ. We should also mention that there is no additional error from
using a finite-difference stencil in Eq. (4.41) to extract the curvature mass at σ = 0, for
details see Refs. [80, 106].

One could also argue that another contribution on the determination of m2 should be
taken into account, namely the one related to the extrapolation of the value of m2 in the
IR. As final value of t in the IR we have chosen t = 25, since at this point the FRG flow is
effectively frozen in, i.e., no quantity changes anymore with RG time. We checked that
this is true by computing m2, e.g., for t = 50 and t = 100. The values of m2 at these times
were the same as at t = 25 up to machine precision. Thus, one can conclude that in the
symmetric phase it is possible to reach arbitrarily small momentum scales to obtain IR
quantities, implying that no further error on the RG time extrapolation needs to be taken
into account.

4.4.3 Error on σIR
0

One can highlight several aspects which have to be taken into account regarding the
determination of the value of σIR

0 . The first one derives from the structure of the flow
equation itself. In fact, in the broken phase, the solution u(t, σ), whose value vanishes
at σ = 0 , in the presence of a finite minimum σ0 is negative for σ < σ0 and approaches
zero from below as t → ∞. As a consequence, the denominator of the advection term in
Eq. (4.19) becomes very small when approaching the IR, which leads to a stiff problem
when solving the FRG flow equation numerically. This implies that the time step ∆t has
to become increasingly smaller when t → ∞ in order to avoid numerical instabilities. In
practice, this prevents us to go arbitrarily far into the IR within our setup. For recent
advances on this issue, we refer to Ref. [168]. In order to solve this problem, we can
determine the position of the minimum σIR

0 via extrapolating its IR value using the
knowledge of σ0 at the earlier times at our disposal. Here, we decided to perform an
exponential extrapolation of σ0 as a function of k via a linear extrapolation of the values
of ln σ0

ln σ0 = a k + b , ⇐⇒ σ0 = eb eak , (4.45)

as can be seen from Fig.4.14.
This functional form of the extrapolation is motivated by the behavior of σ0 in the

large-N limit, where such an exponential scaling is exact, as can be shown by solving
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the FRG flow equation analytically via the method of characteristics (see Refs. [32, 169]).
This extrapolation is the reason for the small oscillations of ln σIR

0 observed in Fig.4.6.
Even if the extrapolation procedure were to give the correct value, the uncertainty on

σIR
0 is still limited from below by the grid spacing ∆σ. Assuming that the correct value

lies within a cell, one can still determine whether σ0 lies to the left or the right of the cell
center, such that the uncertainty is ∆σIR

0 ≲ ∆σ/2.
A clear explanation of our previous line of reasoning can be found in Fig.4.15, where

we observe that, starting with the same fixed σUV
0 , the position of the minimum is inde-

pendent of the cell size ∆σ for larger momentum scales and becomes dependent on ∆σ

as k decreases. We should also point out that in Fig. 4.15 we shifted some of the curves
in the right panel, in order to increase the visibility of the ∆σ bands, but these shifts are
anyway smaller than the actual differences between the curves. However, we observe
that, for any given ∆σ, for small k the numerical fluctuations of σ0 as a function of k stay
within a band given by ±∆σ/2, confirming the aforementioned assumption for the error
on σIR

0 . In addition, as one would expect, these fluctuations seem to decrease as ∆σ is
reduced.

Thus we justified the assumption of using ∆σ/2 as the error on every value of σIR
0 .

This implies that each point in Fig.4.6 has an error given by

∆ ln σIR
0 =

∆σIR
0

σIR
0

=
∆σ

2σIR
0

. (4.46)

It is crucial noticing that this error depends on σIR
0 itself. The error bands which originate

from this contribution are depicted in Fig.4.16. We now have to use this consideration in
order to extract an error on β. In particular, it seems reasonable to construct the slopes
with maximum deviation from the one defining β which originate from the previously
described error bands. We then consider the value of β extracted from the line which

passes through the points
(
(ϱ0|t=0 − ϱc

0|t=0)
le f t, ln σ

IR,le f t
0 − ∆ ln σ

IR,le f t
0

)
and

(
(ϱ0|t=0 −

ϱc
0|t=0)

right, ln σ
IR,right
0 + ∆ ln σ

IR,right
0

)
, where ∆ ln σ

IR,le f t
0 and ∆ ln σ

IR,right
0 are the errors

of the leftmost and rightmost points of the selected fit interval. The difference of this
value of β and the one extracted from the slope of the straight line in Fig. 4.6 gives our
estimate for ∆β, which then reads

∆β =
∆ ln σ

IR,le f t
0 + ∆ ln σ

IR,right
0

∆ϱ f it
, (4.47)

where ∆ϱ f it is the range in ln(ϱ0|t=0 − ϱc
0|t=0) where the linear fit is performed.

Using typical values encountered during the calculations, i.e., ∆ϱ f it ≃ 3.5, ∆σ =
0.0005 one finds

∆β ≃ 0.006 . (4.48)

We will assume this as the contribution to the error on the critical exponent β arising
from ∆σIR

0 . It is worth noticing that this contribution is significantly larger than the one
coming from the fit error, i.e., the one extracted from the maximum deviation of the
points from the straight-line fit, which is usually of order

∆β f it ∼ 0.0002 . (4.49)

If one wants to have an upper and lower bound for the error, one can use the minimum
and the maximum value for σIR

0 in the fit region in Eq. (4.47). One gets

∆β> = 0.024 , ∆β< = 0.007 . (4.50)

Thus, our estimate of the error seems a good compromise between the highest and the
lowest possible errors.
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dot obtained as a result.

4.5 Final remarks

In this chapter we chose to apply the FRG approach to the study of the critical behavior
of the O(N) model and the related critical exponents. The critical exponents of the O(N)
model are a well-established quantity and have been studied previously within several
frameworks and especially in the FRG approach in LPA (for example in Ref. [128] one
can see very similar kind of calculations). Anyway, there still can be seen a wide margin
of novelty in this part of work, which is actually twofold. On one hand we chose to take
advantage of the possibility to cast the FRG flow equation for the effective potential into
the form of an advection-diffusion equation [32, 80, 81, 105, 106, 132, 133, 134]. This is
of significant importance, since it allows for the possibility to exploit a broad range of
widely used and well-tested hydrodynamic algorithms to solve it. On the other hand,
and strictly related to the previous point, we showed how this novel hydrodynamic
approach to solve the FRG flow equations allows for a better control on statistical errors.
With this method, these errors can be more precisely determined and are of order 10−2

to 10−3. They are thus comparable to the errors of other well-established methods like
lattice calculations, perturbation theory, the ε-expansion, or CB.

As hydrodynamic algorithm, we used a finite-volume method, the so-called KT
scheme (see Ref. [142] for the original work, or App.E.4 for a brief summary).

The range of applicability for the novel hydrodynamic method to solve FRG flow
equations is very wide. Studies in the framework of the O(N) model were already
carried out including higher-order terms in gradients, such as wave-function renormal-
ization factors [127, 128, 130, 131]. Combining these high-precision studies with our
developments is certainly a worthwhile future project for the estimation of systematic
truncation errors. Furthermore, it is possible to study the system at finite temperature,
without exploiting dimensional reduction. In particular, we expect that the non-zero
Matsubara modes do not influence the exponents related to the singular part of the free
energy (the effective action), that is α, γ, η, ν, while in principle they could give contri-
butions to the order parameter, thus modifying β, and to the critical isotherm, changing
the value of δ.

In the next chapters of this work we also consider the extension of this model with
the inclusion of fermions, the QM model. We can anticipate that, from a mathematical
point of view, the FRG flow equations can still be cast into the form of an advection-
diffusion equation, but the presence of fermions generates a source term [105, 106, 170].
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However, this kind of equations can also be solved using the approach described above.
This will be the focus of the next chapters.



Chapter 5
The two-flavor Quark-Meson model

5.1 Introduction and motivation

Following the discussion of the QCD Lagrangian, chiral symmetry breaking and QCD
effective models in Chapter 2, we now dedicate our attention to a very well-established
low-energy effective model for QCD: the Quark-Meson (QM) model. This model can
be regarded as the extension of the well-known purely bosonic linear sigma model with
the inclusion of fermionic degrees of freedom [47, 171, 172, 173]. In particular, we will
consider the QM model with two quark flavors, which contains as fundamental degrees
of freedom four mesons, the three pions and the sigma meson, coupled to the fermionic
fields representing up and down quarks.

The reason why this model has been intensively studied is that it can qualitatively
capture the essential features of the chiral phase transition of QCD, that we described in
Chapter 2. As expected, we then find back those features in the framework of this model,
with the possibility to have a better grasp on the leading physical quantities behind them.
To this aim, it is then meaningful to recapitulate the general sketch of the well-known
QM model phase diagram. We will then consider the model, first, in the chiral limit, i.e.,
with vanishing current quark masses, and then we observe the impact of the relaxation
of this hypothesis. As we stated, the two-flavor QM model contains both fermionic d.o.f.,
namely the quarks, and mesons. In the chiral limit the mesonic sector is endowed with
an O(4) symmetry, which is broken spontaneously in the vacuum. According to the
Goldstone theorem this results in an isotriplet of massless pions and one massive sigma
meson, which exhibits a non-vanishing expectation value. Due to the presence of a
Yukawa coupling between the quarks and the mesons, the finite expectation value of the
sigma gives rise to a non-vanishing chiral condensate. For small values of the chemical
potential, the chiral symmetry is restored via a second-order phase transition at a given
critical temperature, which depends on the chemical potential Tc(µ). For higher values
of the chemical potential, the transition becomes of first order. The first- and second-
order transition lines meet at a tricritical point, where the transition is of second order,
with an order parameter that smoothly vanishes at the critical temperature [174, 175].

In the chiral limit, the mechanism of spontaneous chiral symmetry breaking and
chiral symmetry restoration is exact. However, when one includes also a finite current
mass term, it explicitly breaks the O(4) symmetry. This implies that the pions are now
pseudo-Goldstone bosons, thus having a non-vanishing mass. As a first consequence,
the chiral symmetry is never fully restored and the sigma expectation value never truly
vanishes, turning the second-order phase transition at small chemical potentials into a
smooth crossover. This occurrence is typical of statistical-mechanical models, for exam-
ple when studying ferromagnetism. In this case, an external magnetic field acts in such
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Figure 5.1: Sketch of the phase diagram of the Quark-Meson model at finite temperature
T and chemical potential µ. The chirally spontaneously (and explicitly) broken phase
and the (approximately) chirally symmetric phase are indicated in the plot. The dashed
line, indicating a crossover, and the first-order phase transition lines merge at the critical
end point, labeled CP.

a way that the average spin magnetization never vanishes, even for temperatures higher
than the Curie one. Following this analogy, valid both for the QM model as well as for
QCD, the chiral condensate plays the role of the spontaneous magnetization while the
mass term is equivalent to the applied external magnetic field.

At increasing chemical potential, as for the chiral limit, the transition turns into a
sharp first-order one, with a jump in the quark condensate from a finite to a very small
(but not vanishing) value. The crossover line and the first-order line once again meet in
a critical end point, where the phase transition is truly second order. This is signaled by
the fact that only at this point the susceptibilities diverge, as it should be the case for a
second-order phase transition [11, 12, 115, 174]. What we described so far is illustrated
in Fig. 5.1 where a sketch phase diagram of the QM model is shown as a function of
the temperature T and the quark-number chemical potential µ. Here, the regions where
the chiral symmetry is broken and (approximately) restored are explicitly labeled. The
dashed line denotes the crossover at lower values of the chemical potential while the
solid line represents the sharp first-order phase transition at higher values of µ. The
critical end point where the two transition lines meet is labeled as CP.

As expected, the validity of the QM model is confirmed by the fact that the predicted
phase diagram is in qualitative agreement with what is believed to be the phase diagram
of full QCD, as we discussed in the introduction, Chapter 1.

The goal of this chapter is to study the QM model and its features. Specifically, we
begin our analysis by describing how to construct the model starting from the symme-
tries of QCD Lagrangian. We then present an introductory mean-field (MF) Landau
study to settle an expected picture of the model’s phase diagram. We then improve the
mean-field approximation and apply the FRG approach to the QM model, stressing the
analogy with a fluid-dynamic interpretation of the resulting flow equation in the LPA
truncation of the effective action. We use this approach to study how the phase diagram
and the related physical observables are modified by the inclusion of quantum fluctu-
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ations, both in the chiral and in the physical quark-mass limit. Finally, we analyze the
critical behavior of the model in the chiral limit and present some results on the critical
exponents.

As a final remark on the notation adopted, whenever we investigate the (effective)
potential for the QM model we use the symbol U and not V, in contrast to the notation
used when studying the O(N) model.

5.2 Approximate axial-vector symmetry and its consequences

In order to have at our disposal all the necessary tools to build the QM-model La-
grangian, it is useful to comment more on the approximate conservation of the SUA(2)
current in QCD and its consequences. For this section one can refer to, e.g., Refs. [47,
173, 176, 177, 178].

5.2.1 PCAC

We begin this subsection describing the implication of an exact SSB and an approximate
one. In particular, in an exact SSB pattern, the axial-vector current Eq.(2.43) derived from
the Noether theorem does not annihilate the vacuum, but produces particles, which must
be spinless due to Lorentz invariance

Ak
µ(qµ)|0⟩ ∝ qµ|πk⟩ , (5.1)

where qµ represents the momentum of the created particle.
If the current is exactly conserved, then

0 = ∂µ Ak,µ(qµ)|0⟩ ∝ qµqµ|π⟩ = m2
π|π⟩ . (5.2)

We can interpret this relation in two ways: on one hand, we can check that the pions are
massles m2

π = 0, as stated by the Goldstone theorem; on the other hand, if we consider
m2

π sufficiently small we can assume the conservation of the axial-vector current with
good approximation.

Changing slightly the point of view, we can look at the weak decay of charged pions,
whose primary decay mode is

π+ → µ+νµ , (5.3)
π− → µ−ν̄µ . (5.4)

If one considers a simple Fermi theory of the weak interaction, then the interaction term
is of the current-current type, involving both the vector and the vector-axial currents
defined in Eqs. (2.32) and (2.43) (see, e.g., [176]). Due to parity, the process is dominated
by the matrix element of the axial current between the vacuum and the pion state

⟨0|Ak
µ|πl(q)⟩ = −i fπ qµ δkl e−iq·x , (5.5)

where qµ is the momentum of the pion. The relation Eq. (5.5) defines the proportionality
constant fπ, which is the so-called pion decay constant and is determined experimentally.
If we now take the divergence of Eq. (5.5) we obtain

⟨0|∂µ Ak,µ|πl(q)⟩ = − fπ q2 δkl e−iq·x = − fπ m2
π δkl e−iq·x , (5.6)

which is exactly what we expected from Eq.(5.2). So once again we can conclude that the
fact that pions have a small mass can be seen as the consequence of the partial conser-
vation of the axial current and the approximate SUA(2) symmetry of QCD Lagrangian.
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Equation (5.6) is what is usually referred to as partially conserved axial current (PCAC)
relation. As a final statement, we can also deduce from Eqs. (5.5) and (5.6) the shape of
the axial-vector current associated to the pion field πk(x)

Ak
µ, π = fπ ∂µπk(x) . (5.7)

This relation will be useful in the next paragraph and sometimes it is also referred to as
PCAC relation, since it follows from the combination of both Eqs. (5.5) and (5.6).

5.2.2 Goldberger-Treiman relation

We now explore another consequence of the approximate conservation of the axial cur-
rent. We consider a nucleon, namely an isospin doublet ΨNuc composed of the proton P
and the neutron N: ΨNuc = (ΨP, ΨN)

T. Recalling Eq.(2.43), we can write the axial-vector
current related to the nucleon as

Ak
µ, Nuc = gAΨ̄Nuc γµ γ5 τk ΨNuc , (5.8)

where the factor ga = 1.25 is a normalization factor due to the fact that nucleons are not
elementary particles. As we have seen from the PCAC relation, we expect the axial-vector
current of the nucleon to be highly not conserved due to the big nucleon mass. However,
nucleon interactions are mediated by pions. Therefore, it is reasonable to assume that
the axial current which should be conserved arises from the sum of the nucleon and the
pion currents:

Ak
µ, Tot = Ak

µ, Nuc + Ak
µ, π = gAΨ̄Nuc γµ γ5 τk ΨNuc + fπ ∂µπk(x) (5.9)

where we used Eqs. (5.7) and (5.8). Imposing the conservation of the total current
∂µ Ak

µ, Tot = 0 we obtain:

∂µ∂µπk(x) + i gA
MNuc

fπ
Ψ̄Nuc γ5 τk ΨNuc = 0 , (5.10)

where MNuc corresponds to the mass of the nucleon. Eq. (5.10) can be interpreted as a
Klein-Gordon equation for the massless pion field, which is coupled to the nucleon via
the coupling

gπ Nuc Nuc = gA
MNuc

fπ
. (5.11)

Equation (5.11) is the so-called Goldberger-Treiman relation. We also emphasize that in
Eq. (5.10) we obtained that the pion has to be massless from the conservation of the
axial-vector current. On the other hand, one can impose the PCAC relation Eq. (5.6)
instead of the strict conservation of the axial-vector current allowing for a finite pion
mass, thus finding(

∂µ∂µ + m2
π

)
πk(x) + i gA

MNuc

fπ
Ψ̄Nuc γ5 τk ΨNuc = 0 , (5.12)

which is, once again, a Klein-Gordon equation for a massive pion coupled to the nucleon
via the same coupling as given by the Goldberger-Treiman relation Eq. (5.11). Even
though we derived it for the case of nucleons, this is still valid at the quark level setting
gA = 1. We will indeed use this version of the relation, where the quark mass term will
be the one arising from the coupling to the chiral condensate, to construct the interaction
term between quarks and meson in the QM model.
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5.3 From QCD symmetries to the QM-model Lagrangian

In order to start building the QM-meson Lagrangian out of the symmetry of QCD, let
us come back to the definitions of the transformations of the chiral group for two flavors
SUV(2) ⊗ SUA(2) defined in Eqs. (2.19) and (2.20). In particular, we will consider the
infinitesimal transformations associated to the vector and axial-vector symmetries, that
we indicate as ΛV and ΛA respectively. They act on the spinor doublet Ψ = (u, d)T in
the following way:

Ψ′
V = ΛVΨ = e−i τ⃗

2 ·⃗θV Ψ ≃
(

I − i
τ⃗

2
· θ⃗V

)
Ψ , (5.13)

Ψ′
A = ΛAΨ = e−iγ5

τ⃗
2 ·⃗θA Ψ ≃

(
I − iγ5

τ⃗

2
· θ⃗A

)
Ψ , (5.14)

where τ⃗ indicates the Pauli matrices which generate the SU(N f = 2) symmetry group.
Analogously one finds the associated transformation for Ψ̄ = (ū, d̄):

Ψ̄′
V = Ψ̄ei τ⃗

2 ·⃗θV ≃ Ψ̄
(

I + i
τ⃗

2
· θ⃗V

)
, (5.15)

Ψ̄′
A = Ψ̄e−iγ5

τ⃗
2 ·⃗θA ≃ Ψ̄

(
I − iγ5

τ⃗

2
· θ⃗A

)
. (5.16)

In order to construct the model, we then introduce the combinations of quark fields
which carry the quantum numbers of the pions and of the sigma meson, namely a
(Lorentz) pesudo-scalar iso-triplet and a (Lorentz) scalar iso-singlet:

σ ≡ Ψ̄Ψ , (5.17)
π⃗ ≡ iΨ̄τ⃗γ5Ψ . (5.18)

We can now check the isospin properties of the previously defined fields following the
definitions of the infinitesimal transformations in Eqs. (5.13)-(5.16). We begin considering
the SUV(2) transformation for the σ field at first order in the infinitesimal parameter θV :

SUV(2) : σ ≡ Ψ̄Ψ → Ψ̄Ψ ≡ σ , (5.19)

meaning that the σ field is invariant under SUV(2) transformations, which we already
stated when analyzing the symmetries of the mass term ∝ Ψ̄Ψ in Chapter 2. From this
trivially follows that also σ2 is invariant under SUV(2) transformations.

We now move to the SUV(2) transformation for the pions

SUV(2) : πi ≡ iΨ̄τiγ5Ψ → iΨ̄τiγ5Ψ + iθV,j ϵijkΨ̄τkγ5Ψ (5.20)

= πi + iθV,j ϵijkπk ,

which in the iso-vector formalism can be indicated as

SUV(2) : π⃗ → π⃗ + i⃗θV × π⃗ , (5.21)

thus implying that the pions behave indeed as an iso-vector and that an SUV(2) trans-
formation acts on them as an isospin rotation. This means that the quantity

π2 ≡ π⃗ · π⃗ (5.22)

is invariant under SUV(2) transformations.
We can now consider how the σ-field transforms under the SUA(2) symmetry group
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SUA(2) : σ ≡ Ψ̄Ψ → Ψ̄Ψ + iθA,iΨ̄τiγ5Ψ+ (5.23)
= σ − θA,iπi ,

which in isospin vector notation translates to

SUA(2) : σ → σ − θ⃗A · π⃗ . (5.24)

Analogously, the pions transform under the axial transformation SUA(2) as

SUA(2) : πi ≡ iΨ̄τiγ5Ψ → +Ψ̄τiγ5Ψ + θA,iΨ̄Ψ (5.25)
= πi + θA,i σ

and in isospin vector notation

SUA(2) : π⃗ → π⃗ + θ⃗Aσ . (5.26)

This means that the effect of an SUA(2) transformation is to rotate the pions into the σ

meson and vice versa.
Since both π2 and σ2 are independently invariant under SUV(2) transformations, we

now check how they are affected by infinitesimal SUA(2) transformations. In particular,
it is easy to verify that, at first order in θA, σ2 transforms as

SUA(2) : σ2 → σ2 − 2σ θ⃗A · π⃗ (5.27)

and π2 as
SUA(2) : π2 → π2 + 2σ θ⃗A · π⃗ . (5.28)

Thus, we can conclude that we can construct the effective Lagrangian of the model
starting from the combination σ2 + π2, which is invariant under the full chiral group
SUV(2)⊗ SUA(2)

SUV(2) : σ2 + π2 → σ2 + π2 , (5.29)

SUA(2) : σ2 + π2 → σ2 + π2 . (5.30)

From the previous discussion we can then conclude that the SUV(2) ⊗ SUA(2) chiral
symmetry translates into an O(4) rotational symmetry for the bosonic field

Φ =


σ

π1

π2

π3

 (5.31)

and
Φ2 = σ2 + π2 (5.32)

is the O(4) invariant.
Since the kinetic term for fermions is invariant under the chiral group transformation,

we can already construct the kinetic term of our low-energy effective model

Lkin = iΨ̄γµ∂µΨ +
1
2
(
∂µΦ

)2 . (5.33)
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The next ingredient is a potential which governs the interaction among mesons. The
only requirement that this potential has to fulfill, in order to respect chiral symmetry, is
that its only field dependence can come from the O(4) invariant Φ2:

U(σ, π) = U(Φ2) . (5.34)

No further specification is needed at this stage, and the potential can be an arbitrary
function of Φ2 (as long as the stability requirement are fulfilled and it is bounded from
below).

Regarding the interaction term between mesons and fermions, it has to be built in
order to retain both Lorentz and chiral symmetry. To fulfill the constraint of Lorentz
symmetry, the pions must be coupled to a pseudo-scalar combination of Dirac fields
while the σ field has to be coupled to a scalar one. As far as chiral symmetry is con-
cerned, it is sufficient to recreate a combination which behaves like σ2 + π2, which is
both Lorentz and chiral invariant. The easiest interaction term that fulfills both require-
ments is obtained by coupling each meson with the corresponding expression in terms
Dirac fields, and is given by

Lint = h
(
σΨ̄Ψ + π⃗ · (iΨ̄γ5τ⃗ Ψ)

)
. (5.35)

We can notice that the term hσΨ̄Ψ acts as a mass term for the fermions. Even though
a fermion mass term would explicitly break chiral invariance, the term hσΨ̄Ψ does not,
since it is inserted in the chirally invariant combination presented in Eq. (5.35). Thus the
interaction with the σ meson gives the quarks a constituent mass given by

MΨ = h⟨σ⟩ , (5.36)

where ⟨σ⟩ indicates the expectation value of the σ field. Using the Goldberger-Treiman
relation Eq. (5.11) for quarks, setting ga = 1, gπ Nuc Nuc = h and using as mass term the
one in Eq. (5.36), one can fix the value of the σ condensate in vacuum:

⟨σ⟩ = fπ . (5.37)

This means that the potential in Eq. (5.34) has to have a minimum located at σ = fπ in
the vacuum. The fact that the σ field acquires a finite expectation value breaks the O(4)
symmetry spontaneously, since the minimum is not invariant under this transformation.
This means that the mechanism through which quarks get a finite constituent mass is
indeed the SSB of chiral symmetry. When the minimum of the potential is located at
σ = 0, i.e., the sigma condensate vanishes ⟨σ⟩ = 0, the O(4) chiral symmetry is restored
and the quarks are massless.

Associated to the SSB of the O(4) symmetry down to O(3), the pions are the Gold-
stone modes and are massless, while the radial σ exitation is massive. When the sym-
metry is restored, both pions and σ turn massive and become degenerate.

Thus, collecting all the different terms we discussed, we can construct the (Euclidean)
Lagrangian for the QM model which then reads:

LE
QM = ψ̄(γµ∂µ + h(σ + iγ5τ⃗ · π⃗))ψ +

1
2
(∂µΦ)2 + U(Φ2) . (5.38)

This will be the starting point for our following discussions, especially when considering
the chiral limit.

5.4 Extensions of the model

In this section we will consider the extensions of the model to include the effects of finite
quark mass, chemical potential and temperature on the structure of the model and on
its predictions.
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5.4.1 Explicit breaking of chiral symmetry

We stated multiple times that the presence of the small but finite current quark masses
of the up and down quark breaks the axial-vector symmetry explicitly. In order to
implement this feature in the QM model, we recall that the mass term for fermions
looks like

Lm = −m2Ψ̄Ψ . (5.39)

The fermionic content of this term is equal to the one of the definition Eq. (5.17) of the
sigma meson. Thus, we can mimic the presence of a finite current quark mass by the
insertion of a term

Lm = −cσ (5.40)

in the Lagrangian Eq. (5.38). The total Lagrangian then reads:

LE
QM = ψ̄(γµ∂µ + h(σ + iγ5τ⃗ · π⃗))ψ +

1
2
(∂µΦ)2 + U(Φ2)− cσ . (5.41)

In this way the O(4) symmetry is also explicitly broken by the term −cσ, and the spon-
taneous symmetry-breaking pattern is not exact. As we discussed describing the PCAC
relation, the pions then turn into massive pseudo-Goldstone mesons, acquiring a finite
mass given by

M2
π =

∂2 (U(Φ2)− cσ
)

∂π2

∣∣∣
⟨σ⟩= fπ

=
c
fπ

. (5.42)

Furthermore, the expectation value ⟨σ⟩ never truly vanishes and the O(4) symmetry is
never restored, even though it can be considered approximately restored when ⟨σ⟩ ≪ fπ.

5.4.2 Finite temperature

In the case of finite temperature, we can use the standard Matsubara formalism in-
troduced in textbooks, see, e.g., [179, 180, 181], and consider the model in the grand
canonical ensemble at vanishing density. In this case the partition function is given by

Z(T) = Tr e−βĤ , (5.43)

where Tr indicates the standard statistical-mechanical trace, β = 1/T and Ĥ represents
the Hamiltonian operator of the system. Via the standard procedure, one can express
Eq. (5.43) in a path-integral formulation

Z(T) =
∫

boundaries
DΨ̄DΨDΦ e−SE[Ψ̄,Ψ,Φ] , (5.44)

where the Euclidean action contains a standard 3-dimensional spatial integral and an
integral over the compactified imaginary-time dimension x0 ∈ [0, β). In particular, for
the QM model it reads

SE[Ψ̄, Ψ, Φ; µ] =
∫ β

0
dx0

∫
R3

d3x
{

ψ̄(γµ∂µ + h(σ + iγ5τ⃗ · π⃗))ψ +
1
2
(∂µΦ)2 + U(Φ2)

}
.

(5.45)

In Eq. (5.44) we used the specification boundaries on the path integral. This indicates the
boundary conditions in the imaginary-time dimension that the fields have to fulfill due
to the presence of the trace in Eq.(5.43). In particular, the bosonic field has to be periodic,

Φ(β, x) = Φ(0, x) , (5.46)
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while, due to the anticommutation relations, the fermionic fields Ψ̄ and Ψ have to be
anti-periodic,

Ψ̄(β, x) = −Ψ̄(0, x) , (5.47)

Ψ(β, x) = −Ψ(0, x) . (5.48)

The finite size of the imaginary temporal dimension and the periodicity reflects onto the
Forurier expansion of the fields, where the p0 integral gets replaced by a discrete summa-
tion, the so-called Matsubara sum, over discrete frequencies ωn, the so-called Matsubara
frequencies. In particular, for the bosonic field Φ the Fourier expansion reads

Φ(x0, x) = T
∞

∑
n=−∞

∫
R3

d3p
(2π)3 ei(ωnx0+x·p) Φ(ωn, p) , (5.49)

where the bosonic Matsubara frequencies are given by

ωn = 2πnT Bosons . (5.50)

Analogously, for the fermionic fields Ψ̄ and Ψ one obtains

Ψ̄(x0, x) = T
∞

∑
n=−∞

∫
R3

d3p
(2π)3 e−i(ωnx0+x·p) Ψ̄(ωn, p) , (5.51)

Ψ(x0, x) = T
∞

∑
n=−∞

∫
R3

d3p
(2π)3 ei(ωnx0+x·p) Ψ(ωn, p) (5.52)

and the fermionic Matsubara frequencies are

ωn = (2n + 1)πT Fermions . (5.53)

This formalism, which is general and independent of the details of the QM model, will
be used throughout this work whenever finite-temperature calculations have to be per-
formed.

5.4.3 Finite quark-number density

We discussed in Chapter 2 that the baryon number represents a conserved Noether
charge derived from the QCD Lagrangian’s invariance under the UV(1) symmetry. In
this section we refer to the conserved charge as N indicating the quark number, and
follow the standard convention that differs from Eq. (2.30) by a factor 3, namely

N =
∫

R3
d3x n(x) =

∫
R3

d3x Ψ̄(x)γ0Ψ(x) , (5.54)

where n(x) represents the quark-number density. If we then want to consider the system
in presence of a finite quark-number density, we have to work in the grand canonical
ensemble and we have to associate an energy cost per particle, the chemical potential, to
the conserved charge. In this way the Hamilton operator of the system gets a shift given
by the finite-density contribution

Ĥ → Ĥ − µN̂ , (5.55)

where N̂ represents the quantum operator associated to the conserved charge. In this
way, the standard grand canonical partition function is given by

Z(T, µ) = Tr e−β(Ĥ−µN̂) , (5.56)
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or in the path-integral formulation

Z(T, µ) =
∫

DΨ̄DΨDΦ e−SE[Ψ̄,Ψ,Φ] , (5.57)

where we neglected the sources for the fields and used the Euclidean action, which for
the QM model then reads

SE[Ψ̄, Ψ, Φ; T, µ] =
∫ β

0
dx0

∫
R3

d3x
{

ψ̄(γµ∂µ + h(σ + iγ5τ⃗ · π⃗)− γ0µ)ψ +
1
2
(∂µΦ)2 + U(Φ2)

}
.

(5.58)

Once again, the grand canonical formalism associated to the introduction of a finite
density of a conserved charge is very general and can be applied to the study of systems
which exhibit Noether symmetries and conserved charges, with the introduction of the
associated chemical potentials.

5.5 Landau Mean-Field study

Before studying the full model with the inclusion of fluctuations, it can be very helpful
to have a first grasp of what is expected to be the phase diagram of the QM model. This
can easily be done by using the simple Landau theory of phase transitions [182].

We have to consider a theory which allows us to describe a system where a symmetry
is spontaneously broken and where an order parameter can be identified. As we already
stated, the order parameter has to vanish for temperatures bigger than some critical
temperature Tc and be finite for temperatures lower than Tc. This approach, for example,
can be used also to describe the Ising model, where the Z2 symmetry is spontaneously
broken by a finite magnetization. In the case we are studying, the order parameter
is clearly the expectation value of the sigma field, which, when finite, gives rise to a
finite value of the chiral condensate. If this happens then the O(4) symmetry of the
model is spontaneously broken to an O(3) symmetry, as we discussed previously. So
we can consider a potential that is O(4)-symmetric and whose parameters depend on
the physical parameters of the original QM model, namely the temperature T and the
chemical potential. We now distinguish the two cases, i.e., the chiral limit, where the
O(4) symmetry is exact, and the finite current quark mass case, when the O(4) symmetry
is explicitly broken.

5.5.1 Chiral limit

In the chiral limit, we consider an exactly O(4)-symmetric potential. To do so, the
potential has to contain only terms that depend on the O(4) invariant of the theory
ρ = (π2 + σ2)/2

U(ρ) = 2m2ρ + 2λ ρ2 +
8
3

γ ρ3 . (5.59)

As requested, if the minimum of the potential is located at ρ = 0 then also the minimum
is O(4)-invariant, otherwise a minimum at a finite value of ρ ̸= 0 would spontaneously
break the O(4) symmetry down to O(3). Without loss of generality, one can assume
that the direction of the symmetry breaking is the σ one, and identify the pions as the
Goldstone modes of the transition, with vanishing mass and expectation value. Thus
one can just focus, as we already did in Eq.(4.12), on the expectation value σ =

√
2ρ and

rewrite Eq. (5.59) as

U(σ) = m2σ2 +
1
2

λ σ4 +
1
3

γ σ6 . (5.60)
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In general, one could also consider higher-order terms in the potential, but for our study
is sufficient to stop at the sixth order. This approximation is justified as long as the order
parameter can be considered to be small w.r.t. the scales of the theory. We now specify
the dependence on the external parameters temperature T and chemical potential µ of
the various couplings in the potential. First of all, we assume γ to be independent of
T and µ, but to be positive and small compared to λ, in order to be sure to have a
bounded-from-below potential regardless of the sign of the coupling λ. We also assume
that m2 changes sign in the proximity of a critical temperature Tc(µ), which depends on
the chemical potential, such that

m2 ≃ m2
0(T − Tc(µ)) , (5.61)

where m2
0 is a positive constant. We also assume that λ is a function of the chemical

potential only, such that it decreases as µ is increased, and also that λ(µ = 0) > 0 ,
implying a µ̄ exists for which λ vanishes λ(µ = µ̄) = 0. We now analyze the different
regions in µ.

1. For 0 < µ < µ̄, the quartic coupling is positive λ(µ) > 0 and sufficiently larger
than γ, λ(µ) ≫ γ, such that, in our hypothesis of a small order parameter, we can
neglect the sixth-order term. So in the current case we are left with the potential

U(σ; T, µ) = m2
0(T − Tc)σ

2 +
1
2

λ(µ) σ4 . (5.62)

We now want to obtain the position of the minimum of the potential σ0:

∂σU(σ; T, µ)
∣∣∣
σ=σ0

= 0 = 2m2
0(T − Tc)σ + 2λ(µ)σ3 , (5.63)

which gives the solutions

σ0 = 0 , σ0 = ±
√

m2
0

λ(µ)
(Tc − T) . (5.64)

For T > Tc, the only acceptable solution is σ0 = 0, so in this case the minimum is
invariant under the O(4) symmetry, and so is the system.

For T < Tc, the point σ0 = 0 is a local maximum, and the minimum of the potential
is located at a finite value σ0 ̸= 0. In this case the O(4) symmetry is spontaneously
broken down to O(3). We point out that the presence of two opposite solutions is
consistent with the Z2 symmetry, which is part of the larger O(3) symmetry not
broken by the finite minima.

We can notice that σ0 goes continuously to 0 as T approaches Tc, thus we can
conclude that the system undergoes a second-order phase transition at this point.
We can also extract the value of the critical exponent β, since

σ0 ∼ (Tc − T)1/2 for T ≤ Tc . (5.65)

Recalling the behavior of the order parameter described in Eq.(4.35), we can rewrite
it for the finite-temperature case:

σ0 =

{
0 T ≥ Tc
∼ (Tc − T)β T ≤ Tc

. (5.66)

Thus, we can conclude that β = 1/2, as expected from a mean-field calculation
[182].



74 CHAPTER 5. THE TWO-FLAVOR QUARK-MESON MODEL

2. For µ > µ̄ the quartic coupling is negative, λ(µ) < 0, thus, for the previously
highlighted stability reasons, we cannot neglect the sixth-order term. So in the
current case we consider the full potential in Eq. (5.60), specifying the T and µ

dependence of the parameters

U(σ; T, µ) = m2
0(T − Tc)σ

2 +
1
2

λ(µ) σ4 +
1
3

γ σ6 . (5.67)

We proceed, as in the previous case, looking for the extrema of the potential:

∂σU(σ; T, µ)
∣∣∣
σ=σ0

= 0 = 2m2
0(T − Tc)σ + 2λ(µ)σ3 + 2γσ5 . (5.68)

Solving for σ2
0 one obtains

σ2
0; 1 = 0 , σ2

0; 2 =
−λ(µ)

2γ

1 +

√
1 + 4

γ m2
0

λ2(µ)
(Tc − T)

 . (5.69)

However, we have to take into account that σ2
0; 1 and σ2

0; 2 correspond to local ex-
tremes of the potential, and our goal is to find the global minimum of the potential.
To do so we need a more accurate analysis of the behavior of the potential as the
temperature is changed.

For T < Tc, σ2
0; 1 is a local maximum, since ∂2

σ2U(σ0; 1) = m2
0(T − Tc) < 0, while σ2

0; 2
is the global minimum. It is important to point out that in this case U(σ0; 2) < 0.

For T ≫ Tc, σ2
0; 2 is not available, and σ2

0; 1 is the only local and global minimum of
the potential.

For T slightly bigger then Tc, σ2
0; 1 is still a local minimum, but also σ2

0; 2 is a local
minimum and we have a competition between the two minima. Since U(σ2

0; 2) < 0
and U(σ2

0; 1) = 0, σ2
0; 2 is the global minimum of the potential.

Gradually increasing T above Tc, U(σ2
0; 2) increases, up to the temperature T∗ when

U(σ2
0; 2) = 0. In this case we have a degeneracy of the minima, and further in-

creasing T above T∗ implies that the global minimum abruptly changes from σ2
0; 2

to σ2
0; 1. This means that the system undergoes a sharp first-order phase transition

at T = T∗ > Tc. One can also determine T∗ and the discontinuity of the order
parameter at T∗, i.e., σ2

0; 2(T = T∗), by imposing that σ2
0; 2 fulfills the minimization

condition Eq. (5.68) and that U
(
σ2

0; 2(T = T∗)
)
= 0. One thus obtains

σ2
0; 2(T = T∗) = −3λ

4γ
(5.70)

and

T∗ = Tc +
3λ2

16γ
. (5.71)

3. For µ → µ̄, the coupling λ(µ) → 0, T∗ → Tc and the discontinuity in the order
parameter in Eq.(5.70) becomes progressively smaller, implying that the first-order
phase transition becomes weaker and weaker. When µ = µ̄ is reached, λ vanishes,
λ(µ = µ̄) = 0, and the phase transition turns into a smooth second-order one. Set-
ting λ(µ) = 0 in Eq.(5.69), we can also deduce the behavior of σ2

0; 2 as T approaches
Tc:

σ2
0; 2 =

√
m2

0
γ
(Tc − T) ∼ (Tc − T)

1
2 . (5.72)

This implies that, in this case, β = 1/4.
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Summarizing what we obtained so far, the MF Landau model exhibits a line of second-
order phase transitions for µ < µ̄, a line of first-order transitions for µ > µ̄, and the
two lines merge into a single tricritical point for µ = µ̄ and T = Tc(µ = µ̄), where the
transition is of second order.

5.5.2 Finite quark mass

We now consider the case in which quark are massive fields. To mimic the presence of
a finite current-quark mass in our model, we add to the potential Eq. (5.60) an external
source term for the sigma field:

U(σ) = m2σ2 +
1
2

λ σ4 +
1
3

γ σ6 − cσ , (5.73)

where c is an external, T, µ and σ independent source field. This is analogous to what
happens to the Ising model in presence of an external magnetic field, which couples
linearly with the magnetization. In this way the O(4) symmetry is also explicitly broken
due to the introduction of the non-invariant term −cσ, as in full QCD a finite quark mass
explicitly breaks chiral symmetry. We now consider the different cases separately, as we
did in the chiral limit.

1. As previously, the case 0 < µ < µ̄ corresponds to λ(µ) > 0 and sufficiently larger
than γ, λ(µ) ≫ γ so that once again we can neglect the sixth-order term. The
potential then reads

U(σ; T, µ) = m2
0(T − Tc)σ

2 +
1
2

λ(µ) σ4 − cσ . (5.74)

The minimization condition then results in

∂σU(σ; T, µ) = 0 = 2m2
0(T − Tc)σ + 2λ(µ) σ3 − c . (5.75)

We can then conclude that in this case the solution σ0 = 0 is not present anymore,
implying that the minimization always lead to a finite minimum. Indeed, at T = Tc
the minimum does not vanish and we have

σ0(T = Tc) =

(
c

2λ(µ)

)1/3

. (5.76)

From this expression one can also extract the critical exponent δ, which is the one
describing the behavior of the order parameter at the critical temperature as a
function of the applied external field

σ0(T = Tc) ∼ c1/δ . (5.77)

We can thus conclude that δ = 3. The minimum smoothly decreases when T is in-
creased but never reaches σ = 0 unless c = 0. This destroys the second-order phase
transition since no spontaneous symmetry breaking occurs at any temperature. So
the second-order phase transition line is replaced by a smooth crossover.

2. The case µ = µ̄ and λ(µ̄) = 0 actually does not correspond to the critical point
but still to a crossover. As we will soon see, this is valid also for a small chemical
potential interval µ̄ < µ < µ∗ up to the value µ∗ for which λ(µ∗) < 0. In the µ = µ̄

case the potential reads

U(σ; T, µ) = m2
0(T − Tc)σ

2 +
1
3

γ σ6 − cσ . (5.78)
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Once again, we look for the minimum of the potential:

∂σU(σ; T, µ)
∣∣∣
σ=σ0

= 0 = 2m2
0(T − Tc)σ + 2γσ5 − c . (5.79)

The same considerations we did for the previous case still hold and we can easily
determine the critical exponent δ:

σ0(T = Tc) =

(
c

2γ

)1/5

, (5.80)

concluding that δ = 5.

3. For µ > µ∗, λ(µ) < 0 and we keep the sixth-order term. So the potential reads

U(σ; T, µ) = m2
0(T − Tc)σ

2 +
1
2

λ(µ) σ4 +
1
3

γ σ6 − cσ . (5.81)

Imposing the minimization condition results in:

∂σU(σ; T, µ)
∣∣∣
σ=σ0

= 0 = 2m2
0(T − Tc)σ + 2λ(µ)σ3 + 2γσ5 − c . (5.82)

Also in this case the solution σ0 = 0 is not available and a finite minimum is
always present. The first-order phase transition still happens, but the minimum
jumps from a larger value to a smaller but still finite one.

4. The first- and second-order lines meet once again in one point, the critical endpoint,
located at (T∗(µ = µ∗), µ∗) for which λ(µ∗) < 0. The nature of this point can
be understood considering the derivatives of the potential and the extreme-point
location. We have seen that, in order to have a first-order phase transition, we need
at least three extreme points, which in the chiral case were symmetric w.r.t. σ = 0.
When c ̸= 0, three extreme points are still present but the symmetry is broken and
none of them is located at the origin. The existence of three extreme points implies

by definition that, using the same potential as in Eq. (5.81), ∂σU(σ; T, µ)
∣∣∣
σ=σ0

= 0

for three separate values of σ0, which we call σ0;i with i = 1, 2, 3. From this it follows
that there exist two intermediate points, between those values of σ0;i, which we call

σ1;j, with j = 1, 2, for which the second derivative vanishes ∂2
σ2U(σ; T, µ)

∣∣∣
σ=σ1;j

= 0.

This in turn implies the existence of a single point σ2, which is located in between
σ1;1 and σ1;2, for which also the third derivative of the potential vanishes. As we
have seen in the chiral limit, we can identify the critical point as the one in which
the three different extreme points coincide at the critical temperature. In the current
case this means that σ0;1 ≡ σ0;2 ≡ σ0;3. Consequently, also the points σ1;1, σ1;2 and
σ2 come to coincide with the three degenerate extreme points in a single point, that
we call σ∗, namely
σ0;1 ≡ σ0;2 ≡ σ0;3 ≡ σ1;1 ≡ σ1;2 ≡ σ2 ≡ σ∗. This implies that

∂σU(σ; T∗(µ∗), µ∗)
∣∣∣
σ=σ∗

= ∂2
σ2U(σ; T∗(µ∗), µ∗)

∣∣∣
σ=σ∗

= ∂3
σ3U(σ; T∗(µ∗), µ∗)

∣∣∣
σ=σ∗

= 0 .

(5.83)
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Therefore, the endpoint corresponds to a second-order phase transition. Imposing
the conditions Eq. (5.83), one can easily determine σ∗

σ∗ =

√
−λ(µ∗)

10γ
, (5.84)

from which we see that this point can only be found in the λ(µ∗) < 0 case. One
can also calculate the value of λ(µ∗)

λ(µ∗) = −5
(

γ3c2

216

)1/5

. (5.85)

Consistently with the chiral limit discussion, if c → 0 then λ(µ∗) = 0 and σ∗ = 0.
One can also check that, considering small deviations from the minimum σ∗, like
σ∗ + δσ, the critical exponent β is given by β = 1/2.

To recapitulate the behavior of the Landau MF model in the case of an explicit
symmetry-breaking term, we find a crossover line in the 0 < µ < µ∗ interval, a first-
order line for µ > µ∗, and the two lines meet in a critical endpoint (T∗(µ = µ∗), µ∗),
where the transition is of second order.

This concludes the purely bosonic Landau MF analysis. We will shortly find that
these results are qualitatively in agreement with the ones obtained considering also
fermions in the model, and successively, with the ones obtained including bosonic fluc-
tuations via the FRG.

5.6 Beyond mean field: FRG approach

In this and the following section, we extend the discussion on the properties of the QM
model going beyond the mean-field approximation, including fluctuations. In particular
we choose to use the FRG approach as a tool for the analysis of the effects of fluctuations
on several properties of the model such as the phase diagram, the critical exponents,
and the value of the condensate. A discussion of the thermodynamic properties of the
model, with a comparison between MF and FRG calculation is presented in Chapter 6.

5.6.1 Flow equation

As we already stated, the central object of the FRG approach is the FRG flow equation
Eq. (3.13). In particular, for a system which contains both fermionic (Ψ̄, Ψ) and bosonic
(Φ) degrees of freedom, we have two separate loops that contribute to the flow equation:

∂tΓt[Ψ, Ψ̄, Φ] =
1
2

Tr
[(

∂tRB
t
)(

Γ(2)
t, ΦΦ[Ψ, Ψ̄, Φ] + RB

t
)−1
]

−Tr
[(

∂tRF
t
)(

Γ(2)
t, Ψ̄Ψ[Ψ, Ψ̄, Φ] + RF

t
)−1
]

, (5.86)

where RB
t and RF

t represent the bosonic and the fermionic regulator, respectively. In the
particular case of the QM model, we will soon observe that the contributions arising
from the various bosonic modes, namely the pions and the sigma, can be disentangled
due to diagonal structure of the bosonic two-point function in field space. This means
that, once the trace is taken, the bosonic loop in the field Φ = (π⃗, σ) in Eq. (5.86) further
splits in the contribution of the pions (with multiplicity 3) and the sigma.



78 CHAPTER 5. THE TWO-FLAVOR QUARK-MESON MODEL

The next fundamental ingredient for the FRG machinery is the choice of the ansatz
for the effective average action. In particular we adopt the LPA ansatz

Γt[Ψ̄, Ψ, ϕ] =
∫ 1/T

0
dx0

∫
d3x
{

ψ̄
(
γµ∂µ + h(σ + iγ5τ⃗ · π⃗)− µγ0

)
ψ

+
1
2
(∂µσ)2 +

1
2
(∂µπ⃗)2 + Ut(σ

2 + π⃗2)− cσ
}

,

(5.87)

which is similar to the action Eq. (5.58), but in this case the bosonic potential is scale-
dependent. This truncation is relatively simple, since, for example, no running of the
wave-function renormalization factor or of the Yukawa coupling is taken into account,
but yet it still allows for a good qualitative insight into the model due to the fact that it
captures every possible bosonic self-coupling that can be generated during the flow.

We will now proceed to illustrate the shape of the various contributions to the flow
equation. In particular, for the moment we do not need to specify the regulator shape
function, since most of the considerations can be performed without it.

5.6.2 Bosonic contribution to the flow equation

The final ingredient we need before performing the actual calculations is the regulator
function. In this subsection we just state the result and leave the full calculations to
App. D. In particular, we use a generic shape for the 3D regulator, which is diagonal in
momentum and field space

RB
t (q, p) = (2π)3 δ(3)(q + p)p2 rB

t (p) , (5.88)

where rB
t (p) represents the generic regulator shape function.

Plugging Eq. (5.88) into the first term on the r.h.s. of Eq. (5.86), we get the bosonic
contribution to the flow equation in the LPA

1
2

Tr
[(

∂tRB
t
)(

Γ(2)
t, ΦΦ[Ψ, Ψ̄, Φ] + RB

t
)−1
]
=

1
8π2

∫ ∞

0
d q q4 ∂trB

t (q)

×
{

3
Ek,π(q)

coth
(

Ek,π(q)
2T

)
+

1
Ek,σ(q)

coth
(

Ek,σ(q)
2T

)}
, (5.89)

where q = |q| and we have introduced the energies for the pions and the sigma modes
as

Ek,π(q) =

√
q2
(

1 + rB
t (q)

)
+

∂σUt(σ)

σ
(5.90)

and

Ek,σ(q) =
√

q2
(

1 + rB
t (q)

)
+ ∂2

σσUt(σ) . (5.91)

We can then define the effective masses of the two particle species:

M2
π(σ) =

∂σUt(σ)

σ
, M2

σ(σ) = ∂2
σσUt(σ) . (5.92)
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We can notice that, coherently with the discussion we made on the role of the pions as
(pseudo) Goldstone bosons associated to the SSB of the O(4) symmetry, the mass of the
pion mode vanishes when evaluated at the physical point, i.e., at the minimum of the
effective potential (since the explicit symmetry breaking term is linear in the sigma field,
it does not contribute to the flow equation and it is just added to the IR potential).

5.6.3 Fermionic contribution to the flow equation

We now introduce the fermionic loop contribution to the flow equation. Following the
choice we made for the bosonic case, we do not specify the regulator and simply state a
generic momentum-diagonal shape:

RF
t (p, q) = i (2π)3 δ(3)(q + p) /p rF

t (x) , (5.93)

where we defined the variable
x = |p|/k . (5.94)

In Chapter 7, we will also investigate a different class of regulators which does not
belong to the one indicated in Eq. (5.93), and in particular it will depend explicitly on
the chemical potential.

Inserting Eq. (5.93) into the second term on the r.h.s. of Eq. (5.86), performing the
inversion of the full fermionic two-point function and taking the trace one obtains

−Tr
[(

∂tRF
t
)(

Γ(2)
t, Ψ̄Ψ[Ψ, Ψ̄, Φ] + RF

t
)−1
]
= − Nc

4 π2

∫ ∞

0
d p p4

(
1 + rF

t (x)
)

∂trF
t (x)×

1
Ek,Ψ(p)

[
1 − nF

(
Ek,Ψ(p) + µ

T

)
− nF

(
Ek,Ψ(p)− µ

T

)]
,

(5.95)

where Nc is the number of color d.o.f., that for the moment we leave indicated as a
parameter. We also used p = |p| and we introduced the Fermi-Dirac distribution

nF(x) =
1

ex + 1
(5.96)

and the energy of the fermions

Ek, Ψ(p) =

√
p2
(

1 + rF
t (x)

)2
+ (hσ)2 . (5.97)

We can then correctly emphasize that, as anticipated, thanks to the Yukawa coupling,
the fermions obtain a dynamically generated mass

M = h⟨σ⟩ , (5.98)

where ⟨σ⟩ indicates the chiral condensate.

5.6.4 Full flow equation and hydrodynamic formulation

Summing up the two contributions Eq. (5.89) and Eq. (5.95) from the bosonic and the
fermionic loop, respectively, we obtain the full flow equation for the QM model in the
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LPA truncation:

∂tUt(σ) =
1

8π2

∫ ∞

0
d q q4

{
∂trB

t (q)

[
3

Ek,π(q)
coth

(
Ek,π(q)

2T

)
+

1
Ek,σ(q)

coth
(

Ek,σ(q)
2T

)]

−2 Nc

(
1 + rF

t (x)
)

∂trF
t (x)

1
Ek,Ψ(q)

[
1 − nF

(
Ek,Ψ(q) + µ

T

)
− nF

(
Ek,Ψ(q)− µ

T

)]}
.

(5.99)

Following the steps in Sec. 4.2.2, we notice that Eq. (5.99) does not depend explicitly
on the effective potential Ut(σ) but only on its first and second derivatives w.r.t. the σ

field. So it comes natural to introduce the new variables

ut(σ) = ∂σUt(σ) (5.100)

and
u′

t(σ) = ∂σut(σ) = ∂2
σσUt(σ) (5.101)

and express the flow equation Eq. (5.99) in terms of these variables. To do so, as we
proceeded in Sec.4.2.2, we now take the derivative w.r.t. σ of Eq. (5.99) and so we obtain

∂tut(σ) + ∂σ f (t, σ, ut(σ)) = ∂σg(t, u′
t(σ)) + Nc∂σS(t, σ) , (5.102)

which can be classified once again as a non-linear advection-diffusion equation with a
source term induced by the fermions.

As we stressed in Sec. 4.2.2, in this framework the derivative of the potential u(t, σ)
plays the role of a conserved quantity, in the sense that it satisfies a generalized con-
servation law [32, 80, 168] with a source term. As we are about to see, each of the
contributions that appear in Eq. (5.102) arises from the various particle species involved
in the model.

More in detail, the advection flux is given by

f (t, σ, u) = − 1
8π2

∫ ∞

0
d q q4 ∂trB

t (q)
3

Ek,π(q)
coth

(
Ek,π(q)

2T

)
(5.103)

and it is responsible of the bulk motion of the conserved quantity ut(σ). This contri-
bution originates from the pions, and this is confirmed by the factor 3 that appears in
Eq. (5.103), signaling the multiplicity of this term. Furthermore, as we already pointed
out when defining the pion energy Ek;π in Eq.(5.90), the mass term for the pions, ut(σ)/σ,
vanishes at the minimum of the effective potential, in agreement with the nature of the
pions as Goldstone bosons. One can verify that the speed of characteristics is given by

∂ f (t, σ, u)
∂u

=
1

32 π2T σ

∫ ∞

0
d q q4 ∂trB

t (q)
3

Ek,π(q)3 csch
(

Ek,π(q)
2T

) [
Ek,π(q) + T sinh

(
Ek,π(q)

2T

)]

(5.104)

and it is positive if σ < 0 and negative if σ > 0 (since ∂trB
t (q) < 0 and the other functions

are positive if their argument is positive), implying that the conserved quantity ut(σ) and
the minimum of the potential is always transported towards smaller values of |σ| by the
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advection. This is analogous to the results obtained within the O(N)-model framework
and is due to the similarity of the two models in the bosonic sector.

On the other hand, the radial sigma mode produces the diffusion term,

g(t, u′) =
1

8π2

∫ ∞

0
d q q4 ∂trB

t (q)
1

Ek,σ(q)
coth

Ek,σ(q)
2T

, (5.105)

which depends on the curvature mass u′
t(σ). The diffusion has no specific direction since

it depends on the local gradients of the conserved quantity, meaning that it smears out
peaks and discontinuities. Once again, this is totally analogous to the O(N)-model case,
thus one can refer to Sec.4.2.2 for a more detailed discussion of the bosonic sector.

The real aspect of novelty is given by the fermionic loop, which gives rise to a time-
and σ-dependent source term,

S(t, σ) =− Nc

4 π2

∫ ∞

0
d p p4

(
1 + rF

t (x)
)

∂trF
t (x)×

1
Ek,Ψ(p)

[
1 − nF

(
Ek,Ψ(p) + µ

T

)
− nF

(
Ek,Ψ(p)− µ

T

)]
,

(5.106)

which we identify as such since it is independent of the conserved quantity ut(σ). Ac-
cording to this observation, the fermionic contribution turns out to be completely inde-
pendent of the effective potential and of its time evolution, so it receives no feedback
from the bosonic sector. This observation will turn out very useful in the next subsec-
tion, since it suggests that there should exist a limit in which the fermionic loop can be
decoupled and isolated.

If one considers the case of vanishing chemical potential, µ = 0, and performs the
σ derivative of Eq. (5.106), as indicated in Eq. (5.102), one finds a source-like, positive
contribution to the flow equation for σ < 0 and a sink-like negative contribution for
σ > 0. This is not trivially true at finite values of the chemical potential, and also some
high peaks and shocks in field space may develop, especially in the low-temperature
case [183].

5.6.5 Large-NC limit: MF reduction

In the previous section, we pointed out that the source term is independent, by defini-
tion, of the variable ut(σ). This implies that, if a certain limit is taken such that the source
term is the only one left to contribute to the flow equation Eq. (5.99), then it would loose
the property of being a PDE to become a much simpler ordinary differential equation
(ODE). This can be achieved, for example, in the mean-field (MF) approximation, which
corresponds to the limit Nc → ∞. In order to correctly perform such a limit, we need to
introduce the following rescaling of the field and of the effective potential:

σ →
√

Nc σ , Ut(σ) → Nc Ut(σ) , ut(σ) →
√

Nc ut(σ) . (5.107)

In this way, we get the rescaled flow equation

∂tut(σ) +
1√
Nc

∂ut f
(
t, σ, ut(σ)

)
u′

t(σ) =
1√
Nc

∂σg
(
t, u′

t(σ)
)
+ ∂σS(t, σ). (5.108)

The mean-field flow equation is then obtained in the Nc → ∞ limit, that is

∂tut(σ) = ∂σS(t, σ). (5.109)
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So we are left with just the fermionic source contribution. This type of equation will be
our starting point for any further investigation of the MF behavior of the QM model.

5.7 Comparison of the results in MF and in FRG

In this section, we compare the results obtained in the MF with the ones derived from
FRG calculations. In particular, as anticipated, we will highlight the impact of the fluc-
tuations on the various observables that play a crucial role in the model, such as the
chiral condensate (and thus the dynamically generated quark mass) or the critical expo-
nents. In particular we will show the results obtained using the simple Litim regulator
[124, 85] for both the fermionic and bosonic contributions to the flow equation. We will
then dedicate a wider discussion of the effects of taking into account different regulator
shape functions, on the model phase diagram, to Chapter 7.

5.7.1 Litim FRG setup

As we stated, we now specify our calculation considering both the fermionic and the
bosonic 3D Litim regulator shape functions

rB
t (p) =

(
k2

p2 − 1
)

Θ(k2 − p2) , (5.110)

rF
t (p) =

(√
k2

p2 − 1

)
Θ
(

k2 − p2
)

. (5.111)

One of the main advantages of the Litim regulator lies in its simplicity, since it allows
to perform the momentum integral analytically, significantly shortening the calculation
time for the numerical solution of the flow PDE. Furthermore, as we already pointed out
in Chapter 4, the Litim regulator is an optimal choice in the LPA truncation (see [148]).

Using then the Litim regulator, the flow equation still keeps the shape of the advection-
diffusion equation with a source term Eq. (5.102), where the advection and diffusion
fluxes are given by

f (k, σ, ut(σ)) =
k5

4π2
1

Ek,π
coth

(
Ek,π

2T

)
(5.112)

and

g(k, u′
t(σ)) = − k5

12π2
1

Ek,σ
coth

(
Ek,σ

2T

)
, (5.113)

respectively, and the source term is

NcSk(σ) =
Nc k5

3π2
1

Ek,Ψ

[
tanh

(
Ek,Ψ − µ

2T

)
+ tanh

(
Ek,Ψ + µ

2T

)]
. (5.114)

In particular, we defined the energies of the sigma and the pion modes as

Ek,σ =
√

k2 + M2
σ , Ek,π =

√
k2 + M2

π . (5.115)

with

M2
σ = ∂2

σUk(σ) , M2
π =

∂σUk(σ)

σ
. (5.116)

Moreover, the energy of the fermions is given by

Ek,Ψ =
√

k2 + M2, (5.117)
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c (GeV3) m2
UV (GeV2) λUV fπ (GeV) M (GeV)

MFχ 0 0.851 2.55 0.088 0.3168

MF 1.78 × 10−3 0.812 3.08 0.093 0.3348

FRGχ 0 0.919 1.08 0.088 0.3168

FRG 1.78 × 10−3 0.762 1.05 0.093 0.3348

Table 5.1: Parameters of the QM model for MF in the chiral limit (MFχ), MF with explicit
symmetry breaking (MF), FRG in the chiral limit (FRGχ) and FRG with explicit symme-
try breaking (FRG).

with M = h⟨σ⟩ denoting the constituent quark mass, previously defined in Eq. (5.98).
Once again, the MF reduction is obtained formally in the large-Nc limit and, from

a practical point of view, just dropping the bosonic contributions to the flow equation
and considering only the fermionic source term rescaled by a factor Nc. For the full LPA
calculations, the number of colors is fixed, Nc = 3.

5.7.2 Initial condition and model parameters

Once the MF and FRG frameworks have been discussed, we have to choose the initial
condition for the FRG flow equation. In particular we need to fix the shape of the bare
potential in the UV (k = Λ or t = 0). To this end, we choose a quartic potential

UΛ(σ) =
m2

UV
2

σ2 +
λUV

4
σ4. (5.118)

The choice of the initial condition and of the parameters which appear in it is a very
delicate issue and we will discuss it in much more detail in Chapter 7. We will also
add further corrections to it in Chapter 6 in order to have thermodynamically correct
results at high temperatures. For the purpose of this section, it is sufficient to consider
Eq. (5.118) and tune the parameters to a couple of values of m2

UV and λUV such that
vacuum observables match with the experimentally known ones. In particular, we want
the Goldberger-Treiman relation Eq. (5.11), i.e., M = h fπ to be fulfilled, and also require
that ⟨σ⟩ = fπ and ∂2

σσU(⟨σ⟩) = M2
σ = 0.36 GeV2 in the vacuum. For all the calculations

we also fixed the UV-cutoff Λ = 1 GeV and the Yukawa coupling h = 3.6. The other
model parameters are indicated in Tab. 5.1 for the different cases of MF and FRG, both
in the chiral limit (which we indicate with MFχ and FRGχ) and in the explicit chiral
symmetry-breaking case (which we simply indicate as MF and FRG).

5.7.3 MF vs FRG phase diagram

We already pointed out the expected structure of the phase diagram in the MF case,
both in the chiral limit and in the case of explicit symmetry breaking. This is confirmed
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Figure 5.2: Dynamically generated quark mass M = h⟨σ⟩ in the chiral limit as a function
of the temperature T for various values of the chemical potential, both in the MF case
(left panel) and with the inclusion of fluctuations via FRG (right panel).

by the phase diagram obtained within our fermionic-loop MF approach. First of all, if
we consider the chiral limit, we can refer to the left panel of Fig. 5.6, where the phase
diagram of the QM model in the chiral limit and in the MF case is shown. We also
consider the left panels of Fig. 5.2 and Fig. 5.8, in which we present the behavior of the
dynamically generated quark mass M = h⟨σ⟩ as a function of the temperature T for
different values of the chemical potential and as a function of the chemical potential µ

for various values of the temperature T, respectively. In particular, we point out the
expected features of the phase diagram by looking at all the aforementioned plots.

• For lower values of the chemical potential, the minimum of the potential (and thus
the dynamically generated mass of the quarks) smoothly goes from a finite value
at T = 0 to 0 at a given critical temperature Tc. Thus, this gives rise to a smooth
second-order phase transition between the chirally broken and the chirally restored
phases. Furthermore, the slope of the minimum close to the critical temperature
seems to be vertical, meaning that the thermal susceptibility

χT ≃ ∂⟨σ⟩
∂T

(5.119)

diverges, in agreement with the hypothesis of a second-order phase transition. In
particular, at µ = 0 one finds Tc ∼ 0.182 GeV.

• At high values of the chemical potential, the minimum of the potential jumps
abruptly from a finite value to 0 at the critical temperature Tc, producing a discon-
tinuous first-order phase transition.

• the first- and second-order lines meet at a critical point at (Tc ∼ 0.08 GeV, µc ∼ 0.28
GeV), where the transition still belongs to the second-order class.

We now move to the case of explicit chiral symmetry breaking, in the MF. We can refer
to the left panel of Fig. 5.10, where we show the obtained phase diagram of the model
in the case of explicit symmetry breaking and in the MF approximation, and to the
left panels of Fig. 5.5 and Fig. 5.9 in which the behavior of the dynamically generated
quark mass M = h⟨σ⟩ as a function of the temperature T for different values of the
chemical potential µ and as a function of the chemical potential µ for various values of
the temperature T are depicted, respectively. Once again, we can verify our expectations
for the phase diagram.
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• For lower values of the chemical potential, the minimum of the potential smoothly
decreases but never truly vanishes. This means that chiral symmetry is never re-
stored and that the second-order phase transition has been replaced by a smooth
crossover. Since the system does not experience a real phase transition, only a
pseudo-critical temperature can be identified, for example, from the peak of the
absolute value of the suceptibility, and the crossover manifests around this pseudo-
critical temperature.

• At high values of the chemical potential, the minimum of the potential jumps
abruptly from a finite value to another value, which is still non-vanishing. So the
first-order phase transition is still present for high chemical potentials.

• The first-order line and the crossover meet at a critical point at (Tc ∼ 0.045 GeV,
µc ∼ 0.336 GeV). At this point, and only at this point, the phase transition is of
second order and the susceptibility diverges. Comparing this result to the one
obtained for the tri-critical point in the chiral limit, we can observe that the finite
current quark mass shifts the critical point towards higher value of the chemical
potential and lower temperatures, reducing the extent of the first-order line.

We can now move our focus to the results obtained including the fluctuations via the
FRG. In particular, before analyzing the resulting phase diagram, we want to directly
compare the quark constituent mass and the critical temperature between the MF and
the FRG case, thus testing the effect of fluctuations on these observables. In particular we
will focus, for the moment, on the case of explicit symmetry breaking, since the results
in the chiral limit are qualitatively similar and can be observed from the calculated phase
diagrams. Fig. 5.3 shows the constituent quark condensate, M = h⟨σ⟩, versus tempera-
ture, for µ = 0 and µ = 0.3 GeV. We note that there is a range of temperatures in which
the condensate decreases from its zero-temperature value to a smaller one, signaling the
crossover from the low-temperature phase, in which chiral symmetry is spontaneously
broken to the high-temperature phase, in which the symmetry is (approximately) re-
stored. The picture remains qualitatively the same also after fluctuations are included;
quantitatively, fluctuations lower the temperature range in which the chiral crossover
takes place. We also note that increasing the chemical potential results in the hardening
of the crossover, since changes in ⟨σ⟩ occur in a smaller range of temperature.

The results shown in Fig. 5.3 allow us, as previously hinted, to define a (pseudo-
)critical temperature, Tc, as the temperature at which the highest change of ⟨σ⟩ occurs.
In Fig. 5.4 we plot Tc versus µ for both the mean-field case and the full FRG calculation.
Below the critical lines the chiral symmetry is spontaneously broken, while above the
lines chiral symmetry is approximately restored. For both cases the lines are stopped
at the critical endpoint, where the crossover changes into a real second-order phase
transition; for larger values of µ the phase transition is of first order. Furthermore,
according to our previous qualitative reasoning, the critical temperature is lowered by
the addition of the fluctuations.

We can now finally investigate the results for the phase diagram of the QM model
and the dynamically generated quark mass obtained using the FRG calculation in LPA
for both the chiral limit and case of explicit breaking of chiral symmetry.

We begin this discussion by focusing on the chiral limit. In the right panel of Fig. 5.6
we show the phase diagram of the two flavor quark-meson model in the chiral limit,
while in the right panels of Fig. 5.2 and Fig. 5.8 the dynamically generated quark mass
as a function of temperature T for various values of the chemical potential µ and as a
function of the chemical potential µ for various values of the temperature T, are depicted,
respectively, obtained in the chiral-limit FRG framework.
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• At µ = 0, the second-order phase transition behavior persists even with the addi-
tion of fluctuations. The critical temperature at which the spontaneously broken
chiral symmetry is restored is Tc ∼ 0.18 GeV and, as anticipated, it is slightly lower
than the one obtained in the MF case. One should point out that the value of the
critical temperature depends on the chosen value for the pion decay constant and
thus it is not a universal quantity. As we will see in the next section, the universality
class in this case corresponds to the O(4) one.

• Increasing the chemical potential, one still finds a second-order phase transition,
which belongs, once again, to the O(4)-universality class.

• Further increasing the chemical potential, a tri-critical point is found. The reason
why we identify this point as a tri-critical one is that, for even greater values of
the chemical potential, one finds a first-order phase transition, which meets with
the second-order line at the tri-ciritical point. In our calculation, the tri-critical
point is located at Tc ∼ 0.033 GeV and µc = 0.313 GeV. Comparing this result with
the one obtained in the MF approximation, we can conclude that the inclusion of
fluctuations results in the critical point to be shifted to higher values of chemical
potential and to lower temperatures, coherently with our previous discussion on
the chiral condensate. It has been shown that the tri-critical point exhibits a trivial
Gaussian fixed-point with mean-field universality-class behavior [174], and we will
calculate the related critical exponents in the next section. We point out that also
the location of the tri-critical point is non-universal, being initial-condition and
thus model-parameter dependent. However, both its existence and the universality
class of the surrounding phase transitions can be considered as predictions of the
model.

• As we stated previously, increasing the chemical potential beyond the value of the
tri-critical point we find a first-order phase transition, where the condensate jumps
abruptly from a finite value to 0.

• After this small line of first order transition, for µ ∼ 0.305 GeV and for tempera-
tures below T ∼ 0.025 GeV the transition line splits into two separate phase transi-
tions, which create a triangular zone in between the lines. This can bee seen from
Fig. 5.7, where a zoomed version of the phase diagram is presented. The transi-
tion line which is located at smaller values of the chemical potential consists of a
first-order phase transition, at which the condensate jumps abruptly from a bigger
to a smaller, but still finite value. In this way chiral symmetry is not restored and
still remains spontaneously broken. This first-order line extends up to T = 0 and
the peculiarity is that it bends backwards, in the sense that, if one considers the
curvature of the phase diagram dTc/dµ, this is positive, in contrast to what hap-
pens in the rest of the phase diagram, where it is negative. This is a feature which
is absent in the MF phase diagram and it is typical of FRG LPA calculations, and
in the literature it is referred to as the "back-banding" problem. The emergence of
this problem can be deduced from the Clausius-Clapeyron relation for a first-order
phase transition

dTc

dµ
= −∆n

∆s
, (5.120)

where ∆n represents the change in quark number density, which is supposed to
be positive in a liquid-gas-like transition, and ∆s is the change of entropy density.
This implies that, if the slope of the phase diagram dTc/dµ is positive, then ∆s < 0
and it has been shown [184] that this may lead to the triangular region having
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negative entropy density with an associated thermodynamic instability. We will
not investigate this issue further but it has been conjectured that this may be a
regulator-related issue [185], or may be related to the appearance of new physics,
such as inhomogeneous phases or di-quark condensates [184].

On the right side of the transition, for higher values of the chemical potential, the
chiral condensate vanishes smoothly, giving rise to another second-order transition
line, which in this case, bends in a way which does not lead to further complica-
tions, since dTc/dµ < 0 . The presence of a second-order phase transition suggests
that there should exist another tri-critical point, where the second-order line con-
nects to the first-order one, in the region where the transition bifurcation happens.
However, due to the finite numerical resolution, it is very hard to identify it and
we can state that it could be located around Tc ∼ 0.023 GeV and µc ∼ 0.309 GeV.

Finally, we focus on the case of finite pion masses, for which the related results of
the phase diagram and of the dynamically generated quark mass are shown in the right
panels of Figs. 5.10, 5.5, and 5.9, respectively.

• As expected from the MF results, we can observe that the second-order phase
transition at low chemical potential is washed out and becomes a smooth crossover
and the chiral condensate never truly vanishes.

• For increasing chemical potential, the first-order line is still present and the con-
densate jumps from a bigger value to a smaller but finite one.

• the two lines meet at a critical point which has been shown to belong to the Z2-
universality class [174].

• The problematic triangular region is still present, since we can identify a bifur-
cation of the first-order transition line into two separate lines, even though it is
significantly less extended than the one in the chiral limit. This is coherent with
the observation we made in the MF case, when we pointed out that the presence
of a finite quark mass reduces the extent of the first-order line.

The left line (for smaller values of the chemical potential) is still a first-order line,
while the right second-order line (for higher chemical potential) has been turned
into a smooth crossover. Also in this case, this region should contain a critical point
associated to the meeting of the crossover and the first-order lines, but the limited
numerical resolution does not allow us to locate it exactly.

5.7.4 Critical exponents

We dedicate this final section to the analysis of the universality class of the QM model.
In particular we will focus on the model in the chiral limit, such that we can investigate
the second-order phase transition, which occurs for values of the chemical potential
which are lower than the tri-critical one. In order to reconstruct the universality class,
we just need to calculate two independent critical exponents, since we can then extract
the remaining four using the scaling relations Eqs. (4.31)-(4.34). In this work we then
choose to consider the critical exponent η (which is trivially vanishing both in mean-
field approximation and in the FRG within the LPA truncation, since no non-trivial
wave function renormalization factor is taken into account) and the correlation-length
exponent ν. In particular, as an example, we will perform the calculation for vanishing
chemical potential µ = 0 in the FRG framework to identify the universality class of this
phase transition. In agreement to what we stated in the previous section, we also verified
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Figure 5.3: Constituent quark mass, M = h⟨σ⟩, versus temperature T, for µ = 0 and
µ = 0.3 GeV. MF and FRG stand for mean-field approximation and functional renormal-
ization group, respectively.

Figure 5.4: Critical temperature, Tc, versus µ, for the MF (dashed line) and the full FRG
(solid line) calculations.

that the universality class obtained in the µ = 0 case does not change for another value
of the chemical potential µ = 0.2 GeV, which is still smaller than the tri-critical one.
We also repeated the calculation in the MF approximation, in order to verify the results
stated in Sec.5.5 and to calculate the universality class of the tri-critical point.

Following what we did in the case of the O(N) model in Chapter 4, in order to
study a second-order phase transition, we will be looking for a RG-time independent
scaling solution, which is scale-independent and associated to an infrared fixed point
of the renormalization group. Compared to what we did in Chapter 4, we will work
at finite temperature and thus we will not exploit the dimensional-reduction theorem.
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Figure 5.5: Dynamically generated quark mass M = h⟨σ⟩ in the case of explicit sym-
metry breaking, as a function of the temperature T for various values of the chemical
potential µ, both in the MF case (left panel) and with the inclusion of fluctuations via
FRG (right panel).
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Figure 5.6: Phase diagram of the QM model in the chiral limit as a function of the
chemical potential µ and the temperature T, both in the MF approximation (left panel)
and in the FRG (right panel).
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Figure 5.7: Zoom of the phase diagram of the QM model in the chiral limit and within
the FRG approach, around the region where the phase transition splits into two separate
transition lines.
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Figure 5.10: Phase diagram of the QM model in the case of explicit chiral symmetry
breaking as a function of the chemical potential µ and the temperature T, both in the MF
approximation (left panel) and in the FRG (right panel).

This means that, in order to reach the scaling solution, we will tune the temperature
T as the external parameter which drives the phase transition. In particular, the closer
the temperature will be to the critical one Tc, the more time the system will spend on
the scaling solution. We will then look to properly rescaled dimensionless quantities,
which should exhibit, for temperatures sufficiently close to the critical one, a constant
behavior at sufficiently large RG times t. As in Chapter 4, we choose, as observable, the
dimensionless minimum

ρ̃0,k = ρ0,k/k , (5.121)

which we expect to tend to the fixed-point value as T → Tc. The behavior of the di-
mensionless minimum as a function of the RG time t is depicted in Fig.5.11 for different
values of the temperature T. One observes that, during the FRG flow, ρ̃0,k approaches
the critical trajectory, the scaling solution, which is shown by the red line, at a given
RG time. However the system will eventually deviate from the scaling phase, meaning
that the rescaled minimum will deviate either upwards in the broken phase, which cor-
responds to the case T < Tc, or downwards in the symmetric phase, in correspondence
to T > Tc . The behavior of the rescaled minimum is analogous to the one described in
Chapter 4, so one can refer to Chapter 4 for a more detailed discussion. The difference
w.r.t what is presented in Chapter 4 is that, in the case we are currently discussing, the
system is in the symmetric phase at the initial time t = 0, and a finite minimum is devel-
oped only at a later finite RG time. In agreement with our discussion in Sec. 5.6.4, this
is possible thanks to the presence of fermionic degrees of freedom in the system, which
act like a source/sink term that makes the potential develop a finite minimum, which is
then smeared and transported towards smaller values by the bosonic fluxes.

Our result for the critical temperature is then Tc = 0.142484 GeV.
Once we determined the critical temperature, we can now move to the actual de-

termination of the critical exponents. In particular, in order to calculate ν we need the
curvature mass, i.e., the σ mass, evaluated at the physical point, i.e., at the minimum of
the potential

M2
σ = lim

k→0
u′(σ = 0, k) = lim

k→0
U′′(σ = 0, k) . (5.122)

Following the analogy to the approach used in Chapter 4, we have to make sure to reach
the symmetric phase before stopping the t-evolution, because only in this way one can
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be sure that the minimum is located at σ = 0 and M2
σ > 0 at σ = 0. We then follow

the procedure illustrated in Chapter 4, and in particular, in order to extract the critical
exponent, we will exploit a logarithmic relation corresponding to the finite-temperature
equivalent of the one presented in Eq. (4.43). Namely, we consider the scaling relation

M2
σ ∼ (T − Tc)

2ν (5.123)

and then take the logarithm of both sides

ln M2
σ = 2ν ln(T − Tc) + const . (5.124)

We can notice that in the symmetric phase T > Tc, so that we can omit the absolute value
in |T−Tc| in both Eqs.(5.123) and (5.124). Based on Eq.(5.124), we can then extract ν from
the slope of ln M2

σ as a function of ln(T − Tc). The result of this procedure is shown in
Fig.5.12, where the logarithm of the curvature mass is plotted as a function of ln(T − Tc),
both in the FRG LPA at µ = 0 (purple dots) and in the mean-field approximation (light
blue dots). We also show the resulting estimation for the value of the critical exponent ν

through the slope of the green line in the FRG case and of the orange line in the MF. We
specify that the critical temperature used in the MF case is just determined as the one
at which the thermal susceptibility Eq. (5.119) diverges, since no fixed-point behavior is
expected beside the trivial Gaussian one.

The most reliable value for the critical exponent is then obtained following the pro-
cedure illustrated in Sec. 4.4. In particular, we neglect the error on the determination of
M2

σ, as explained in Sec.4.4.2 due to the second-order precision in the adopted numerical
KT scheme.

We then proceed, as shown in Fig.5.13, by plotting the critical exponent ν as a function
of the number of the most aligned points Np taken into consideration in the fit. In this
way, the most reliable value of the critical exponent can be extracted from the region
where the value of the critical exponent is least dependent on Np. The selected region
in Np from which the critical exponent is obtained provides us with a component of
the total error, namely the half-width of the selected band in ν. The total error on the
critical exponent is then obtained by the square root of the sum of the squared different
independent contributions to the error, which in our case consist of the aforementioned
half-width of the interval in ν and of the proper fitting error due to the linear regression
performed to calculate the value of the critical exponent.

The final result for the MF case is then

νMF = 0.9986(8) , (5.125)

which is extremely precise if we consider the rigid procedure we followed in the error
determination. This value is compatible with the expected value in the mean-field ap-
proximation, which is νMF = 1, as can be obtained using the scaling relations Eqs. (4.31)-
(4.34) and taking the results presented in Sec. 5.5.1, where we calculated β = 1/2 and
η = 0.

Finally, we present the result obtained for the critical exponent ν in the FRG frame-
work within the LPA approximation:

νLPA = 0.814(2) . (5.126)

From this value we can then conclude that the phase transition of the QM at µ = 0
belongs to the O(4)-universality class. This result is indeed also compatible with the
one obtained in Chapter 4 for the O(N) model in the case of N = 4, and it is also in
agreement with the previous results obtained in this framework [174].
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Chapter 6
Quark Meson model: thermodynamic
geometry

This chapter is mainly based on Ref. [186].

6.1 Introduction and motivation

In the previous chapter we validated the QM model by seeing that its phase diagram
should be in qualitative agreement with what is believed to be the phase diagram of full
QCD. In particular, our interest lies in the chiral symmetry breaking/restoration and the
related phase transition and critical point. However, due to lack of certain answers from
first-principle calculations because of the sign problem, it is not certain if this kind of
observations hold also at finite baryon chemical potential for full QCD. This is the reason
behind the great success of effective models like the QM, which allow to study the phase
structure of QCD at finite µ. This means that the more methods we have at our disposal
to study the phase diagram of strongly interacting matter and to locate the critical point,
the better will be the gain we can obtain in our knowledge on the topic. Moved by this
motivation, one can consider the phase space spanned by the temperature T and the
chemical potential µ as a two-dimensional manifold and study its geometry, the metric
and the curvature: this approach leads to the so-called thermodynamic geometry. One can
refer to previous works on this subject [187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199] and [200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212].

The reason behind the use of the thermodynamic-geometry approach lies in the in-
formation one can extract on the system. As a first consideration, it has been argued that
the sign of the thermodynamic curvature is connected to the dominance of a fermionic-
or bosonic- like behavior of the system [195, 200, 201, 213]. This means that, through the
thermodynamic geometry one can extract the information on which degrees of freedom
are relevant for the system at a given temperature and chemical potential, and, com-
bining it with the functional renormalization group, the momentum scale at which this
happens.

The other interesting feature of the thermodynamic curvature is linked to the pres-
ence of a peak structure close to the crossover temperature for small values of µ, which
eventually should turn into a divergence when the critical point is reached. This feature
is a consequence of the fact that the determinant of the metric exactly vanishes when a
second-order phase transition is approached. Thus, the thermodynamic geometry can
be understood as interesting additional tool to shed light on the ever-lasting quest on
the location (and existence) of the CP.

In this chapter we apply the thermodynamic-geometry approach to the QM model

95
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at finite density and temperature, as it has been done previously in [214, 215] or in [216]
where a similar study has been performed for the Nambu-Jona-Lasinio (NJL) model.
The choice of the QM model over the NJL model is due to its renormalizability [11],
which makes the obtained results independent of the effective ultraviolet cutoff, that
is instead part of NJL calculations [11, 217]. Compared to previous results in the QM
framework [214, 215], in this work we include quantum fluctuations via using the func-
tional renormalization group approach (FRG). As we stated in the previous chapters, the
advantage of the use of the FRG method is that it belongs to the class of non-perturbative
approaches to quantum field theories and it is built in such a way to link different en-
ergy scales and the associated degrees of freedom. Thus, it is a suitable tool to deal
with second-order phase transitions and critical long-wavelength phenomena in general,
whose nature is highly non-perturbative.

6.2 The thermodynamic geometry

We consider a thermodynamic system in the grand canonical ensemble, whose equilib-
rium state is characterized by the pair (µ, T), where T is the temperature and µ is the
quark-number chemical potential (conjugated to quark number density). Thermody-
namic geometry is more conveniently defined in terms of the variables (β = 1/T , γ =
−µ/T). A thermodynamic system at equilibrium at the point (β, γ) can fluctuate to
another equilibrium state (β′, γ′), and the probability of this fluctuation can be com-
puted within the standard thermodynamic fluctuation theory. In fact, we firstly define a
distance in the two-dimensional manifold spanned by (β, γ),

dl2 = gββdβdβ + 2gβγdβdγ + gγγdγdγ , (6.1)

where the metric tensor is

gij =
∂2 logZ
∂βi∂βj =

∂2ϕ

∂βi∂βj ≡ ϕ,ij , (6.2)

with ϕ = βP, P = −Ω and Ω denotes the grand canonical thermodynamic potential
density; moreover, we used the standard notation β1 = β and β2 = γ. Given these, the
fluctuation probability is

dp
dβdγ

∝
√

g exp
(
−dl2

2

)
, (6.3)

where

g = gββgγγ − g2
βγ (6.4)

is the determinant of the metric. Large probability of a fluctuation corresponds to small
dℓ2 and vice versa. Therefore, a large thermodynamic distance between two equilibrium
states means a small probability to fluctuate between the two states. According to these
considerations, Eq. (6.1) measures both the distance in the (β, γ) plane and the transition
probability between two thermodynamic states in equilibrium.

Thermodynamic stability requires that gββ > 0 and g > 0, while g = 0 corresponds
to a phase boundary and regions with g < 0 are thermodynamically unstable: hence,
the stability conditions ensure that dℓ2 > 0.

Furthermore, the second-order momenta of ϕ w.r.t. γ and β measure fluctuations of
the conjugated observables:

Vϕ,ββ = ⟨(U − ⟨U⟩)2⟩ , (6.5)
Vϕ,βγ = ⟨(U − ⟨U⟩)⟩⟨(N − ⟨N⟩)⟩ , (6.6)

Vϕ,γγ = ⟨(N − ⟨N⟩)2⟩ , (6.7)



6.3. FRG SETUP 97

where U and N denote the internal energy and the particle number, respectively, while
V stands for the volume of the system.

Once the manifold has been provided with the metric tensor, one can define the
Riemann tensor as

Ri
klm =

∂Γi
km

∂xl − ∂Γi
kl

∂xm + Γi
nlΓ

n
km − Γi

nmΓn
kl, (6.8)

with the Christoffel symbols

Γi
kl =

1
2

gim
(

∂gmk

∂xl +
∂gil

∂xk − ∂gkl
∂xm

)
. (6.9)

The standard contraction procedure gives the Ricci tensor Rij = Rk
ikj, and the scalar cur-

vature R = Ri
i: within thermodynamic geometry, R is called the thermodynamic curvature.

For the two-dimensional manifold that we consider in this study, the expression of R
considerably simplifies, namely R = 2R1212/g [198], where R1212 corresponds to the
only independent component of the Riemann tensor for a two-dimensional manifold. So
we can explicitly write R as

R = − 1
2 g2

∣∣∣∣∣∣
ϕ,ββ ϕ,βγ ϕ,γγ

ϕ,βββ ϕ,ββγ ϕ,βγγ

ϕ,ββγ ϕ,βγγ ϕ,γγγ

∣∣∣∣∣∣ , (6.10)

where || indicates the determinant of the matrix. The curvature diverges for g → 0,
namely on a phase boundary, unless the numerator of Eq. (6.10) vanishes on the same
boundary. We can observe that R depends on the second- and third-order moments of
the thermodynamic variables that are conjugated to (β, γ), thus it carries information
about the fluctuation of the physical quantities.

Let ξ denote the correlation length of the order parameter: then, |R| ∝ ξ3 near a
second-order phase transition [187], which naturally results from hyperscaling. The-
oretical calculations based on different models confirm this hypothesis [187, 198, 218,
219, 220]; therefore, the study of R in the (µ, T) plane allows to estimate the correlation
volume based only on the thermodynamic potential: this is one of the merits of the ther-
modynamic geometry. It has also been suggested that the sign of R conveys details about
the nature of the interaction, attractive or repulsive, at a mesoscopic level in proximity
of the phase transition.

Within our sign convention, R > 0 indicates an attractive interaction while R < 0
corresponds to a repulsive one. These interactions include not only real interactions
[203, 205, 210, 221, 222], but also the statistical attraction and repulsion that ideal quan-
tum gases feel in phase space [223, 224, 225, 226, 227]: an ideal fermion gas has R < 0
due to the statistical repulsion, while an ideal boson gas has R > 0 due to the sta-
tistical attraction. The thermodynamic curvature is known to be identically zero only
for the ideal classical gas. Other fields of application of thermodynamic geometry
include Lennard-Jones fluids [203, 221, 222], ferromagnetic systems [228], black holes
[229, 230, 231, 232, 233, 234, 203, 235, 236, 237, 238, 239, 240, 213, 241, 242, 243], strongly
interacting matter [214, 244, 245] and others [246, 247].

6.3 FRG setup

We use this section to specify the FRG setup we adopt in this chapter of this work and
we also establish the procedure to obtain consistent finite-temperature thermodynamic
observables.
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6.3.1 Flow equation in the LPA for the Litim regulator

Proceeding as we did in Sec. 5.6.1, we begin this section by considering the LPA ansatz
for the effective action of the QM model at finite temperature and quark number density

Γk[Ψ̄, Ψ, ϕ] =
∫ 1/T

0 dx0
∫

d3x
{

ψ̄
(
γµ∂µ + h(σ + iγ5τ⃗ · π⃗)− µγ0

)
ψ

+
1
2
(∂µσ)2 +

1
2
(∂µπ⃗)2 + Uk(σ

2 + π⃗2)− cσ
}

.

(6.11)

Using the three-dimensional momentum-diagonal regulators Eqs. (5.88) and (5.93) and
the Litim regulator for both fermions and bosons given in Eqs.(5.110) and (5.111), we get
the flow equation for the effective potential

∂tUk(σ) = − k5

12π2

{[
3

Ek,π
coth

(
Ek,π

2T

)
+

1
Ek,σ

coth
(

Ek,σ

2T

)]

−4Nc
1

Ek,Ψ

[
tanh

(Ek,ψ − µ

2T

)
+ tanh

(Ek,ψ + µ

2T

)]}
, (6.12)

where the energies of the pions, sigma and fermionic modes are given by Eq. (5.115)-
Eq. (5.117).

We notice that the choice of expressing the flow equation in terms of the σ expecta-
tion value instead of the O(4) invariant of the theory ρ = (π2 + σ2)/2 is, once again,
due to the correct identification of the boundary conditions for the solution of the flow
equation as a partial differential equation. We argued more on this issue in Sec. 4.2.1
when studying the O(N) model, and it is still valid also in QM model case due to the
O(4) bosonic symmetry.

Analogously to Sec.4.2.2 we introduce the following variables

uk(σ) = ∂σUk(σ), u′
k(σ) = ∂σuk(σ) . (6.13)

Taking the derivative of Eq. (6.12) with respect to σ, the FRG flow equation is cast again
in the form of an advection-diffusion equation with a source term , thus obtaining

∂tuk(σ) + ∂σ fk(σ, uk(σ)) = ∂σgk(u′
k(σ)) + Nc∂σSk(σ) , (6.14)

where the advection flux, the diffusion flux and the source term are given by Eqs.(5.112)
to (5.114), respectively.

As we stated in the previous section, thermodynamic quantities are extracted from
the grand canonical thermodynamic potential Ω. This is obtained considering the value
of the IR effective potential evaluated at its global minimum σ0:

Ω(T, µ) ≡ Uk=0(σ = σ0; T, µ)− cσ0 . (6.15)

This means that, in order to compute thermodynamic quantities, we need to solve the
FRG flow equation to obtain the effective potential. Anyway, the solution of the flow
equation in the hydrodynamic formulation (6.14) provides us with the derivative of the
effective potential w.r.t. σ. This leads to the fact that the solution u(σ; T, µ) has to be
integrated in the σ variable, implying that the effective potential would be defined up
to an arbitrary integration constant, which is σ-independent but in principle T and µ-
dependent

U(σ; T, µ) =
∫ σ

σ̄
dσ′u(σ; T, µ) + U(σ̄; T, µ) , (6.16)
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where σ̄ ∈ [0, σmax ] is an arbitrary grid point. Thus, in order to obtain the correct
thermodynamic properties, we need to calculate this constant using directly the flow
equation for the effective potential (6.12), evaluated in the generic grid point σ̄. The
most convenient choice in this case is to select σ̄ = 0. Thus, in order to obtain the correct
temperature and chemical-potential dependence of the effective potential, we also solve
the equation

∂tUk(0) = − k5

12π2

{[
4

Ek,σ(σ = 0)
coth

(
Ek,σ(σ = 0)

2T

)]

−4Nc
1
k

[
tanh

(
k − µ

2T

)
+ tanh

(
k + µ

2T

)]}
,

(6.17)

which is coupled to the standard flow equation Eq. (6.14).

6.3.2 UV initial condition

We dedicate this subsection to the description of the methodology we use to build the
initial condition. In the case of the FRG flow equation, the choice of the initial condition
corresponds to assign a shape to the bare potential in the UV (k = Λ or t = 0). In
particular, we choose a quartic potential

UΛ(σ) =
m2

UV
2

σ2 +
λUV

4
σ4. (6.18)

We also need to take one more factor into account in the determination of the initial
condition. In particular, due to the presence of a finite cutoff Λ, when the Matsubara sum
is performed, thermal modes with 2πT > Λ are factually excluded. This is a problem
which needs to be assessed especially for the calculation of thermodynamic quantities
at high temperatures. This issue can be fixed including the missing high-momentum
modes in the effective potential in a proper way. In particular, since one expects the
fermionic degrees of freedom to be relevant at higher temperature, a standard procedure
consists of integrating the fermionic part of Eq. (6.12) from k → ∞ to k = Λ and add it
to the effective potential. So we calculate

U∞
Λ (σ) =

∫ Λ

∞
Sk(σ)dk (6.19)

and then we add it to the effective potential at the UV scale

UΛ(σ) → UΛ(σ) + U∞
Λ (σ) . (6.20)

Thus, we use Eq. (6.20) as the corrected initial condition for the solution of the flow
equation.

We now have the freedom to tune the parameters in the model and in the initial
condition in order to fulfill the Goldberger-Treiman relation Eq. (5.11), i.e., M = h fπ

for the fermionic mass in the vacuum. We also set the parameters in order to have
∂2

σσU(⟨σ⟩) = M2
σ = 0.36 GeV2. Then we choose Λ = 1 GeV for the UV-cutoff and h = 3.6

for the Yukawa coupling. Other model parameters are the same as in the second and
fourth lines of Tab.5.1.
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6.4 QM model thermodynamics

In this section we begin our investigation of the thermodynamic properties of the QM
model, comparing the results which are given by the MF approximation with the one ob-
tained in the FRG framework. In this way we will be able to compare the corresponding
results, in order to appreciate the effects of the inclusion of the fluctuations.

In particular, we analyze the behavior of the pressure P and the entropy density s ,
as T and µ are changed. As anticipated in Sec.6.2, the pressure is given by

P(T, µ) = −Ω(T, µ) + Ω(0, 0) , (6.21)

where Ω(T, µ) is the grand canonical potential defined in Eq. (6.15), and we normalized
the pressure such that it vanishes in the vacuum.

On the other hand, the entropy density is defined as the derivative of the pressure
w.r.t. the temperature:

s =
∂P(T, µ)

∂T
. (6.22)

In particular, the pressure has the dimension of an energy to the fourth power, [P] =
[GeV]4, and thus, clearly, the entropy density scales as an energy to the third power,
[s] = [GeV]3. This implies that we can use this information to show the behavior of
properly rescaled, dimensionless quantities. Following this line of reasoning, in Fig. 6.1
we show the behavior of the pressure and of the entropy density in units of T3 as a
function of temperature, for two values of the chemical potential, both in the MF and
in the FRG cases. What we can observe is that, for both MF and FRG individually,
the pressure increases as T is increased, in agreement with standard thermodynamic
arguments (see, e.g., [156, 157, 179]), and analogously, it increases when the density is
increased, increasing µ. On the other hand, when comparing the behavior of the pressure
for a fixed value of the chemical potential, we can observe that the curves obtained within
the FRG approach lie below the corresponding MF ones. This means that the effect
of the inclusion of the fluctuations is to lower the pressure of the system. A possible
interpretation of this result is that the presence of the bosonic fluctuations introduces
an extra overall effective interaction among quarks and the bosons, which lowers the
total pressure. This feature will be also investigated when analyzing the behavior of the
thermodynamic curvature and the positions of its peaks. As far as the rescaled entropy
density is concerned, we can observe that, coherently with the observed behavior of the
pressure, it increases if one increases either the temperature or the chemical potential.
An absolutely non-trivial feature of the rescaled entropy density is that it saturates at
a given temperature, meaning that it stays almost constant as T increases. This is far
more evident in the µ = 0 case w.r.t. the finite µ one. This feature is found for both
the MF and the FRG calculation even if, coherently with the previous discussion on the
pressure, the entropy density in the FRG case is lower than the MF one. The saturation of
the rescaled entropy can be understood if one considers that, at high temperatures, due
to asymptotic freedom, QCD should behave like a gas of massless quarks and gluons.
This is the so-called Stefan-Boltzmann limit (SB) (see, e.g., [179]), and the corresponding
pressure is given, according to Dalton’s law, by the sum of the quark contribution PQ

SB
and the one of the gluons:

PSB = PQ
SB + PG

SB , (6.23)

where the quark contribution is given by

PQ
SB = T4 π2

45

{
7 dF

4

[
1 +

30
7π2

(µ

T

)2
+O

(µ

T

)4
]}

(6.24)
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Figure 6.1: Pressure (left panel) and the rescaled entropy density (right panel) as a func-
tion of temperature T for two values of the chemical potential µ, both in the MF and
FRG cases. The dashed horizontal black line in the right panel corresponds to the SB
limit.

and the gluonic one is

PQ
SB = T4 π2

45
dA . (6.25)

Furthermore we defined dA = N2
c − 1, Nc is the number of colors, dF = Nc N f and N f is

the number of flavors.
In the case of the QM model, at high temperature the main contribution to the pres-

sure comes from the (nearly) massless quarks, while both the pions and the sigma bosons
are massive due to the (partial) restoration of chiral symmetry and so effectively decou-
ple. Thus, in the QM model, the Stefan-Boltzmann limit corresponds to the purely
fermionic contribution. In particular, in the case we are examining, i.e., for N f = 2 and
Nc = 3, the Stefan-Boltzmann pressure is given by

PQM
SB = T4 7π2

30

[
1 +

30
7π2

(µ

T

)2
+O

(µ

T

)4
]

(6.26)

and the associated rescaled entropy density is

sQM
SB
T3 =

14π2

15

[
1 +

30
7π2

(µ

T

)2
+O

(µ

T

)4
]

. (6.27)

Form now on we will refer to the SB limit considering the constant, temperature and
chemical-potential independent part of Eq. (6.27), namely

sQM
SBl
T3 =

14π2

15
. (6.28)

The SB limit is depicted in the right panel of Fig.6.1 as the black dashed horizontal line.
Equation (6.27) justifies then the observed behavior of the rescaled entropy density in
Fig.6.1 for high temperatures: in the µ = 0 case the rescaled entropy density tends to the
SB limit from below while, due to the positive finite chemical-potential correction, the SB
limit is approached from above in the µ = 0.3 GeV case, and sQM

SB /T3 − sQM
SBl /T3 ∝ 1/T2

as suggested by Eq. (6.27).
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MF (purple lines) and FRG (green lines). The solid lines represent the results obtained
including the UV correction Eq. (6.20) to the UV initial condition, while the dashed lines
are obtained neglecting those corrections. The black dashed horizontal line corresponds
to the SB limit.

Finally, we point out the importance of the inclusion of the UV corrections to the
initial condition described in Eq. (6.20) for the correct calculation of thermodynamic
quantities at high temperatures. In particular, Fig. 6.2 contains a comparison between
the results for the rescaled entropy density obtained including the UV corrections (solid
lines) and neglecting them (dashed lines). The results are shown for µ = 0 and for both
the MF and the FRG cases. One can clearly observe that only the results which include
the UV corrections exhibit the correct asymptotic high-temperature behavior, reaching
the SB limit (black dashed line), while the results for which the UV corrections have not
been included start deviating at a temperature which is T ∼ Λ/2π, in agreement with
the discussion in Sec.6.3.2 on the inclusion of the high-energy Matsubara modes.

6.5 Thermodynamic geometry results

In this section we will finally turn to the main focus of this chapter: the thermodynamic
geometry of the QM model. In particular, as we did in the previous section, we compare
the results obtained within the mean-field approximation, neglecting the bosonic fluctu-
ations, with the results of calculations that take into account the fluctuations by solving
the full FRG flow equation for the average effective action, emphasizing the effect of
fluctuations on the studied quantities. In particular, we will focus on the determinant of
the metric g and on the thermodynamic curvature R. We then study what happens to
these quantities when approaching the chiral limit (c=0) and how they evolve as the RG
scale k is lowered, i.e., following their RG time t evolution.

6.5.1 Finite pion mass

We begin our analysis of the thermodynamic geometry of the QM model considering the
physical limit, i.e., the one in which the explicit symmetry breaking term c is finite and
has the physical value c = M2

π fπ. Firstly, we discuss the determinant of the metric g. In
Fig. 6.3 we show the determinant of the thermodynamic metric, g, versus T, computed
for two values of the chemical potential, µ = 0 and µ = 0.3 GeV. We present the results
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Figure 6.4: Determinant of the thermodynamic metric, g, versus µ computed at T = Tc,
within the mean-field approximation (dashed line) and FRG (solid line).

obtained within the mean-field approximation and within the FRG. We point out that
[g] = [T]8, that is why in Fig. 6.3 and Fig. 6.4 we normalize g by dividing it by the
energy scale f 8

π. We can observe that g increases both with temperature and chemical
potential, but FRG leads to smaller values compared to the MF ones. The results are in
qualitative agreement with [215], where fluctuations were introduced within a Gaussian
approximation. g = 0 corresponds to the thermodynamic instability of the system, that
is to a phase transition. What we can observe then is that, since for small values of the
chemical potential the system is very far from criticality, and a smooth crossover takes
place, g is not sensitive enough to exhibit any modification at the crossover temperature
and keeps its monotonic increasing behavior. This is not the case for µ = 0.30 GeV,
because we can see a rapid decrease of g close to the critical temperature Tc|µ=0.3 GeV ∼
0.09 GeV for the MF and Tc|µ=0.3 GeV ∼ 0.07 GeV for FRG. This signals that the system is
getting closer to the critical point, where g = 0 exactly.
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Figure 6.5: Thermodynamic curvature, R, versus T, at µ = 0, for different values of the
RG time t. Calculations correspond to the mean-field approximation (upper panel) and
the FRG scheme (lower panel).

To complete the study of the determinant of the metric g, we show in Fig. 6.4 g, as
a function of µ, computed at the critical temperature T = Tc. We present the results
obtained within the mean-field approximation (dashed line) and in the FRG approach
(solid line). Once again, the results are in qualitative agreement with a previous work
[215], where fluctuations were introduced within a Gaussian approximation. We do not
find g = 0 exactly, which corresponds to the real second-order phase transition, because
in this model chiral symmetry is explicitly, albeit softly, broken by the finite quark mass,
hence a phase transition is replaced by a smooth crossover. However, g(Tc) decreases
with µ, signaling that the system is approaching criticality, that is the critical endpoint,
in agreement with our previous observations. Moreover, we note that including fluctua-
tions results in the lowering of g, in agreement with what we observed previously and
with other works [215].

We now discuss the thermodynamic curvature, R. It is expected that R diverges at a
second-order phase transition, while it is not obvious the behavior of R near a smooth
crossover. However, as stated in the introduction, we expect a peak structure in the
proximity of the crossover temperature.

In order to better understand the results on R obtained within the FRG at finite
chemical potential, we preliminary analyze the curvature versus T at µ = 0, with and
without fluctuations, for several values of the RG time t, which regulates the scales of
the integration of the fluctuations. In Fig.6.5 we show R as a function of the temperature
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Figure 6.6: Thermodynamic curvature, R, versus T, for several values of µ. Calculations
correspond to the mean-field approximation (upper panel) and the FRG scheme (lower
panel).

T, at µ = 0 for different RG times t, both in the MF (upper panel) and in the FRG (lower
panel) case. In both cases we observe that the peak close to the crossover temperature
forms as t is increased. The MF calculations show that this peak monotonously grows
as the fluctuations are integrated out. In particular, at a given scale, the peak becomes
positive and then stays constant in time, since a sufficiently low scale is reached and
the t-evolution freezes. This positive peak, which forms in the IR, can be interpreted as
the emergence of a boson-like behavior of the system around Tc, namely of a statistical
attraction in phase space due to long-range correlations that develop around Tc that
overcome the statistical fermionic repulsion. This implies the existence of a scale t̄ ∼ 0.8,
and corresponding k̄ ∼ 0.45 GeV, at which this behavior begins to appear and that signals
the dominance of the boson-like behavior over the fermionic one close to the crossover
temperature.

The formation of a peak in R as time is increased is also found when fluctuations are
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included within the FRG. However, we note that fluctuations lower the overall magni-
tude of R, in agreement with [215]. We also note that, despite the peaks of R become
more prominent initially as t is increased, this behavior changes at a given RG time
t∗ ∼ 1, and the associated momentum scale k∗ ∼ 0.37 GeV, where the peak starts to
decrease once again. At later times, t > 3, the results do not change in a way we can
appreciate, thus we can consider the IR limit to be reached. The inversion of the behavior
at t∗ may signal the scale at which the bosonic fluctuations become dominant over the
fermionic ones, lowering the peak. As a consequence R does not change sign as it does
in the mean-field calculations. Hence, it is likely that, although the qualitative behav-
ior of R is independent of the approximation used (mean field versus FRG), in the IR,
the change of nature from fermion-like to boson-like depends on the calculation scheme
adopted. The results shown in Fig. 6.5 will be useful to interpret the behavior of R we
discuss below.

In Fig. 6.6 we plot R versus T for several values of µ, obtained within the mean-
field approximation and the full FRG calculation. In both the upper MF panel and the
lower FRG one of Fig. 6.6, we multiplied times 100 the obtained R for µ = 0, µ = 0.1
GeV and µ = 0.2 GeV, in order to make the results more readable. Firstly, we note that
the trend of R is qualitatively similar in both calculations. Within the mean-field ap-
proximation, at µ = 0 the curvature locally develops a peak in correspondence of the
chiral crossover, signaling that R is capable to capture the pseudo-critical behavior of the
quark condensate. Increasing the chemical potential, R maintains its local peak struc-
ture, but as the critical endpoint is approached, the peaks become more pronounced.
This is in agreement with the general understanding of R, which is expected to diverge
at a second-order phase transition. Moreover, we note that, at large µ the thermody-
namic curvature develops several peaks in the temperature range of the chiral crossover,
although the most pronounced peak does not necessarily show up at the critical temper-
ature. This behavior, already noticed in [214], shows that R is not necessarily as sensitive
as other quantities, like the chiral susceptibility or |dM/dT|, on the changes of the quark
condensate at T = Tc, but it is still capable to measure sensible deviations in the pressure
around the chiral crossover.

Including fluctuations does not change the qualitative behavior of R. Therefore, we
conclude that the fact that R is sensitive to the chiral crossover is not an artifact of the
mean-field approximation, rather it is a quite solid statement. However, as already re-
marked in Fig. 6.5, the inclusion of fluctuations lowers the value of R around the chiral
crossover; particularly, when µ is small, R remains negative also around the crossover,
while in the mean-field approximation it changes sign. Therefore, it is likely that the
change of nature of the interaction at the mesoscopic level, from fermion-like to boson-
like, depends on the approximation used in the calculation when the system is far from
criticality. Hence, this implies that, at small µ, the fluctuations substantially change the
geometry of the manifold. On the other hand, when the critical endpoint is approached
at large µ, we find that R changes sign also in the FRG calculation, and the mean-
field results do not qualitatively differ from those obtained within the FRG. Hence, we
conclude that when this system approaches criticality, R changes sign and locally devel-
ops a marked peak: this conclusion was anticipated in previous mean-field calculations
[214, 216] and stands also in case fluctuations are taken into account via FRG.

6.5.2 Towards the chiral limit

In order make the results on R obtained within the FRG even more understandable, we
now analyze the curvature versus T, with and without fluctuations, for several values of
the parameter c that regulates the explicit breaking of chiral symmetry in the model at
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Figure 6.7: Thermodynamic curvature R as a function of temperature T, in the MF
approximation, for four values of the chemical potential, µ = 0 (upper left panel), µ =
0.05 GeV (upper right panel), µ = 0.1 GeV (lower left panel) and µ = 0.2 GeV (lower
right panel). In each plot, results are shown for several values of the parameter c, which
is artificially lowered from c = M2

π fπ, corresponding to the physical limit, to c/200. The
case c = 0, not shown, would correspond to the chiral limit.

hand.
In order to understand the general behavior of the thermodynamic geometry as the

pion mass is lowered, i.e., as the system approaches the chiral limit, we begin our in-
vestigation with an explorative MF study. In this way, we will have more information
at our disposal when comparing the MF and the FRG results. In Fig. 6.7 we plot R
versus T, within the mean-field approximation, for four different values of the chemical
potential, µ = 0, µ = 0.05 GeV, µ = 0.1 GeV and µ = 0.2 GeV. We show results for
several values of the parameter c, considering that c = M2

π fπ leads to the physical limit
while c = 0 corresponds to no explicit breaking of chiral symmetry, i.e., to the chiral
limit. Performing calculations of R at c = 0 is numerically demanding near the phase
transition, hence we stop at c/200. In order to avoid confusion, from now on we denote
as c solely the value of the parameter at the physical point, namely c = M2

π fπ; we then
artificially lower the value of this parameter. We can observe that, in all panels of Fig. 6.7,
for small values of c (almost chiral limit) the curvature is enhanced in the pseudo-critical
region, while the peak of R becomes smoother as c approaches the physical limit. This
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is more clearly depicted in Fig.6.8, where we show the value of the maximum of R, as a
function of the logarithm of the artificially lowered explicit symmetry breaking rescaled
parameter c/ f 3

π, for the same values of the chemical potential used in Fig. 6.7. The pa-
rameter c has been rescaled by a factor of f 3

π since it has the dimensions [c] = [GeV3].
We can clearly observe that the value of the maximum of R increases as c is lowered, in
agreement with our previous discussion. Furthermore, in analogy to what we observed
commenting Fig. 6.6, the value of the peak of R is significantly higher for higher values
of the chemical potential, signaling that also the chiral limit feels the influence of the
critical endpoint, where the transition is of second order both in the physical and in the
chiral limits. We can also point out that for all the values of the chemical potential in
Fig. 6.7, R changes sign around the crossover temperature Tc, in agreement with pre-
vious results [214, 215, 216] and confirming the emergence of a boson-like behavior of
the system around Tc. As a final comment about the results shown in Fig. 6.7, we can
observe the emergence of a multi-peak structure in R around the crossover temperature
Tc. This could be explained by considering that R takes into account several momenta
of the thermodynamic potential, up to the third order both in temperature and chemical
potential. Since, even at small but finite c, the transition still remains a crossover, dif-
ferent observables can exhibit peaks at different pseudo-critical temperatures, which do
not necessarily coincide with the crossover one identified via the chiral condensate.

Due to the absence of multiple peaks for µ = 0, we can conclude that the results
obtained at vanishing chemical potential provide more straightforward information for
the investigation of the features that R exhibits approaching the chiral-limit compared
to the finite µ ones. Thus, in this last part of this section, we focus on the µ = 0 case.

As a last result for our mean-field investigation, in Fig. 6.9 we show the behavior of
the 3× 3 determinant (upper panel), which can be obtained from Eq.(6.10) as −2Rg2, and
the inverse of the square of the determinant of the metric g−2 (lower panel) as a function
of temperature for different values of the explicit symmetry breaking parameter c, for
µ = 0. We restricted the plot to the range in temperature around the chiral crossover
temperature. We can notice that the appearance of the peak in the thermodynamic
curvature R around the crossover temperature we observed in Fig. 6.7 originates from
the combination of two different effects: on one hand the 3 × 3 determinant −2Rg2

develops a peak, in correspondence of the crossover temperature, which increases in
magnitude as c is lowered; on the other hand g−2 exhibits a local maximum and a
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Figure 6.9: 3 × 3 determinant −2Rg2 (upper panel), and the inverse of the square of the
determinant of the metric g−2 (lower panel) as a function of temperature T for different
values of the explicit symmetry breaking parameter c, in the MF and for µ = 0.

local minimum, which seem to become closer and closer in temperature but further in
magnitude (the minimum gets deeper and the maximum gets higher) as c approaches
the chiral limit. This is in agreement with what one would expect approaching the chiral
limit and the associated change of the phase transition from a crossover to a second-
order phase transition, since in that case g → 0 and thus g−2 → ∞. Furthermore, this
structure seems to tend to a discontinuity as c vanishes, with the maximum turning into
a single-point divergence, confirming how hard and numerically expensive the chiral
limit is. We can also point out that, as previously observed, in the case of µ = 0 the
different momenta of the thermodynamic potential, which enter both in −2Rg2 and in
g−2, exhibit the analyzed behavior at the same crossover temperature, in agreement with
the absence of a multiple-peak structure in R for vanishing chemical potential.

Finally, in Fig. 6.10 we plot R versus T at µ = 0 within the mean-field approximation
(upper panel) and with the inclusion of fluctuations via FRG (lower panel). We show
results for several values of c. We note that, in both panels of Fig. 6.10, the curvature is
enhanced in the pseudo-critical region for small values of c (almost chiral limit) , while
the peak of R becomes smoother as c approaches the physical limit. Moreover, as we
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Figure 6.10: Thermodynamic curvature, R, versus T, for several values of c. The upper
panel corresponds to the mean-field approximation, while the lower panel to the calcu-
lations within the FRG.

already pointed out, the inclusion of fluctuations results in the lowering of the peaks
of R in the pseudo-critical region. Within the mean-field approximation, R changes
sign around Tc, as expected from previous results [214, 215, 216]: this, as previously
discussed, was interpreted as the emergence of a boson-like behavior of the system
around Tc. This behavior of R is also found when fluctuations are included within the
FRG (lower panel of Fig. 6.10). However, we note that fluctuations lower the overall
magnitude of R, in agreement with [215]. We also note that, despite the fact that the
peaks of R become more prominent as c is lowered, hence approaching the chiral limit,
R does not change sign as it does in the mean-field calculations. Hence, this confirms
our previous statement, i.e., that the qualitative behavior of R is independent of the
approximation used (mean field versus FRG) at the physical point (c = M2

π fπ) while
the change of nature from fermion-like to boson-like depends on the calculation scheme
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adopted.
As a final remark, we point out that the peak of R moves towards smaller tempera-

tures as the chiral limit is approached, i.e., as c is lowered. This is in agreement with the
fact that the critical temperature is lower in the chiral limit, when the real second-order
phase transition takes place, in comparison to the smooth-crossover temperature in the
finite pion mass case.

6.6 Conclusions and outlook

We studied the thermodynamic geometry, and in particular computed the thermody-
namic curvature R, of the chiral phase transition of Quantum Chromodynamics, within
the quark-meson model and the functional renormalization group method. The ad-
vantage of this method is that it allows to exactly include fluctuations, differently from
previous approaches [215] in which fluctuations were introduced only within a Gaussian
approximation.

We found that the qualitative behavior of R is not very different from the one pre-
viously computed within mean-field calculations, as well as within calculation schemes
that include fluctuations by a Gaussian approximation. In particular, R seems to keep its
local peak structure in the proximity of the chiral crossover at small chemical potential;
moreover, it is enhanced at the critical point, signaling that when the system approaches
criticality R could diverge, supporting the arguments of hyperscaling [187].

We also found that the change of sign of R near the chiral crossover, discussed previ-
ously in the literature [214, 215, 216, 244, 245], does not always happen when fluctuations
are taken into account within the functional renormalization group approach; however,
as the system approaches criticality, the change of sign from negative (fermion-like be-
havior) to positive (boson-like behavior) takes place. Hence, we conclude that the change
of sign of R near the critical endpoint seems to be quite a robust prediction of the chiral
effective models.

It would be interesting to analyze if the behavior of R we highlighted in this chapter
does not change when the truncation adopted in the functional renormalization group
approach is improved; for example, the inclusion of the scale-dependent wave function
renormalization factors of the boson and the quark fields is worth further investigation,
due to the possible link of this to the formation of inhomogeneous phases at large chem-
ical potential. Another possible improvement is the introduction of other condensation
channels, which could include diquarks or meson condensates. A potential application
would be the QM model with a finite isospin chemical potential, µI , at vanishing (or
small) µ. This would be extremely interesting, due to the opportunity to directly com-
pare the obtained results with lattice-QCD calculations, since a finite µI does not lead to
a sign problem, and would give the opportunity to study R in presence of potentially
two condensates, namely a pion condensate beside the standard chiral one.



112 CHAPTER 6. QUARK MESON MODEL: THERMODYNAMIC GEOMETRY



Chapter 7
Quark-Meson model:
regulator-dependence study

This chapter is based on an ongoing project in collaboration with Jonas Stoll, Niklas
Zorbach, Lutz Kiefer, Jens Braun and Dirk H. Rischke. Most of the results and parts of
the text are taken from a preliminary version of a publication in preparation. Moreover,
the results will also be used in PhD theses of my collaborators.

7.1 Introduction and motivation

In the previous chapters we pointed out the relevance of the choice of the effective
theories, which model the low-energy degrees of freedom of QCD and inherit their
respective symmetries, since the phase structure of these theories might qualitatively
agree with the QCD expected one. In particular we focused on the two-flavor quark-
meson model, which we already extensively discussed and whose chiral symmetry-
breaking/restoration pattern may serve as an effective description for the QCD behavior
in a moderate-density regime.

In general, within the used functional approach, if the path integral of any QFT
is solved exactly it is possible to arrive at the same effective action independently of
the regularization scheme. However, effective theories, even though they are build on
easier to handle degrees of freedom, are still interacting quantum field theories in their
own right. Thus their full solution is highly non-trivial and most of the times directly
impossible. In particular, we already discussed how, in the context of the FRG, this
difficulty translates into the need of the choice of a truncation for the effective average
action. In principle, the FRG machinery predicts a trajectory in theory space spanned
as the RG scale k changes from the cutoff scale Λ → ∞, where the effective average
action should coincide with the bare action, to k = 0, where the full quantum effective
action should be recovered. These trajectories are clearly dependent on the choice of the
regulator used in the FRG flow equation, but the properties of the regulator Eqs. (3.4)-
(3.6) guarantee that both the initial and final points of these trajectories are regulator-
independent.

However, the outcome of truncated FRG calculations depends, in general, on many
factors such as the truncation, the choice of the regulator and the UV-cutoff scale present
both in the regulator and in the truncated-effective action. In fact, a truncation restricts
the flow of the scale-dependent effective-average action to a subspace of the theory space,
which is not guaranteed to contain the desired IR limit. Since to different regulators are
associated different flows in theory space, it is not trivial that those flows will lead to
the same IR limit. Furthermore, oftentimes it is not possible to reach arbitrarily low IR

113
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scales, and the RG flow has to be interrupted at a finite IR scale. This implies that also
the finite IR-cutoff scale may influence the final outcome of the result and thus it has to
be taken into account carefully.

In order to restrict the number of elements which play a role in the determination
of the final outcome of the FRG evolution, in this work we focus on the study of the
regulator dependence, and on the impact that the regulator choice has on the IR ob-
servables and on the phase diagram of the model. In particular, we try to reduce the
UV-cutoff dependence by exploiting the so called RG consistency (see, e.g., [248]), which,
by construction, enables us to fix the UV-cutoff-independent RG flows via UV-cutoff-
dependent initial conditions. We also decide to fix the truncation, and thus we face
these problems in the mean-field (MF) approximation (or one-loop approximation or
large-Nc approximation) first, where we can have more control on the parameters and
also comparison with semi-analytic results is possible, and then in the local potential
approximation (LPA).

The regulator dependence of the FRG results, and in particular for us, of the phase
diagram of the QMM, is a very delicate topic (see, e.g., Refs. [185, 184]). In this chapter we
give our contribution to this ongoing discussion by analyzing several aspects associated
to the regulator dependence of IR-FRG results, namely:

• the choice of different regulator classes, such as the standard one defined in Eq.(3.7)
and the quasi-particle or Fermi-surface one, which is presented in more details in
[87] and in App.D.2.3;

• the possibility to use different shape functions for the regulators, and in particu-
lar the Litim, expontential squared and the newly introduced "smooth Litim" one
[249];

• the impact on the IR observables, and in particular on the phase diagram of the
choice of the UV-cutoff scale.

Our goal is thus to present a systematic discussion on all this different issues, ex-
ploiting, as already mentioned, the QM model both in the simplified MF, large-Nc ap-
proximation, and in the full LPA. In this way, the choice of this rather simple model can
give us more flexibility in this study, allowing us to fully focus on the FRG-related and
especially regulator-related issues we previously highlighted.

7.2 Model and setup

7.2.1 Quark-Meson model

We already introduced the quark-meson model and we extensively discussed its prop-
erties in the previous chapters. Thus, proceeding as we did in Sec. 5.6.1, we begin this
section by considering the LPA ansatz for the effective-average action of the QM model
at finite temperature and quark-number density in the chiral limit

Γk[Ψ̄, Ψ, ϕ] =
∫ 1/T

0 dx0
∫

d3x
{

ψ̄
(
γµ∂µ + h(σ + iγ5τ⃗ · π⃗)− µγ0

)
ψ

+
1
2
(∂µσ)2 +

1
2
(∂µπ⃗)2 + Uk(σ

2 + π⃗2)
}

.

(7.1)

Once again, in this study we focus on the global chiral symmetry of the QMM and its
spontaneous symmetry breaking (SSB), indicated by a non-zero expectation value of one
of the mesonic fields.
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As previously, the next step for our FRG setup is the choice of an initial condition for
the FRG flow equation, which corresponds to assign a shape to the bare potential in the
UV (k = Λ or t = 0). In particular, for the moment we choose a quartic potential

UΛ(σ) =
m2

UV
2

σ2 +
λUV

4
σ4 , (7.2)

where m2
UV and λUV are coupling constants. We dedicate a much wider and detailed

discussion on the choice of the initial condition, and actually on its construction via the
RG consistency, in the following sections.

7.2.2 RG consistency and parameter dependence

As we discussed in Chapter 3, a solution Γk[Φ] of the Wetterich equation can be regarded
as a trajectory in the space of all possible actions, i.e., the theory space. The flow starts
from the UV action towards the full-quantum-effective (IR) action Γ[Φ] in the IR-limit
t → ∞.

As we pointed out, the choice of different regulators leads to different flows in theory
space, and in principle also the choice of different initial condition in the UV has the same
effect, due to the finite value of the UV cutoff. However, one can ensure that different
flows originated by different regulators approach the same full quantum-effective action
Γ[Φ] = Γk=0[Φ] in the IR limit k → 0, within the given truncation, by choosing a proper
initial conditions Γk=Λ[Φ] for the respective flows at the cutoff-scale Λ. Flows with this
property are called RG-consistent flows [248]. This property can be formulated as follows:

Λ
Γk=0[Φ]

∂Λ
= 0 , (7.3)

Which implies that the final outcome of the FRG flow evolution, i.e., the full quantum-
effective action, has to be independent of the choice of the UV-cutoff. To satisfy the latter
requirement, the UV initial condition ΓΛ[Φ] ≡ Γk=Λ[Φ] has to be modified, in the form
of a parameter tuning, in order to counter the change in the Wetterich equation under the
variation of the UV cutoff. For specific classes of theories, depending on the field content,
the symmetries of the theory and the choice of the truncation and of the regulator, it may
be enough, in order to ensure the RG consistency (at least locally around the minimum
of Γ[Φ], as we will detail in the following), to initialize the Wetterich equation with
Sren

Λ [Φ] instead of ΓΛ[Φ], where Sren
Λ [Φ] consists of a standard kinetic term and a low

order polynomial in the fields with a few Λ-dependent couplings. If this is the case,
we call the model in this specific setup renormalizable. A renormalizable model can then
be meaningfully defined by a simple bare action, if the latter is identified with Sren

Λ [Φ].
Thus, for our study it is convenient to focus on this class of theories, to which the QM-
model belongs. This justifies the choice of the form of the initial condition defined in
Eq. (7.2).

In the presence of external parameters in the model, such us the temperature and
the chemical potential, one should in general check that the choice of the RG-consistent
initial condition is independent of these parameters. This implies that the tuning of UV
parameters has to be performed only once, at a given fixed value of the parameters.
For convenience, one can chose what we will refer to as the vacuum in the following,
i.e., the case of vanishing external parameters. In order for this to be true, i.e. for
a proper regulator choice, the Wetterich equation has to become independent of the
external parameters for sufficiently large-RG scales. It immediately follows that an RG-
consistent vacuum flow, to a desired vacuum full-quantum effective action, is also an
RG-consistent flow with external parameters at sufficiently high RG scales. Thus, once
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the RG-flow has been properly initialized at a sufficiently large-RG scale in the vacuum,
one can then get a prediction for the full quantum-effective action in the IR also in the
presence of the external parameters. This implies that, in order to avoid cutoff-artifacts,
one has to be sure of initializing the RG-flow at RG scales which are significantly larger
compared to the external parameters (and also to the scales which are internal to the
theory, such as the mass of the particles).

According to the previous discussion, one has also to keep in mind that cutoff arte-
facts can (an most probably do) differ for different regulators, especially if the flows
involving them are initialized at not sufficiently high RG-scales. As we pointed out, the
choice of the vacuum flow as the one evaluated at vanishing external parameters is just
a convention and a convenient choice for practical calculations, but the previous line of
arguments does not rely on it and is still valid for different choices.

The previous argumentation is rigorously valid in the case of an exact solution of the
Wetterich equation, i.e., if we were able to compute the full-effective action. However, as
stated multiple times, this is often not possible, especially in the case of rich theories in
terms of field content and symmetries. This is mainly due to the absolutely non-trivial
structure of the Wetterich equation, which is a highly nonlinear functional differential
equation. The natural simplification to this problem is the introduction of truncations for
the effective-average action, i.e., reduce Γk[Φ] to only a few terms which fulfill the sym-
metry constraints of the theory and which are then feed back into the Wetterich equation.
However, truncations have a drastic impact on our previous discussion: in fact, already
considering just the vacuum case, a full quantum-effective action that was accessible in
the exact calculation might not be accessible in the truncated calculation, because the
structure of the flow equation changed significantly. Furthermore, a quantum-effective
action in vacuum that is accessible with one regulator must not be accessible with other
regulators, since RG consistency in general applies only to exact calculations. However,
one can still achieve cutoff independence for a specific regulator by constructing proper
initial conditions, but the task of matching the IR results for different regulators is highly
non-trivial. If we then include external parameters in the model and assume that the
truncated flow equation can still be considered as independent of them for sufficiently
large RG scales, then a vacuum flow leading to a cutoff-independent quantum-effective
action will also lead to a cutoff-independent quantum-effective action in presence of ex-
ternal parameters, if it is used as an initial condition at sufficiently large-RG scales. One
has to notice then that, choosing different regulators, the previously obtained cutoff-
independent quantum-effective actions in presence of external parameters are in general
not guaranteed to agree, even if it was possible to access the same vacuum quantum-
effective action with all of them by independently tuning the different UV-initial con-
ditions. This implies that the differences one observes in the finite-parameter case are
caused by the used truncation. This is the reason why the choice of the regulator enters
as a fundamental element of the resolution of the FRG flow equation, not only in order
of stability of the flow itself, but also in terms of the obtained IR results. Finally, it has
to be pointed out that if it is not possible to access the same vacuum quantum-effective
action for the different considered regulators, even after the proper choice of the UV ini-
tial condition, then a comparison of the results obtained in the presence of the external
parameters is not meaningful.

Once we gave this overview on what are the difficulties, our goal is to set a well-
defined comparison, according to our previous discussion, of the IR results obtained for
the different regulator, in order to truly appreciate their impact on the FRG computa-
tions. More precisely, we will study if it is possible to arrive at the same vacuum effective
action with different regulators in the mean-field approximation and in the LPA, which
would enable a fair comparison of results at non-zero T and µ. If this is possible, the
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differences in the obtained results could be traced back to the truncation itself or to a too
low-cutoff scale. We will see that it is indeed possible to construct such initial conditions
and that regulator dependencies are eventually small in LPA.

7.2.3 Preparation and regulators-shape functions

As for the previous chapters, we study the spontaneous symmetry breaking (SSB) of
the chiral symmetry in the quark-meson model (QMM) in the presence of the external
parameters T, µ. A proper order parameter is the homogeneous1 bosonic condensate
which corresponds to the minimum of the effective potential Uk=0(ϕ). As we did in the
previous chapters, in order to study the behavior of the condensate, we project the flow
equation into the respective truncation of the scale dependent effective potential, which
in the LPA case corresponds to

Uk(σ) = V−1Γk[Ψ̄ = Ψ = 0, ϕ = (σ, 0, 0, 0)] (7.4)

where V is a volume factor and we used the SO(4) symmetry of the problem, such that
we obtain the effective potential in the IR limit U(ϕ = (σ, 0, 0, 0)) = Uk=0(σ).
For simplicity, we choose regulators such that the right-hand side of the flow equation
separates into a fermionic and a bosonic contribution. Furthermore, in the fermionic
sector, we also classify the regulator choice by introducing two regulator classes. In
particular, as regulator classes we consider the 3-dimensional standard regulator (SR)
class, introduced in Eq. (3.7), as well as the 3-dimensional quasi-particle regulator (QPR)
class [87], which we discuss in more detail in App. D.2.3. For general regulator shape
functions r(y), with y = p2/k2, the regulator contribution to the effective-average action
for fermions reads:

∆SF
k,SR[r, ϕ] = − 1

β ∑
p0

∫ d3p
(2π)3 Ψp0,p /p rF (y) Ψp0,p , (7.5)

∆SF
k,QPR[r, ϕ] = − 1

β ∑
p0

∫ d3p
(2π)3 Ψp0,p

(
∑

z=±
(−µ + z|p|) rF

(
(−µ + z|p|)2

k2

)
Pzγ0

)
Ψp0,p ,

(7.6)

where Ψp0,p = Ψ(p0, p), p0 = ωF
n = (2n + 1)πT are the discrete fermionic-Matsubara

frequencies, and P± are projectors defined in Eq. (D.33), which project onto the positive-
and negative-energy solutions of the Dirac equation. For a more detailed discussion, one
can refer to Ref. [87] or to App.D.2.3.

As far as the bosonic-regulator contribution is concerned, for reasons that we specify
in the following, we just use the SR class, which reads:

∆SB
k [r, ϕ] =

1
β ∑

p0

∫ d3p
(2π)3

1
2
|p|2rB (y) ϕp0,p ϕ−p0,−p , (7.7)

where ϕp0,p = ϕ(p0, p) and p0 = ωB
n = 2nπT are the discrete bosonic-Matsubara fre-

quencies.
The relation between fermionic- and bosonic-shape functions is given by

rF(y) =
√

rB(y) + 1 − 1 . (7.8)

1Considering only a homogeneous (spatially constant) order parameter is sufficient but not neccessary
for SSB, see, e.g., Ref. [250].
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However, the relation used here is just one of the possible choices. As we will see in the
following, this choice leads to remarkably similar vacuum effective potentials obtained
using different shape functions, and therefore it is particularly suitable for a meaningful
comparison of the associated phase diagrams.

It is worth mentioning that, by definition, the QPR only modifies the structure of the
fermionic regulator, while leaving the structure of the bosonic regulator unchanged. For
reasons that we explain once we establish the procedure we follow in order to obtain an
RG-consistent initial condition in the MF approximation/leading order in the large-Nc
expansion, we do not use the QPR in the full LPA calculation, but we just use it as an
extra-comparison element in the MF approximation.

For this study we use several regulator-shape functions. In particular we focus on
the Litim (L) regulator [148, 251], an exponential (E) regulator and the smooth Litim-like
(SL) regulator introduced in [249]. For the bosonic-shape functions they can be written
as

rB,L(y) =
(

1
y
− 1
)

Θ(1 − y) , (7.9)

rB,E(y) =
1

1 − e−y−y2 − 1 , (7.10)

rB,SL(y) = exp(− 1
y − 1

2

)θ

(
y − 1

2

)
+

1
y
− 1 ,

and the corresponding fermionic-shape functions are obtained using Eq. (7.8).
As we stated multiple times, the flow equations for the scale-dependent effective

potential arising from the LPA truncation or from the mean-field approximation, and for
the different regulator shapes, are either non-linear partial differential equations (PDEs)
in the RG scale k and in the field variable σ or just ordinary differential equations (ODEs)
in k for each of the values of σ. This will be a very important point in the following.

In both cases, the flow equations can be reformulated in terms of u(t, σ) := ∂σUt(σ),
where t = − ln

( k
Λ

)
is the RG time. In this reformulation, the flow equation becomes an

advection-diffusion equation with a source term and is reminiscent of PDEs from fluid
dynamics. Solving numerically these PDEs is a challenging task since shocks and kinks
might occur and stable numerical tools are required to treat them. Guided by the form
of our flow equations, we use a finite-volume method, the aforementioned KT scheme.

7.3 Effective potential at leading order in large-Nc expan-
sion: mean-field approximation

Once the set-up has been fixed, we now move to the main focus of our discussion,
i.e., how we can compare the different results obtained from different regulators in a
consistent way. It is important to state that the reason why we chose to use the MF
approximation is to test our method and to verify that one obtains the well known
results in this approximation. In particular, the MF (one-loop) approximation is very
similar to the untruncated/exact case: given a vacuum quantum effective action and
regulators for which the one-loop Wetterich equation becomes independent of some
considered external parameters at sufficiently large-RG scales, one can predict an unique
quantum-effective action for external parameters, independently of the regulator choice
and of the cutoff (for sufficiently large-cutoff scales). This useful property of the one-loop
approximation is called one-loop universality (see, e.g., Ref. [70]). From a mathematical
point of view this translates into the fact that the FRG flow equation loses the feature of
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being a PDE, to become just a trivial ODE where the r.h.s is independent of the unknown
function. This means that the task of finding the IR-effective potential is just reduced
to a k- (or equivalently a t-) integration, where all the scales are included, leaving thus
no dependence on the specific regulator function utilized. In this section we will also
include discussions on the problems of implementing RG-consistency and fixing the
UV-initial conditions.

We can have an intuitive point of view on the one-loop universality using the fol-
lowing argumentation. We start from the one-loop Wetterich equation in the presence
of a set of external parameters, which we summarize under the variable e, and, for
convenience, we also suppress the field dependence of the functionals

k∂kΓk(e) =
1
2

STr
[(

S(2)(e) + Rk
)−1 · k∂kRk

]
,

where, because of the one-loop approximation, we substituted Γ(2)
k (e) with S(2)(e), where

S is the bare action associated to the respective theory. Since S(2)(e) is k-independent,
we have (

S(2)(e) + Rk
)−1 · k∂kRk = k∂k ln

(
S(2)(e) + Rk

)
,

which can trivially be integrated. Note that the supertrace STr and the k-derivative do
not commute in general, but the k-integral does. In this way we arrive at2

Γ(e) =
1
2

STr

[
ln

(
S(2)(e)

S(2)(e) + RΛ

)]
+ ΓΛ(e) ,

were we used Rk=0 = 0 and we defined Γk=0(e) ≡ Γ(e). Note that all terms on the
right-hand side are finite since the term inside the logarithm approaches the identity for
large momenta p2 ≫ Λ2, where RΛ(p2) tends to zero (since the regulator RΛ acts as
an IR regulator). Given a vacuum quantum effective action Γ = Γ(0), we can rearrange
the previous equation to ΓΛ = ΓΛ(0) and use it as an initial condition in the case of
nonvanishing external parameters, i.e.,

Γ(e) = Γ +
1
2

STr

[
ln(

S(2)(e)
S(2)(0)

)− ln(
S(2)(e) + RΛ

S(2)(0) + RΛ
)

]
.

The last logarithmic term vanishes for sufficiently large Λ if RΛ(p2) dominatesover
S(2)(p2, e) for all p2 < Λ2 and loses its dependence on the external parameters, which is
the case, for example, for regulators of the SR class with external parameters T, µ ≪ Λ.
In that case we are left with

Γ(e) = Γ + STr

[
ln(

S(2)(e)
S(2)(0)

)

]
,

i.e., a regulator and in particular Λ-independent quantum effective action for external
parameters.

In the following, we use this property as a guideline; in particular, once we build an
RG-consistent initial condition, we test it for the case of the QMM.

In contrast to the previous general calculation for the quantum effective action, we
now project the flow equation onto the truncation which contains only the scale-dependent
effective potential as a flowing operator. More precisely, for regulators of the SR class
the flow equation for u(t, σ) reads

2Here the denominator is meant as the inverse matrix.
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∂tu(t, σ)
∣∣∣
Fermions

= − Nc

4π2

∫ ∞

0
d p p4

(
1 + rF

t (p)
)

∂trF
t (p)

∂

∂σ

{
1

Ek,Ψ(p)
×

×
[

1 − nF

(
Ek,Ψ(p) + µ

T

)
− nF

(
Ek,Ψ(p)− µ

T

)]}
, (7.11)

where t is the RG time, nF(x) = 1/(ex + 1) is the Fermi-Dirac distribution function,

Ek,Ψ(p) =
√

p2(1 + rF(p))2 + h2σ2 , (7.12)

and the reformulation in u(t, σ) is used for convenience. As we previously hinted,
Eq. (7.11) is an ODE in the RG time t, or equivalently in the RG scale k, since the spatial-
like variable σ plays just the role of a parameter.

One can easily check that the flow equation becomes independent of the external
parameters T, µ, at large RG scales. This implies that, in order to perform a meaningful
comparison of the IR observables at nonzero T, µ, we have to establish a procedure to fix
the vacuum effective potential Uvac(σ) for the different regulator shape functions.

Thus, once established the need for different initial conditions, our primary concern
is to ensure that they produce RG-consistent results. The step-by-step procedure we
used in order to achieve this goal is elucidated in Fig.7.1.

It is worth mentioning that, within our truncation (and also in the full-LPA case), the
RG-consistency criterion translates into

Λ
∂Uk=0(σ)

∂Λ
= 0 , (7.13)

which encodes the independence of the IR-effective potential on the UV cutoff Λ.
Before explaining how we use this procedure, we should specify what we mean by

flowing "backwards" in the RG flow. In the case of the mean-field, in particular, this is
pretty straightforward since the only change that has to be done consists in switching the
initial time with the final one in the RG-integration, meaning that the time derivative of
the effective potential changes sign (or alternatively the source therm changes sign). This
naturally implies that the initial condition has also to be matched with the new initial
time of the evolution, meaning, how one would expect, that the initial condition used in
a backflow is actually just the result of a previous "standard" FRG-time evolution. Now
that we have settled this aspect, we can proceed in explain in detail how this procedure
is performed, following the various steps schematically presented in Fig.7.1.

1. The first step consists in solving the flow equation with a fixed-shape function.
This step is usually performed using the standard Litim regulator-shape function
rF,L due to its simple form and to its numerical flexibility. The flow equation is
initialized at the cutoff scale Λ = 1 GeV, with a quartic potential

Uk=Λ(σ) =
1
2

m2
UVσ2 +

1
4

λUVσ4 . (7.14)

The UV parameters m2
UV and λUV are then tuned in such a way that the vacuum ef-

fective potential at k = 0 provides the chosen values for the IR observables, namely
the chiral condensate, i.e., the position of the minimum of the IR potential, and the
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sigma mass, i.e., the curvature of the IR potential evaluated at the minimum. In
particular the used values are

⟨σ⟩ = fπ = 0.088 GeV m2
IR = m2

σ = ∂σu(t, σ)
∣∣∣
σ=⟨σ⟩

= 0.2 Gev2 , (7.15)

where fπ is the pion decay constant. The last parameter of the model one can tune
is the Yukawa coupling h. However, in order to have meaningful comparisons, we
choose to fix it to a constant value that will be used in all the calculations presented
in this chapter, namely

h =
mΨ

fπ
= 3.4 , (7.16)

where mΨ = h fπ = 0.3 GeV is the dynamically-generated quark mass in the vac-
uum. The previously described step 1 corresponds to the first light-blue arrow in
Fig.7.1.

2. As a second step, we use the obtained IR-effective potential as the initial condi-
tion and solve the flow equation backwards from the infrared to a new UV cutoff
Λ′ ≫ Λ. Here we choose Λ′ = 100 GeV. This step ensures that the RG-consistency
condition Eq.(7.13) is fulfilled at the new UV cutoff Λ′ by construction. This proce-
dure is then performed for every regulator-shape function used in the SR class. The
resulting scale-dependent effective potentials for the various regulators at k = Λ′

are then proper initial conditions that can be used to calculate the effective poten-
tial at finite values of T, µ ≪ Λ, where one expects SSB. This step corresponds to
the second light-blue arrow in Fig. 7.1. One can notice that, due to the already
discussed simple structure of the flow equation in the MF, if for steps 1 and 2 one
uses the same regulator-shape function, then these two steps can be also grouped
into a single one, which consists in tuning the UV parameters at the scale λUV by
flowing to the vacuum and then simply flowing upward from the scale Λ to the
higher scale Λ′.

These two steps, as already stated, are sufficient to construct an RG-consistent and
parameter-independent initial condition for the flow equation in the case of standard
regulators, meaning that one can then just flow from the scale Λ′ to the IR for any value
of T and µ simply using the chosen regulator and the obtained RG-consistent initial
condition.

However, as we stated previously, we also investigate another class of regulators, the
quasi-particle regulator class. In this case the flow equation reads:

∂tu(t, σ) = −∂t

(
4NcN f (h2σ)

∫ d3p
(2π)3

1
2Ẽ

[
1 − n f

(
Ẽ − µ̃

T

)
− n f

(
Ẽ + µ̃

T

)])
, (7.17)

with

Ẽ =

√(
ω+ − ω−

2

)2

+ h2σ2 , µ̃ =
ω+ + ω−

2
, (7.18)

and
ω± = (µ ∓ | p⃗|)(1 + r±) . (7.19)

Finally

r± = rF(x±) , (7.20)
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are the previously defined regulator-shape functions for the fermions, which depend on
the dimensionless variables

x±k2 = (−µ ± |p|)2 . (7.21)

More details on the derivation of Eq. (7.17) and the meaning of the previously defined
quantities can be found in App. D.2.3. From a mathematical point of view, Eq. (7.17) is
still an ODE as for the SR case. However, it can be easily shown that it does not become
independent of µ for large-RG scales. This implies that we cannot use a vacuum flow
at large RG scales to produce cutoff-independent results at non-zero µ. This regulator
class therefore has no predictive power with regard to the external parameter µ, i.e.,
we cannot predict the behavior of IR observables as µ is changed. However, it still has
predictive power with regard to the temperature T. In fact, if we take the effective poten-
tials resulting from RG flows which use regulators from the standard regulator class for
every value of µ at some arbitrary temperature, we can flow backwards from there with
the quasi-particle regulator flow equation, to construct initial conditions at Λ = 100GeV,
each for every µ, see also Fig. 7.1. The predictions at other temperatures should then be
in agreement with the regulators from the standard-regulator class.

Guided by this observation, we perform the previously described steps 1-2 with a SR,
and we now detail the additional steps required to produce a suitable initial condition
for the QPR class.

3. In the case of the Fermi-surface/quasi-particle class of regulators then, the next
required step is to flow down to the IR starting from the scale Λ′, using the initial
condition produced via steps 1-2 and exploiting a standard-class regulator. Cru-
cially, this step has to be performed at a fixed temperature (usually T = 0), for
every value of the chemical potential one wants to obtain results for. This step
corresponds to the third blue arrow depicted in Fig.7.1.

4. The last step consists then in flowing back up with the in medium flow-equation
obtained with the fermi-surface or quasi-particle regulator class, in order to gen-
erate a new RG-conistent UV-initial condition at scale Λ′ for every value of the
chemical potential µ. This initial condition can then be used to solve the flow in
medium at all different temperature values. This final step is represented by the
black arrow in Fig.7.1.

A crucial aspect that is worth stressing once again is that steps 1-2 have to be per-
formed for a single point in the phase diagram, e.g., in the vacuum T = µ = 0. Once
steps 1-2 have been fulfilled, then the obtained initial condition is valid for every other
value of the T − µ space if using a SR. On the contrary, as already highlighted, when
using the QPR, steps 3-4 have to be performed for every value of the chemical potential,
meaning that the obtained RG-consistent initial condition is valid only for that specific
µ, but can be used for every value of the temperature one wants to investigate.

We then conclude this section stating that, as one would expect, the highlighted pro-
cedure correctly generates absolutely equivalent results for the different regulator-shape
functions and regulator classes. The result of this comparative study is then shown in
Fig.7.2, where the phase diagrams, for both regulator classes and various regulator-shape
functions are shown. We can observe that, as expected from the one-loop universality,
all the possible combinations of regulator classes and regulator-shape functions lead to
results that are in perfect agreement, proving that with our construction we achieved
regulator-independent results.
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Figure 7.1: RG-consistency construction.

Figure 7.2: Comparison of the MF phase diagram for different regulator-shape functions
and different regulator classes.
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7.4 Beyond the large-Nc approximation: LPA

Once we established our procedure for the testing ground of the MF/large-Nc approx-
imation, it is now time to go beyond it and approach the full-LPA case. one of the
challenging aspects is that for LPA, in contrast with the one-loop case, there is no guar-
anteed universality of the results, and therefore it is absolutely not-trivial that results
obtained in presence of finite external parameters agree for different regulators, even if
the corresponding vacuum effective potentials are matched. The LPA flow equation for
the standard-regulator class used for both fermions and bosons, reads

∂tu(t, σ) =
1

8π2

∫ ∞

0
d p p4

{
∂trB(p)

∂

∂σ

[
3

Ek,π(p)
coth

(
Ek,π(p)

2T

)
+

1
Ek,σ(p)

coth
(

Ek,σ(p)
2T

)]

−2 Nc

(
1 + rF(p)

)
∂trF(p)

∂

∂σ

{
1

Ek,Ψ(p)

[
1 − nF

(
Ek,Ψ(p) + µ

T

)
− nF

(
Ek,Ψ(p)− µ

T

)]}}
,

(7.22)

where

Ek,π =

√
p2
(
1 + rB(p)

)
+

u(t, σ)

σ
, Ek,σ =

√
p2
(
1 + rB(q)

)
+ ∂σu(t, σ) (7.23)

and Ek,Ψ is defined in Eq. (7.12).
In this case, the reformulation in terms of the conserved quantity u(t, σ) is a necessary

consequence of the numerical approach we choose. In particular, as we stated multiple
times, in this way the flow equation can be put in the form of an advection-diffusion
equation with a source term. Thus we use a tool developed to solve PDEs from fluid
dynamics, i.e., the KT finite-volume scheme ([142], or see App.E).

Due to the presence of both a fermionic and a bosonic loop in the LPA-flow equation,
we can now choose up to nine different total regulator functions by using all possible
combinations of the three shape functions we considered.

Similarly to the one-loop flow equation for the standard regulator, it can be easily
shown that also the LPA-flow equation becomes independent of T and µ for sufficiently
large-RG scales. However, the flow equation has now the form of a non-linear partial
differential equation in the field variable σ and the RG time t. Thus it can not be solved
backwards, because of the presence of diffusion terms, which are source of irreversibility
and entropy production [81]. Therefore, the task of finding a proper scale-dependent
effective potential at large RG scales, i.e., an initial condition for the flow equation which
leads to a fixed vacuum effective potential, is not as trivial as in the one-loop case. A
possible strategy consist of making an ansatz for the initial condition

Uk=Λ(σ) =
1
2

m2
UVσ2 +

1
4

λUVσ4 , (7.24)

using m2
UV and λUV as parameters and study to which extent it is feasible to tune these

parameters such that the vacuum effective potential in the IR limit matches with the
same desired one for all the various regulator-shape functions. This is the core of the
next subsection.
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7.4.1 Parameter space and UV independence of the IR observables

As we stated previously, our ansatz for the initial condition for the flow equation is built
in such a way that we can tune two free parameters. Note that, within our restriction
of the UV potential, it is clear that it is not guarantee to find an exact match of the IR
potentials for the various regulators. That is why we tune m2

UV and λUV in order to fix the
minimum and the curvature of the potential (the sigma mass), such that we are able to at
least fix the local structure of the effective potential around its minimum in the IR. Since
physical information is extracted from the derivatives of the potential at its minimum,
this choice of observables provides suitable candidates for a meaningful comparison of
the results obtained with different regulators. In particular, we make their value be the
same (as far as possible, as we argue in the following) in the vacuum by fixing the initial
conditions, and then compare the obtained results for the finite external-parameters case.

In practice, we scan the parameter space spanned by m2
UV and λUV, which is however

restricted by the following bounds λUV ≥ 0 (if λUV = 0 then m2
UV > 0) and m2

UV > −Λ2.
The former bound simply comes from the fact that the UV potential has to be bounded
from below. The latter one prevents the LPA flow equation from being invalid right at the
beginning of the RG flow. It is worth noticing that, while in order to ensure stability λUV
has to be positive also in the mean-field approximation, the last limitation on the value
of m2

UV is not present in the mean-field approximation due to the simpler form of the
flow equation. We can now make the condition m2

UV > −Λ2 more clear by considering
the bosonic contribution in the LPA for the Litim regulator-shape function. However,
the same line of reasoning holds with minor changes also for the other regulator-shape
functions. In particular, as we demonstrated several times, in the case of the Litim-shape
function we have

Ek,σ =
√

k2 + ∂σu(t, σ) . (7.25)

The initial condition at k = Λ, i.e., at t = 0, for the derivative of the effective potential
then reads

u(t = 0, σ) = m2
UVσ + λUVσ3 . (7.26)

Then its σ-derivative is
∂σu(t = 0, σ) = m2

UV + 3λUVσ2 . (7.27)

If we now evaluate it at σ = 0 we trivially obtain

∂σu(t = 0, σ = 0) = m2
UV . (7.28)

If we substitute it in Eq. (7.25) and evaluate it at k = Λ we obtain

Ek=Λ,σ
∣∣
σ=0 =

√
Λ2 + m2

UV , (7.29)

from which the condition m2
UV > −Λ2 trivially follows.

After this brief explanation we can come back to the main topic of the section, i.e., the
compatibility of the vacuum results obtained using different regulators. What we find is
that it is indeed possible to tune m2

UV and λUV for any regulator combination and any
cutoff scale Λ, such that the minimum takes the desired value of σmin = 0.088GeV. This
can be seen from Fig. 7.3, where we show the accessible parameter space in the vacuum
for different cutoffs and different regulator combinations. Here m2

UV has been rescaled,
and is expressed in units of the cutoff squared, Λ2. Each solid curve corresponds to the
parameter sets for which the IR-chiral condensate is fixed at ⟨σ⟩ = 0.088 GeV, while the
IR-curvature mass changes along the curves. From this plot we clearly see that, as one
would expect, in order to tune the IR minimum of the potential to the same fixed value,
m2

UV has to be increased when λUV is decreased and vice versa. Thus, the existence of a
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Figure 7.3: Complete parameter space in the vacuum for different cutoffs and different
regulator combinations. On each solid curve the IR-chiral condensate is fixed at ⟨σ⟩ =
0.088 GeV.

minimal value for both m2
UV and λUV translate into a maximal value for λUV and m2

UV,
respectively. These boundaries restrict the whole parameter space.

This is the reason why we find that it is not possible to obtain an arbitrary value
for the curvature m2

IR at the desired minimum. The associated results are depicted in
in Fig. 7.4, where we show the accessible values of m2

IR for different regulator combina-
tions and different values of the UV cutoff Λ. In particular, as expected, m2

IR increases
as λUV is increased. Thus we find bands of accessible m2

IR, where the lower bound
is obtained for the lowest possible value of λUV, i.e., λUV = 0, and the upper bound
corresponds to the maximal possible λUV, associated with m2

UV = −Λ2.
We observe that the bands of the accessible values of m2

IR are similar for different
regulators, but not the same. For low enough Λ all bands overlap, allowing for a com-
parison of the phase diagrams in the sense we previously defined. However, we are
more interested in the case of large Λ, because only for large enough cutoff scales the
phase diagram is expected to be independent of the cutoff scale itself. For large Λ we
observe a very interesting behavior for all regulators: with increasing cutoff, the bands
become more narrow and lay inside the bands produced by lower cutoffs. Furthermore,
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Figure 7.4: Accessible values of m2
IR obtained for different regulator combinations and

different values of the UV cutoff Λ. For each depicted value, the IR-chiral condensate is
fixed at ⟨σ⟩ = 0.088 GeV.

these bands tend to collapse into a single point when Λ → ∞, approaching a given limit.
More precisely m2

IR is not affected by the choice of m2
UV and λUV in the limit Λ → ∞,

as long as they lead to σmin = 0.088GeV. This happens alongside the fact that the al-
lowed range of values for m2

UV and λUV increases as the cutoff is increased, which is in
agreement with our previous statement that the IR results get more UV-insensitive as Λ
gets bigger. In other words, both m2

IR and the effective-IR potential in a broader vicin-
ity around the minimum are prediction of our calculation. This can be seen in Fig. 7.5,
where we show the local enclosing of the IR-effective potentials, via the bands in the
IR-effective potentials produced by the different choices of the UV couplings which lead
to the bands of Fig.7.4, for two values of the IR cutoff Λ and for two combinations of the
regulator-shape functions. We note that this implies that many different quartic initial
conditions will lead to the same effective potential in the neighborhood of the minimum,
which is deeply in contrast to one-loop case, where only a unique parameter-set choice
leaves the IR-effective potential invariant. As a consequence, it suffices to choose a very
simple form for Uk=Λ, e.g., purely quadratic or purely quartic, as far as we use an ar-
bitrary but sufficiently large Λ, in order to keep the vacuum-effective potential locally
Λ-independent around its minimum. In this sense, we can state that the QMM in LPA
is renormalizable.

The Λ → ∞ limits of m2
IR however do not seem to agree for any two different regu-

lator combinations, but the results are very similar if the fermionic and bosonic shape
functions are chosen such that they fulfill the condition Eq.(7.8). Perfect comparability is
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Figure 7.5: Local enclosing of IR-effective potentials for two values of the IR cutoff Λ
and two combinations of the regulator-shape functions. The bands in the IR-effective
potentials are produced by the different choices of the UV couplings which lead to the
bands in Fig.7.4.

therefore not given, but approximately achieved for some of the considered regulators.
It is important to notice that the bands in Fig. 7.4 might depend on the chosen quartic
form of Uk=Λ. If we would include a σ6, it might be possible to arrive at values of m2

IR
outside the bands even in the limit Λ → ∞, although we do not expect this to neither
provide a relevant contribution to the size of the m2

IR bands nor to impact our argu-
mentation. However, the fact that the simple initial conditions that we found lead to a
unique, cutoff-independent limit for the potential in the vicinity of its minimum (renor-
malizability) is true even if we enhance the ansatz for Uk=Λ.
As a final remark, we did not include the quasi-particle regulator class in the LPA analy-
sis, since we would have to find initial conditions at every µ using as an input the results
obtained from a regulator belonging to the standard class, just as in the one-loop case.
However, this is not trivial since the results for different regulators belonging to the stan-
dard regulator class are not unique in LPA. On top of that, during our investigation we
did not find satisfying agreement between the possible m2

IR obtained for a chosen QPR
and SR at some chosen µ, so, for the moment, we dropped this part of the study.

7.4.2 Cutoff Dependence Of Phase Diagram: Quartic Initial Condition

The next step of our comparison study consists in the investigation of the impact of
the UV cutoff and the regulator choice on the results at finite values of the external
parameters T and µ, thus, as a main example, on the phase diagram of the model. More
in detail, we can now use the results from the vacuum-parameter study in order to
choose, for a given cutoff, parameter sets for different regulators that lead to equal (or
similar) values of m2

IR, in order to compare the resulting phase diagrams at non-zero µ

and T. However, since we emphasize that we found bounds for the possible values of
m2

IR, we now expect that the corresponding parameters might lead to an upper and lower
limit for the phase boundary as well. This is indeed the case. In particular, we observe
that the maximal value of m2

IR, for a given regulator and cutoff, leads to an "outer" phase
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Figure 7.6: Phase boundaries of the QM model obtained with FRG in the LPA for differ-
ent choices of the UV cutoff Λ. The used regulator combination for the shape functions
in the bosonic and fermionic regulators is Litim-Litim. For a given cutoff, the lower and
upper bounds correspond to the lowest and highest value allowed for m2

IR, respectively.

boundary, located at larger values of T and µ, while the corresponding minimal value of
m2

IR provides an "inner" phase boundary, which can instead be found at lower values of
the external parameters. The resulting limiting phase boundaries for the Litim regulator-
shape function, used both in the bosonic and fermionic loops, are shown in Fig. 7.6 for
different cutoffs. Each of the points presented is the result of the calculation of the
effective potential in the IR, from which we extract the value of the sigma-condensate.
In particular, as points of the phase boundary we consider those points in a given T − µ

discretization, for which the minimum of the effective potential σmin is non-zero, but
becomes zero at a neighboring grid point in T or µ direction. The phase boundaries
have then been obtained by spreading an uniform grid over the region in the µ, T plane
we are interested in, using a grid spacing of ∆µ = 2MeV and ∆T = 2MeV.

As we discussed in Chapter 5, the phase boundary close to T = 0 and at high values
of µ splits up into two separate phase boundaries. The line at smaller µ represents what
we called the back-bending in the phase boundary, while the other one is the standard
phase boundary, where σmin changes from non-zero to zero. No order parameter changes
from non-zero to zero at the back-bending phase boundary, but a rapid change of σmin
occurs, which can more easily be seen in a 3D plot, see Fig.7.7.

Points are regarded as back-bending phase boundary points in this discretized T − µ

grid sapce, if the discrete derivative ∂Tµ > 0 along the phase boundary.
Before going any further in the analysis if the results, we point out that in Fig.7.6 we

used the Litim regulator shape function as an example, but a similar behavior is found
for all tested regulator shape functions.

As a first observation, we can see that the back-bending phase boundary does not
seem to be an UV-cutoff artifact, since it is present also for λ = 10 GeV, in both of the
phase boundaries.

One of the most interesting aspects is that all possible phase boundaries one can
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Figure 7.7: 3D-phase diagram of the QM model obtained with the FRG in the LPA.
The used regulator combination for the shape functions in the bosonic and fermionic
regulators is Litim-Litim.

obtain in LPA using a quartic initial condition are contained in between the previously
described limiting phase boundaries, since all the possible available parameters lie inside
the parameter-space boundaries for which the phase diagrams have been calculated.

We can then observe that, for low values of the UV cutoff, the range of possible phase
boundaries is significantly wide but still finite, as long as we keep σmin = 0.088GeV fixed
in the vacuum. This is worth emphasizing since the existence of these ranges, which
strongly depend on the quartic initial condition, show that the results that are usually
obtained in the literature, where the initial condition is fixed at what is often identified
as a model scale, Λmodel, typically in the range 0.5GeV − 1GeV, are also strongly depen-
dent on the choice of the parameter, even if the value of the chiral condensate is fixed in
the vacuum. Furthermore, we crucially observe that the region of obtainable phase dia-
grams, associated to the available portion of the parameter space, reduces significantly
as the UV cutoff Λ is increased, since the two limiting phase boundaries tend to collapse
onto each other. This is exactly what we expected from our previous considerations,
since we observed the same behavior in the available bands of m2

IR in vacuum. We thus
conclude that, in agreement with the previously described behavior of m2

IR, we expect an
unique phase boundary in the limit Λ → ∞. From this then follows that, as we already
guessed, many different quartic initial conditions lead to the same phase boundary in
this limit. Even though we do not expect so, it might be possible to obtain other phase
boundaries, if one would allow for other terms of order higher than the fourth in the ini-
tial conditions, even in the limit Λ → ∞. However, the fact that we found a set of simple
initial conditions at arbitrarily large cutoffs, that lead to a unique, cutoff-independent IR
result, remains correct even if other initial conditions are regarded.

Finally, we conclude this section pointing out that a comparison of outer and inner
phase boundaries for different regulators, in the sense of RG consistency, is not mean-
ingful if we are not able to match the corresponding m2

IR in the vacuum.
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Figure 7.8: Phase boundaries of the QM model obtained with FRG in the LPA for Λ =
10 GeV. The used regulator combinations for the shape functions in the bosonic and
fermionic regulators are Litim-Litim and Smooth Litim-Smooth Litim. For the Litim-
Litim combination, the lower and upper bounds correspond to the lowest and highest
value allowed for m2

IR, respectively, while we plot only the lower bound for the Smooth
Litim-Smooth Litim case.

7.4.3 Cutoff And Regulator Dependence Of Phase Diagram: regulator
comparison

We now turn back to what we defined as the meaningful comparison of the phase dia-
grams of QMM obtained in the LPA for different regulators. To this end we established
in the previous sections that we need to properly initialize the vacuum-RG flows for the
different regulators, such that they start at sufficiently high cutoff scales and lead to lo-
cally similar effective potentials in the IR limit. From Fig.7.4 we know that the minimally
accessible values of m2

IR for the regulator-shape function combinations which use shape
functions for bosons and fermions related by Eq. (7.8), i.e., Litim-Litim, SmoothLitim-
SmoothLitim and Exp2-Exp2, are very similar for Λ = 10GeV. Since minimal m2

IR values
correspond to λUV = 0 and since 10GeV is much greater than the interesting µ, T values,
the purely quadratic initial conditions at Λ = 10GeV can be used to generate the desired
vacuum flows and the associated comparable phase diagrams.
As an example, in Fig. 7.8 we show the phase boundaries obtained using as UV cutoff
Λ = 10 GeV. The used regulator combination for the shape functions in the bosonic and
fermionic regulators are Litim-Litim and Smooth Litim-Smooth Litim. For the Litim-
Litim combination, the lower and upper bounds correspond to the lowest and highest
value allowed for m2

IR, respectively, while we plot only the lower bound for the Smooth
Litim-Smooth Litim case. We clearly see that the Smooth Litim-Smooth Litim phase
boundary is completely included in the limiting phase boundaries obtained in the Litim-
Litim case, and that it almost coincides with the lower bound obtained in the Litim-Litim
case. This was expected, due to the overlap in Fig. 7.4 of the values of m2

IR for the two
combinations of regulator, but it is still absolutely not trivial, since in principle the ini-
tialization of the flow and the flow equations themselves are completely different. So
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Figure 7.9: Range of critical temperatures at µ = 0 obtained changing the UV couplings,
for different regulator-shape combinations and for two different values of the UV cutoff
Λ.

we can consider these results as achievements of our RG-consistent procedure. In fact,
in the vast majority of the literature on the topic, the phase diagrams naively produced
with different regulators and initial conditions are very different, which we can now
interpret as an effect of both the choice of a too low UV cutoff and the absence of an
RG-consistent procedure to determine the initial condition for the flows associated to
different regulators. In order to give a more complete view on the obtained results, in
Fig. 7.9 we show the range of possible critical temperatures at µ = 0 obtained changing
the UV couplings in the accessible region of the parameter space, for different regulator
combinations, namely Litim-Litim, Litim-Exponential and Exponential-Exponential, and
for two different values of the UV cutoff Λ, i.e., Λ = 1 GeV and Λ = 10 GeV. The reason
why we decided to show such a comparison is that in this way we fix one of the external
parameters, µ = 0, and so we can already have a clear idea of the result of the compari-
son without needing to perform the whole phase-diagram calculation. As we observed
both for m2

IR and for the phase boundaries, the range of possible critical temperatures
shrinks significantly as the UV cutoff is increased, up to turn into a single point in the
Λ → ∞ limit.

Naturally, we see a clear overlap for all the considered regulator combinations in
the case of Λ = 1 GeV. However, as we specified several times, we are particularly
interested in the high UV-cutoff region. In this case we can observe that the overlap is
still present and almost complete for the regulator combinations that use same shape
functions, namely LL and EE, while the mixed combination LE is slightly off. From
this we can then conclude that, guided also by our previous results, the resulting phase
boundaries for the regulator combinations we tested are in significantly good agreement,
once the RG-consistent procedure to tune the initial conditions has been used, if the
regulator shape functions are chosen according to the relation Eq. (7.8). On the other
hand, we see that, already at µ = 0, the results obtained with mixed combinations seem
not to agree in the large-Λ limit. This may be related to a mismatch of the fermionic and



7.5. CONCLUSIONS AND OUTLOOK 133

bosonic scales that are singled out by the presence of the regulator and then integrated
during the RG flows, thus further studies can be carried out in this direction.

As a final remark, we can see from Fig.7.8 that the back-bending region is also present
using another regulator-shape choice, signaling that this region may not be neither a
regulator- nor a UV-cutoff artifact. Thus one could investigate whether this effect derives
from the choice of the truncation of it is an established feature of the QM model, which
cannot correctly describe the high-density regime.

7.5 Conclusions and outlook

In this chapter we discussed the quark-meson model in the mean-field and local-potential
approximation within the FRG framework. In particular we analyzed the dependency on
the regulator choice and on the UV cutoff of the IR observables and of the phase diagram
of the model. The main guideline that we followed is the property of RG consistency of
the RG flow and how to exploit it in order to construct external parameter-independent
UV-initial conditions.

In the MF approximation we were able to investigate two different regulator classes,
the standard and the quasi-particle one, besides three different regulator-shape func-
tions. As expected from the one-loop universality property, the results for the phase
diagrams obtained using all the possible regulator-shape and regulator-class combina-
tions perfectly agreed. This solidifies the validity of the procedure we used to determine
the UV-initial condition.

In LPA case we discussed only the standard regulator class because the UV poten-
tial depends non-trivially on the chemical potential, which makes this class of regulator
inconvenient. However, this issue is definitively interesting and deserves further inves-
tigation. Our take on this problem is, as we stated previously and in analogy to the
procedure we followed in the MF approximation, to tune the UV parameters at a suf-
ficiently high UV scale in such a way that the obtained IR results agree with the one
obtained using a standard-class regulator, e.g., the Litim one. Note that this procedure
would need to be performed at a fixed temperature but for every value of the chemical
potential, since the QPR regulator class has no predictive power as µ is concerned. On
the other hand, each of the obtained initial conditions could be used to obtain prediction
in the temperature direction.

Coming back to our main work in the LPA with standard-class regulators, we showed
that, in order to compare different regulators, one has to match the IR potentials, at least
locally close to the minimum, in the vacuum. This match is necessary to find the UV
potential for all the possible values of the external parameters. In contrast to the MF case,
where flowing upwards is allowed due to the easy ODE-structure of the flow equation,
in the LPA this is impossible due to the presence of diffusive contributions which lead
to irreversibility of the flow.

One possible way is then tune the parameters in the UV potential at a sufficiently
high UV-scale such that they lead to the correct IR-vacuum physics. We then choose to
use a quartic potential with two independent couplings.

Due to the structure of the LPA flow equations and to stability constraints, we found
some restrictions on the values of the UV parameters, meaning that not the whole pa-
rameter space is accessible, but just a finite portion of it. In this way we found that there
are bands of allowed values for the IR-curvature mass which, together with the position
of the IR minimum, are the observables that we decided should be fixed in the different
vacuum IR-potentials. This thus leads to the presence of phase boundaries in the phase
diagrams, corresponding to the highest and lowest possible values of the m2

IR. Interest-
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ingly, we found that the bands in m2
IR tend to converge to a single point in the limit

Λ → ∞. We found the same occurrence also in the boundaries of the phase diagram
and in the critical temperatures at µ = 0. We then found an almost perfect agreement
between the LL and SLSL phase diagram, signaling that our comparison procedure was
indeed meaningful. We also found that the results obtained with mixed combinations
seem not to agree in the large-Λ limit. As we already pointed out, this may be due to
a mismatch of the fermionic and bosonic scales that are involved in the regulator, and
thus in the scale-integration during the RG flow. This is then another possible direction
for further studies. One can also try to extent this study to other regulator-shape func-
tions (even if we also tested a polynomial one and the results do not differ significantly
from the presented ones). It would also be extremely interesting to extend our discus-
sion to higher order truncation, in order to systematically investigate how the parameter
dependence is influenced by the choice of the truncation.



Chapter 8
Conclusions

In this thesis we focused on the application of the nonperturbative Functional Renor-
malization Group (FRG), to study the critical behavior of effective field theories, with
the ultimate goal of understanding the critical properties of Quantum Chromodynamics
(QCD) and in particular of the chiral phase transition. We provided a general intro-
duction to QCD and to the Renormalization Group, and then discussed the effective
average action formalism and the Wetterich equation. Due to the functional nature of
the FRG approach and of the Wetterich equation, an ansatz for the effective action is
generally needed. In this work we choose to adopt the local-potential approximation
(LPA), where one stops at zeroth order in the expansion in derivative operators of the
quantum effective action, including only the quantum effective potential.

The key idea used in this work lies in the observation that the FRG flow equation
in the LPA can be cast, for specific models and truncation schemes, in the form of an
advection-diffusion equation [32, 80, 81, 105, 106, 132, 133, 134], possibly with a source
term. This type of equation is typical of viscous hydrodynamics, and therefore, using
a method developed specifically for its resolution constitutes an innovative approach to
the solution of the FRG flow equation. In particular, the Kurganov-Tadmor [142] finite-
volume scheme is adopted and details are presented in App. E. We thus showed the
reliability and the flexibility of this approach by applying it to the study of different
systems.

The first physical case discussed is the well-known O(N) model, where we applied
the hydrodynamic formulation of the FRG flow equation in the LPA truncation to study
the critical behavior of the system and calculate the corresponding critical exponents.
Particular attention is given to the error estimation in the extraction of critical exponents,
which is a needed and not widely explored aspect. The results are well compatible
with others in the literature, obtained with different perturbative and nonperturbative
methods, which validates the procedure.

The second part of the thesis begins with a brief review of the quark-meson model
as a low-energy effective model of QCD, since it exhibits chiral symmetry breaking and
quark-mass generation. The model is studied at finite temperature and quark chem-
ical potential, using the Matsubara formalism. The LPA flow equations are also of
the advection-diffusion type, with an extra source term arising from the inclusion of
fermionic degrees of freedom [105, 106, 170]. We thus adopted the previously described
numerical techniques to derive the phase diagram of the model, which is in agreement
with the one obtained with other techniques in the literature.

We also exploited the numerical advancement to assess one of the most delicate is-
sues which arise when using approximations to solve the FRG flow equation, i.e., the
choice of the regulator. In particular we performed a vacuum-parameter study and used
the RG-consistency requirement to determine the impact of the choice of the regulator

135
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on the physical observables and on the phase diagram of the model. This study is par-
ticularly interesting since it develops in a systematic way a comparison of the results
obtained via different regulators, showing both the importance of the choice of the UV-
cutoff and consequently the fundamental role that the RG consistency, the truncation of
the effective average action and the choice of the regulator play in the determination of
IR observables. In particular, in the MF approximation we found a perfect agreement
of the results obtained within different regulator classes and regulator-shape functions,
as expected from the one-loop universality property. This solidifies the procedure we
used to develop an RG-consistent UV-initial condition. In the LPA case, we studied the
UV parameter space. The latter is not totally accessible and has some boundaries, which
translate into band in the accessible m2

IR and on the phase diagrams obtained for dif-
ferent regulator-shape functions. We also observed that these bands tend to converge
to a single point in the limit Λ → ∞, indicating that one should choose a sufficiently
large UV cutoff in order to get a parameter-independent initial condition and thus a
regulator-independent IR potential. We also found that the LL and SL SL phase diagram
are in significantly good agreement, signaling that our comparison procedure was in-
deed successful. Finally, we found that the results obtained with mixed combinations of
regulator shape functions seem not to agree in the large-Λ limit, due to possible scales
mismatch in the FRG-scale integration.

Finally, the second-last chapter is devoted to the study of thermodynamic geometry
of the quark-meson model, which is based on the interpretation of the parameter space
of the system as a differential manifold. One then can obtain relevant information about
the phase transitions from the Ricci scalar. We studied the chiral crossover investigating
the behavior of the Ricci scalar up to the critical point, featuring a peaking behavior in
the presence of the crossover. We then repeated this analysis in the chiral limit, where
the phase transition is expected to be of second order. Moreover, for low values of the
chemical potential, the Ricci scalar remains negative, indicating that bosonic fluctuations
reduce the system’s ability to completely overcome the fermionic statistical repulsion of
quarks. On the other hand, as the chemical potential increases and approaches the criti-
cal point, we found that R is increased and changes sign, in agreement with mean-field
studies. This geometric technique appears to be particularly interesting, and promising
for new applications, since it can shed light on the (chiral) phase transition of QCD via
quantities which are influenced by higher-order momenta of the thermodynamic poten-
tial, thus allowing us to analyze the transition in a more comprehensive way.

Possible developments of the work performed in this thesis can include the study of
the stability of the obtained results under the improvement of the truncation adopted
in the functional renormalization group approach. For example, the inclusion of the
scale-dependent wave function renormalization factors both for the boson and the quark
fields can be particularly interesting, expecially due to the possible formation of inhomo-
geneous phases at large chemical potential. We begin to assess this issue by conducting
preliminary studies of the O(N) model in the so-called LPA’ approximation, which are
not presented in this thesis, which show that the flow equations can be cast once again
into the form of an advection-diffusion equation for the RG evolution of the effective
potential, which is then coupled to an ODE for the RG evolution of the wave function
renormalization factor. The resulting system of differential equations can then be solved
using the same numerical technique we adopted in this thesis, thus opening the possi-
bility to a detailed study of the impact of the wave function renormalization factor on
the results discussed in this work.

Another possible direction for improvements and further studies can involve the in-
clusion of other condensation channels, as for example diquarks or meson condensates.
This would mean the change of the model with the inclusion of different degrees of
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freedom, which would give us the possibility to analyze different phenomena and tran-
sitions w.r.t. the chiral one, resulting in a wider mapping of the QCD phase diagram.
This was ultimately the goal of this thesis and obviously still is (and will definitely be
for the years that come) the goal of a wide sector of the high-energy physics research.
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Appendix A
Notations and conventions

A.1 Natural units

Throughout this work we used the natural-units convention:

h̄ = 1 , c = 1 , kB = 1 . (A.1)

If one wants to convert back the results to the SI units, one can use the relation

h̄c ≃ 197.32698 MeV · fm , (A.2)

and the value of the Boltzmann constant

kB = 1.380649 × 10−23 m2 · kg · s−2 · K−1 . (A.3)

A.2 Euclidean and Minkowski metric

When performing FRG calculations, we used the Euclidean-metric convention

gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (A.4)

which is obtained from the standard (mostly minus) Minkowski metric

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (A.5)

by performing a Wick rotation t → −iτ.

A.3 Pauli matrices

The Pauli matrices are defined as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.6)

151



152 APPENDIX A. NOTATIONS AND CONVENTIONS

They are Hermitian matrices and fulfill the commutation relations of the SU(2) algebra[σl
2

,
σm

2

]
= i ε lmn

σk
2

. (A.7)

A.4 Dirac matrices

The Euclidean γ matrices are defined as follows

γ0 =

(
0 I2×2

I2×2 0

)
, γk =

(
0 −iσk

iσk 0

)
, k = 1, 2, 3 . (A.8)

where we used the chiral representation. They fulfill the Clifford algebra{
γµ, γν

}
= 2δµνI4×4 , (A.9)

and are Hermitian
(γµ)

† = γµ . (A.10)

Furthermore, we introduce the fifth Euclidean gamma matrix as follows

γ5 = γ0γ1γ2γ3 =

( −I2×2 0
0 I2×2

)
, (A.11)

which fulfils the following properties

(γ5)
† = γ5 ,

{
γµ, γ5

}
= 0 . (A.12)

The corresponding γ matrices in Minkowski spacetime are given by

γM
0 = γE

0 , γM
k = iγE

k , k = 1, 2, 3 , (A.13)

and
γM

5 = iγM
0 γM

1 γM
2 γM

3 = γE
5 . (A.14)

A.5 Fourier transform

The momentum space representation for bosonic fields reads

ϕ(x) =
∫ d4p
(2π4)

ϕ(p) eipx . (A.15)

Analogously, the momentum space representation for fermionic fields reads

Ψ(x) =
∫ d4p
(2π4)

Ψ(p) eipx , (A.16)

Ψ(x) =
∫ d4p
(2π4)

Ψ(p) e−ipx . (A.17)

Finally, the corresponding representations in position space are given by

ϕ(p) =
∫

d4x ϕ(x) e−ipx , (A.18)

Ψ(p) =
∫

d4x Ψ(x) e−ipx , (A.19)

Ψ(p) =
∫

d4x Ψ(p) eipx . (A.20)



Appendix B
Introductory elements to functional
approaches

As the name suggests, functional methods are based on the formulation of QFT which
arises from functional integrals, which are performed over the fields themselves as func-
tions of the space-time variables. For this section, one can also refer to [47, 69, 72, 80,
173, 252, 253, 254]. An analogous description can be used to formulate statistical field
theories, thus we will specify the analogy when new quantities are introduced.

In both quantum and statistical field theory, the main goal is to compute the generating
functional Z [J], or the partition function in the statistical field-theory language,

Z [J] ≡ N
∫

Dφ e−S[φ]+
∫

Jφ , (B.1)

where φ = φ(x) is a generic field, S[φ] is the classical action describing the theory,
J = J(x) corresponds to a space-time dependent external source and

∫
x Jφ =

∫
dDx J(x)φ(x)

represents the source term. N is a normalization constant and it is usually chosen, in
the QFT context, in order to satisfy the condition

Z [J = 0] = 1 . (B.2)

As the name suggests, Z [J] is a functional of the source term J and it is defined via a
functional integral over all the possible field configurations, assuming that a properly
regularized definition of the measure (for instance, with the introduction of a cutoff) is
given. The desired results of functional approaches are the computation of the corre-
lation functions as well as the free energy of the system. That is why the generating
functional plays a crucial role, since it is possible to extract all the n-point functions

⟨φ(x1) · · · φ(xn)⟩ := N
∫
Dφ φ(x1) · · · φ(xn)e−S[φ] (B.3)

by functional differentiation w.r.t. the source J:

⟨φ(x1) · · · φ(xn)⟩ =
1

Z [0]

(
δnZ [J]

δJ(x1) · · · δJ(xn)

)
J=0

. (B.4)

This means that, in principle, once the generating functional is computed, the theory is
solved. This is the idea, in the FRG framework, behind the so-called Polchinski equation,
which we will not cover in this work, but one may refer to [78].

Particularly interesting for us is the 2−point function, or the propagator

G
(
x1, x2) = ⟨φ(x1)φ(x2)⟩ =

1
Z [0]

(
δ2Z [J]

δJ(x1)δJ(x2)

)
J=0

. (B.5)
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The functional derivatives of Z [J] give us the complete set of n-point Green functions,
including both connected and disconnected diagrams. However, in general one focuses
on the calculation of the connected diagrams, disregarding the disconnected contribu-
tions because of redundancy. These diagrams can be obtained moving the focus away
from the partition function Z [J] and introducing the generating functional of connected
correlators W[J], also called Schwinger functional:

W[J] ≡ lnZ [J] = ln
∫

Dφ e−S[φ]+
∫

Jφ . (B.6)

As the name suggests, functional derivatives of W[J] lead to the connected n-point func-
tions:

⟨φ(x1) · · · φ(xn)⟩c =

(
δnW[J]

δJ(x1) · · · δJ(xn)

)
J=0

. (B.7)

In the language of statistical field theory, the analogue of the Schwinger functional is
the Helmoltz free enegy. The previous definition can be easily obtained considering that
W[J] takes into account all the connected diagrams, thus the most generic connected and
disconnected diagram (which is computed starting from Z [J]) can be obtained from

Z [J] =
∞

∑
n=0

1
n!
(W[J])n ≡ eW[J] , (B.8)

where the factor 1/n! takes into account the equivalent permutations.
Analogously to Eq. (B.5), we can then introduce the connected 2-point function or con-

nected propagator

Gc
(
x1, x2) = ⟨φ(x1)φ(x2)⟩c =

(
δ2W[J]

δJ(x1)δJ(x2)

)
J=0

. (B.9)

Going further in the calculation, one can clearly see that W[J] removes the redundant
information on the disconnected diagrams:

Gc
(
x1, x2) =

(
δ2W[J]

δJ(x1)δJ(x2)

)
J=0

=

[
δ

δ J(x1)

(
δ lnZ [J]
δJ(x2)

)]
J=0

=

[
δ

δ J(x1)

(
1

Z [J]
δZ [J]
δJ(x2)

)]
J=0

= − 1
Z [0]2

(
δZ [J]
δJ(x1)

)
J=0

(
δZ [J]
δJ(x2)

)
J=0

+

1
Z [0]

(
δ2Z [J]

δJ(x1)δJ(x2)

)
J=0

= ⟨φ(x1)φ(x2)⟩ − ⟨φ(x1)⟩⟨φ(x2)⟩ . (B.10)

We can now make one step further and introduce the effective action Γ, or the Gibbs
free energy of the system in the language of statistical mechanics, simply via a Legendre
transform of W[J]:

Γ[ϕ] = sup
J

(∫
x

Jϕ − W[J]
)

. (B.11)

Especially for the sake of FRG, it is important to remark that, due to the properties
of the Legendre transform, this definition automatically ensures that Γ is convex.

When introducing the effective action, the Legendre transform changes the depen-
dence of the functional from the source J to its canonically conjugated variable ϕ. This
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means that J in Eq. (B.11) has to be considered as a functional of ϕ, namely Jsup [ϕ] for
which the sup is reached. Jsup [ϕ] can be obtained via the standard definitions used in a
Legendre transform:

δ

δJ(x)

(∫
Jϕ − W[J]

)
= 0 . (B.12)

In particular, this allows us to identify the physical meaning of the new variable ϕ.
Simply computing the derivative in Eq. (B.12), one obtains

ϕ =
δW[J]

δJ
=

1
Z [J]

δZ [J]
δJ

= ⟨φ⟩J , (B.13)

where we used the definitions Eqs. (B.6) and (B.4). This then implies that ϕ represents
the expectation value of the field φ in the presence of the source J. That is the reason
why it is usually referred to as the classical field.

As far as the physical content of the functional is concerned, while W[J] is the gen-
erating functional of the connected diagrams, Γ[ϕ] is the generating functional of the
one-particle irreducible (1PI) proper vertices, which, once again, can be obtained via func-
tional derivatives of Γ[ϕ]:

Γ(n)(x1, · · · xn) =
δnΓ[ϕ]

δϕ(x1) · · · δϕ(xn)
. (B.14)

Thus, all the physical information about the theory is encoded in the vertex functions
and once one calculates Γ the theory is solved.

We now want to justify the name effective action for Γ. If we consider the derivative
of Γ[ϕ] w.r.t. ϕ at J = Jsup[ϕ], using Eqs. (B.11) and (B.13), we obtain

δΓ[ϕ]
δϕ(x)

= −
∫

y

δW[J]
δJ(y)

δJ(y)
δϕ(x)

+
∫

y

δJ(y)
δϕ(x)

ϕ(y) + J(x) = J(x) . (B.15)

Equation (B.15) is the so-called quantum equation of motion, in analogy with the classical
equation of motion

δS[ϕ]
δϕ(x)

= 0 , (B.16)

which is equivalent to (B.15) when replacing Γ with the classical action S and setting the
source term J = 0. Thus, following the parallelism, the effective action Γ[ϕ] contains the
information on the evolution of the field expectation value, also taking into account all
the quantum corrections.

As a final remark for this section, we show a useful identity which links the 2-point
connected propagator and the 2-point vertex functions. To do so we will exploit the
trivial relation

δ(x1 − x2) =
δ J(x1)

δ J(x2)
. (B.17)

Using the quantum equation of motion Eq. (B.15), one can trivially verify that

δJ(x1)

δϕ(x2)
=

δ2Γ[ϕ]
δϕ(x2)δϕ(x1)

= Γ(2)(x1, x2) . (B.18)

Considering now the definition of the classical field Eq.(B.13) and taking a derivative
w.r.t the source J, one obtains
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δϕ(x1)

δJ(x2)
=

δ2W[J]
δJ(x2)δJ(x1)

= Gc(x1, x2) . (B.19)

Thus, the combination of Eqs. (B.17) to (B.19) results in

δ(x1 − x2) =
δ J(x1)

δ J(x2)
=
∫

dDx
δJ(x1)

δϕ(x)
δϕ(x)
δJ(x2)

=
∫

dDx Γ2(x1, x)Gc(x, x2) , (B.20)

which we can write in a more compact form:

I = Γ(2) Gc (B.21)

implying that, in terms of operators

Γ(2) = (Gc)
−1 ⇐⇒ Gc = (Γ(2))−1 . (B.22)

Form Eq.(B.22) one can derive other relations between the n−point vertex functions and
the propagators. As an example we show the one involving Γ3. In particular, one has
just to take a field derivative of Eq. (B.22)

δGc

δϕ
=

δ(Γ(2))−1

δϕ
= −(Γ(2))−1 δΓ(2)

δϕ
(Γ(2))−1 = −Gc Γ3 Gc (B.23)

or, in a more extensive format:

δ

δϕ(x3)
Gc(x1, x2) = −

∫
dDx dDy Gc(x1, x) Γ3(x, x2, y) Gc(y, x3) . (B.24)



Appendix C
Derivation of the Wetterich equation

In this appendix, we will show the simple but slightly tedious steps that one has to
follow in order to derive the Wetterich flow equation. Our starting point will be the
definition of the average effective action Eq. (3.10) and of the scale-dependent classical
average field Eq. (3.12).

In particular, computing the functional derivative of Eq. (3.10) with respect to ϕ and
following analogous steps to the ones we followed in Eq. (B.15) we get:

δΓk[ϕ]

δϕ(x)
= J(x)− (Rkϕ)(x) , (C.1)

which means that the quantum equation of motion receives a contribution from the
regulator. Taking once again the functional derivative of Eq. (C.1) w.r.t. ϕ , we get

δJ(x)
δϕ(y)

=
δ2Γk[ϕ]

δϕ(x)δϕ(y)
+ Rk(x, y) . (C.2)

Now, we easily derive from Eq. (3.12) that:

δϕ(y)
δJ(x′)

=
δ2Wk[J]

δJ(x′)δJ(y)
≡ Gk(y, x′) , (C.3)

where we have defined the connected propagator

Gk(x, y) =
δ2Wk[J]

δJ(y)δJ(x)
= ⟨φ(x)φ(y)⟩ − ⟨φ(x)⟩⟨φ(y)⟩ . (C.4)

Following then the steps described in Eq. (B.20), we obtain the identity

δ(x1 − x2) =
∫

dDx(Γ(2)
k [ϕ] + Rk)(x1, x)Gk(x, x2) . (C.5)

One can express the previous relation in a compact operator form

I = (Γ(2)
k + Rk)Gk , (C.6)

where we have introduced the scale-dependent IPI vertices

Γ(n)
k (x1, · · · xn) =

δnΓk[ϕ]

δϕ(x1) · · · δϕ(xn)
. (C.7)

This implies that the exact scale-dependent propagator is not anymore the mere in-
verse of the two-point function, but receives an extra, scale-dependent mass-like contri-
bution given by the regulator.
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We now have all the ingredients to derive an equation for the t-evolution of Γk. Com-
puting the t derivative of Wk we get:

∂tWk[J] = −1
2

1
Zk[J]

∫
Dφ

∫ dDq
(2π)D φ(−q)∂tRk(q)φ(q)e−S−∆Sk+

∫
Jφ =

= −1
2

∫ dDq
(2π)D ∂tRk(q)

1
Zk[J]

∫
Dφ φ(−q)φ(q)e−S−∆Sk+

∫
Jφ =

= −1
2

∫ dDq
(2π)D ∂tRk(q)

[
⟨φ(−q)φ(q)⟩ − ⟨φ(−q)⟩⟨φ(q)⟩+ ⟨φ(−q)⟩⟨φ(q)⟩

]
=

= −1
2

∫ dDq
(2π)D ∂tRk(q)Gk(q)− ∂t∆Sk[ϕ] . (C.8)

Finally, taking the t-derivative of Γk for fixed ϕ and at J = Jsup we get:

∂tΓk[ϕ] = −∂tWk[J]|ϕ +
∫
(∂t J)ϕ − ∂t∆Sk[ϕ] = −∂tWk[J]|J − ∂t∆Sk[ϕ] =

=
1
2

∫ dDq
(2π)D ∂tRk(q)Gk(q) =

=
1
2

Tr
[
∂tRk(Γ

(2)
k [ϕ] + Rk)

−1
]

, (C.9)

where the trace indicates an integral over momenta and a sum over all internal degrees of
freedom (for example colors for a SU(N) gauge theory). Thus we obtained the Wetterich
equation.



Appendix D
Derivation of the flow equations for
different models

In this appendix, we provide some details on the derivation of the different flow equa-
tions for the two different models we used throughout this work, namely the O(N)
model and the QM model. In both cases we used the LPA as the ansatz for the effective
average action, thus we derive the flow equations for the effective potential.

D.1 O(N) model

Our starting point is the LPA ansatz Eq. (4.3) for the effective average action, which we
rewrite in the Fourier transform

Γk(ρ) =
∫ dd p
(2π)d

{
1
2

ϕa(p)ϕa(−p) p2 + Vk(ρ)

}
. (D.1)

Once the ansatz for the effective action is fixed, we choose the regulator, specifically
the regulator Eq. (4.4) and the Litim shape function Eq. (4.5). We can now proceed
calculating the regularized propagator, or equivalently the two-point vertex function. To
do so, one usually chooses a simple background field

ϕ⃗ = (0, · · · , 0,
√

2ρ) , (D.2)

or equivalently

ϕa =
√

2ρδaN . (D.3)

In this way, it is straightforward to obtain the Fourier transform of the two-point
function

Γ(2)
k,ab(q, p; ρ) ≡ ∂2Γk(ρ)

∂ϕa(p)∂ϕb(q)
= (2π)d δ(d)(q + p)

{[
q2 + V′

k(ρ)
]

δab + 2ρV′′
k (ρ) δaN δbN

}
,

(D.4)

where we use the notation introduced in Eq. (4.7). The indices a, b, N refer to the
O(N) field space, while p and q indicate the momentum dependence. The presence of
δ(d)(q + p), δab, δaN δbN denotes that Γ(2)

k,ab is diagonal both in momentum and in field
spaces. Furthermore, δaN δbN selects a contribution which will appear only for the radial
mode when a = b = N.

The next step is then to add the regulator to the two-point function, which is trivial
since also the regulator Eq. (4.4) is diagonal in both field and momentum spaces:
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Γ(2)
k,ab(q, p; ρ) + Rk(q, p) δa b = (2π)d δ(d)(q + p)×

×
{[

q2 + V′
k(ρ) + Rk(p, q)

]
δab + 2ρV′′

k (ρ) δaN δbN

}
. (D.5)

We now insert the general definition of the regulator Eq.(4.4) into Eq.(D.5) and invert
it, obtaining

[Γ(2)
k,ab(q, p; ρ) + Rk(q, p) δa b]

−1 = (2π)d δ(d)(q + p)×

×



1
q2[1+rk(q)]+V′

k(ρ)
0 0 · · · 0 0 0

0 1
q2[1+rk(q)]+V′

k(ρ)
0 · · · 0 0 0

... 0 . . . ...
...

0 0 0 · · · 0 1
q2[1+rk(q)]+V′

k(ρ)
0

0 0 0 · · · 0 0 1
q2[1+rk(q)]+V′

k(ρ)+2ρV′′
k (ρ)


,

(D.6)

which is an N × N diagonal square matrix. Now the computation of the trace in field
space is trivial and inserting Eq. (D.6) into the flow equation Eq. (3.13) and carrying out
the trace up to the momentum integral one obtains:

∂kVk(ρ) =
1
2

∫
q

[(
N − 1

q2 [1 + rk(q)] + V′
k(ρ)

+
1

q2 [1 + rk(q)] + V′
k(ρ) + 2ρV′′

k (ρ)

)
q2∂krk(q)

]
,

(D.7)

where

∫
q
≡
∫ dD q

(2π)D . (D.8)

Considering the Litim shape function Eq. (4.5), we calculate

∂k rk(q) = ∂k

[(
k2

q2 − 1
)

Θ
(

k2

q2 − 1
)]

=

(
2 k
q2

)
Θ
(

k2

q2 − 1
)

, (D.9)

where we neglected the singular Dirac-δ contribution since its coefficient vanishes when
the condition of the δ is satisfied.

Finally, inserting Eq. (4.5) and Eq. (D.9) into Eq. (D.7), the momentum integration
becomes trivial and we arrive at the flow equation for the effective potential in the LPA:

∂kVk(ρ) = Ad kd+1
(

N − 1
k2 + V′

k(t, ρ)
+

1
k2 + V′

k(t, ρ) + 2ρV′′
k (t, ρ)

)
, (D.10)

with the factor Ad defined in Eq. (4.8).
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D.2 Quark-Meson model

D.2.1 Bosonic contribution

Due to the similarity of the bosonic sector of the QM model with the O(N) model, and
since linear terms in the bosonic field do not contribute to the flow equation, we can
actually adapt most of the calculations we performed in the previous section to the QM-
model case. Nevertheless, we now have to derive the bosonic contribution to the flow
equation at finite temperature and density. In particular, as we discussed in the main
text, we used the flow equation in the (3 + 1)-dimensional case, where the imaginary
temporal dimension has been compactified. This implies that we can use Eq.(D.7) as our
starting point, but we have to replace the D-dimensional integral with a combination of
a discrete Matsubara sum and a (D − 1)-dimensional momentum integral:∫ dD q

(2π)D → T ∑
n∈Z

∫ dD−1 q
(2π)D−1 . (D.11)

We also have to specify the dimension, D = 4, such that we correctly capture the
aforementioned (3 + 1)-dimensional case. This implies that, in order to explicitly per-
form the Matsubara summation, we can use a three-dimensional regulator which does
not regulate the 0th component of the 4-momentum q involved in the integration. Thus,
we use the regulator function defined in Eq. (5.88). Furthermore, we set the number
of bosons, N = 4, such that the model correctly takes into account the contributions
of the 3 pions and the radial sigma meson. Finally, in order to be consistent with the
notation used throughout this work, we switch to the RG-time notation t instead of the
RG-momentum scale k, and use Ut instead of Vk to indicate the effective potential. With
these specifications, we can adjust Eq. (D.7) to the finite-temperature QM-model bosonic
contribution and obtain:

∂tUt(ρ)
∣∣∣
Bosons

=
1
2

T ∑
n∈Z

∫ d3 q
(2π)3

[(
3

q2
0 + q2

[
1 + rB

t (q)
]
+ U′

t(ρ)
+

+
1

q2
0 + q2

[
1 + rB

t (q)
]
+ Ut(ρ) + 2ρU′′

t (ρ)

)
q2∂krt(q)

]
.

(D.12)

As a final preliminary step, we switch from the notation involving the theory invari-
ant ρ to the σ-field notation, and we use the definitions of the particle energies given by
Eqs. (5.90) and (5.91), thus obtaining:

∂tUt(σ)
∣∣∣
Bosons

=
1
2

T ∑
n∈Z

∫ d3 q
(2π)3

[(
3

q2
0 + E2

k,π(q)
+

1
q2

0 + E2
k,σ(q)

)
q2∂krt(q)

]
,

(D.13)

where
q0 = ωB

n (D.14)

and ωB
n = 2π n T are the discrete bosonic Matsubara frequencies.

The next step is to perform the Matsubara sum. In this case, it is possible to do so
analytically, due to the simple dependence of Eq. (D.13) on the Matsubara frequencies
ωB

n . In particular, we can exploit the textbook result
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T ∑
n∈Z

(
1

(ωB
n )

2 + E2

)
=

1
2 E

[
1 + 2 nB

(
E
T

)]
=

1
2 E

coth
(

E
2T

)
, (D.15)

where
nB(x) =

1
ex − 1

(D.16)

is the Bose-Einstein distribution and we used the identity

nB(x) =
1
2

[
coth

(x
2

)
− 1
]

. (D.17)

Finally, using the result in Eq. (D.15), we obtain the bosonic contribution to the flow
equation of the QM model in the LPA

∂tUt(σ)
∣∣∣
Bosons

=
1

8π2

∫ ∞

0
d q q4 ∂trt(q)

{
3

Ek,π(q)
coth

(
Ek,π(q)

2T

)
+

1
Ek,σ(q)

coth
(

Ek,σ(q)
2T

)}
,

(D.18)

where q = |q|.
We point out that, at this stage, no further calculations can be performed unless

the regulator shape function is specified. If we then choose the Litim shape function
Eq. (5.110), the momentum integral in Eq. (D.18) can be easily performed analytically
and leads to

∂tUt(σ)
∣∣∣Litim

Bosons
= − k5

12π2

[
3

Ek,π
coth

(
Ek,π

2T

)
+

1
Ek,σ

coth
(

Ek,σ

2T

)]
. (D.19)

where the energies for the pions and for the sigma meson are defined in Eq. (5.115).

D.2.2 Fermionic contribution

As for the previous sections, we start by considering the 4-dimensional 0-temperature
equivalent of the LPA ansatz Eq. (5.87) for the effective average action

Γt[Ψ̄, Ψ, ϕ] =
∫

d4x
{

ψ̄
(
γµ∂µ + h(σ + iγ5τ⃗ · π⃗)− µγ0

)
ψ

+
1
2
(∂µσ)2 +

1
2
(∂µπ⃗)2 + Ut(σ

2 + π⃗2)− cσ
}

.

(D.20)

We now focus on the fermionic sector of the effective average action ΓF
t and we rewrite

it into the Fourier transform

ΓF
t [Ψ̄, Ψ, ϕ] =

∫ d4q
(2π)4

{
ψ̄(−p)

(
iγµ pµ + h(σ + iγ5τ⃗ · π⃗)− µγ0

)
ψ(p)

}
. (D.21)

The next step is the calculation of the two-point function:

Γ(2)
t (q, p; Ψ̄, Ψ, ϕ) ≡ ∂2ΓF

t (Ψ̄, Ψ, ϕ)

∂Ψ(p)∂Ψ̄(q)
= (2π)4 δ(4)(q + p)

[
iγµ pµ + h(σ + iγ5τ⃗ · π⃗)− µγ0

]
,

(D.22)
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which is diagonal both in the fermionic field space and in momentum space. We
can also point out that the fermionic two-point function is independent of the effective
potential. This has as a consequence the fact that the whole fermionic contribution is
independent of the effective potential, as we pointed out in the main text.

We now can set the bosonic fields to their expectation value:

⟨σ⟩ = σ ̸= 0 , ⟨π⃗⟩ = 0 . (D.23)

Inserting Eq. (D.23) into the two-point function Eq. (D.22) we obtain:

Γ(2)
t (q, p; Ψ̄, Ψ, ϕ) = (2π)4 δ(4)(q + p)

[
iγµ pµ + hσ − µγ0

]
.

(D.24)

Adding the regulator function Eq. (5.93) to Eq. (D.24) the inversion is trivial and it
leads to

∂tUt(σ)
∣∣∣
Fermions

= −12Nc

∫ d4 q
(2π)4

q2 [1 + rF
t ((q)

]
∂trF

t (q)
(q0 + iµ)2 + E2

k Ψ(q)
, (D.25)

where we also performed the trace in Dirac, color and flavor space, and the definition of
Ek Ψ is given in Eq. (5.97).

We now introduce the finite-temperature equation via the standard Matsubara for-
malism for fermions: ∫ d4 q

(2π)4 → T ∑
n∈Z

∫ d3 q
(2π)3 . (D.26)

The fermionic fields now satisfy the anti-periodic boundary conditions Eqs.(5.47) and (5.48)
in the compactified Euclidean direction and the fermionic Matsubara frequencies are

q0 = ωF
n = (2n + 1)πT . (D.27)

Once again, we can use standard procedures to evaluate the Matsubara sum analyti-
cally. In particular, we use the known result

T ∑
n∈Z

(
1

(ω
f
n + iµ)2 + E2

)
=

1
2 E

[
1 − nF

(
E − µ

T

)
− nF

(
E + µ

T

)]
= (D.28)

=
1

4 E

[
tanh

(
E − µ

2T

)
+ tanh

(
E + µ

2T

)]
, (D.29)

where nF(x) is the Fermi-Dirac distribution defined in Eq.(5.96) and we used the identity

nF(x) =
1
2

[
1 − tanh

(x
2

)]
(D.30)

Finally, combining Eq.(D.25) with the finite-temperature definition Eq.(D.26) and per-
forming the Matsubara sum according to Eq.(D.28), we obtain the fermionic contribution
to the flow equation of the QM in the LPA:

∂tUt(σ)
∣∣∣
Fermions

= − Nc

4π2

∫ ∞

0
d q q4

{(
1 + rF

t (q)
)

∂trF
t (q)

1
Ek,Ψ(q)

×

×
[

1 − nF

(
Ek,Ψ(q) + µ

T

)
− nF

(
Ek,Ψ(q)− µ

T

)]}
, (D.31)
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where q = |q|.
If we now specify the shape function for the regulator and use the Litim one defined

in Eq. (5.111), the momentum integration becomes trivial and we obtain

∂tUt(σ)
∣∣∣Litim

Fermions
= Nc

k5

3π2
1

Ek,Ψ

[
tanh

(
Ek,Ψ − µ

2T

)
+ tanh

(
Ek,Ψ + µ

2T

)]
, (D.32)

where we used Eq. (D.29) and the energy of the fermions is defined in Eq. (5.117).

D.2.3 Fermi-surface regulator

In this section we consider the flow equation which arises from a different class of reg-
ulators for the fermions, i.e., the Fermi surface or quasi-particle regulator, discussed in
Ref. [87]. In the following discussion we will focus on the chiral limit case, neglecting the
finite current quark mass. For the moment we also neglect the Yukawa coupling with
the mesons, which we discussed leads to the dynamically generated quark mass via SSB,
and we will reintroduce it later after some considerations.

First of all, we introduce the following projectors

P± =
1
2i

(
iγ0 ∓ /⃗p

| p⃗|

)
γ0 , (D.33)

which project onto positive and negative energy solutions of the Dirac equation, thus
onto particle and antiparticle states [255, 256]. The projectors, by construction, fulfill the
following useful identities:

1.
P±(− p⃗) = P∓( p⃗) , (D.34)

in agreement with the particle/antiparticle state projection;

2.
P+P+ = P+ P−P− = P− , (D.35)

which implies that, once a projection has been performed, the application of an-
other projection of the same sign results in the identity;

3.
P+P− = P−P+ = 0 , (D.36)

signaling that, once a projection onto a particle (anti-particle) state has been per-
formed, a projection onto an antiparticle (particle) state is vanishing;

4.
P+ + P− = I (D.37)

since particle and anti-particle states give a complete solution to the Dirac equation;

5.
TrP± = 2 (D.38)

which is a consequence of the fact that free Dirac equation has two solutions with
positive energy and two solutions with negative energy;
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6. other useful properties are:

P±γ0 = γ0P∓ (D.39)

and
{P±, γ0} = γ0 . (D.40)

Once the projectors have been introduced, we consider the kinetic operator of the
fermionic action in momentum space, which can be read from Eq. (D.21):

T = iγ0p0 + i⃗/p − µγ0 . (D.41)

Using the projectors we defined, we can now rewrite the kinetic operator as

T = C−P−γ0 + C+P+γ0 , (D.42)

where we defined

C± = ip0 + (−µ ± | p⃗|) . (D.43)

In order to understand the physical meaning of C±, we now want to invert the kinetic
operator T. This is straightforward using the properties Eqs. (D.34)-(D.40):

T−1 = C−1
− P−γ0 + C−1

+ P+γ0 , (D.44)

This quantity is the one that appears in the propagator and thus in the computation
of loop diagrams. In this way we can clearly see the physical meaning of C±, since the
Euclidean inverse propagator T−1 exhibits poles at p0 = iE± where

E± = ± | p⃗| − µ , (D.45)

which in Minkowski spacetime, become poles at p0 = E±. The poles of the inverse
propagator give the dispersion relations of the particles and anti particles. Due to the
presence the chemical potential then, C± contain information about the energy of the
particles and anti-particles involved, with respect to the Fermi surface, given by | p⃗| = µ.

Coming back to the free Euclidean fermionic action in Fourier space

SΨ̄Ψ =
∫ d4p

(2π)4 Ψ̄(−p)T Ψ(p) (D.46)

and using the decomposition Eq. (D.42), we can observe that the action splits into two
contributions∫ d4p

(2π)4 Ψ̄(−p)C−P−γ0 Ψ(p) ,
∫ d4p

(2π)4 Ψ̄(−p)C+P+γ0 Ψ(p) . (D.47)

One can observe that these two pieces are not independently invariant under the
operation of charge conjugation

Ψ → Ψc = CΨ̄T , (D.48)

Ψ̄ → Ψ̄c = ΨT , (D.49)

where C = γ2γ0 is the charge conjugation operator and the superscript T denotes the
transpose of the Dirac spinors. However, in the case of vanishing chemical potential
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µ = 0, SΨ̄Ψ is invariant under charge conjugation, since the two terms in Eq.(D.47) trans-
form into each other under this transformation. This clearly derives from the fact that
by constructions P± project onto the particle and antiparticle contributions respectively.
Obviously, the charge conjugation symmetry is then explicitly broken by the presence of
a finite chemical potential.

On the other hand both terms are independently invariant under chiral transforma-
tion, as expected.

As far as the inversion of T is considered, one has to notice that the term involving
C− is always invertible, since C− ̸= 0 for any finite µ, while this does not hold for
the C+ one, since it vanishes at the Fermi surface, i.e., for p0 = 0 and | p⃗| = µ. This
point corresponds to a singular one which, in the case of vanishing chemical potential, is
located at vanishing four-momentum and usually can be regulated via the insertion of a
mass-like regulator. If the chemical potential is non-vanishing, this divergence is cured,
but the one associated to the Fermi surface is still present. That is why we now want
to construct of a class of regulators which can handle this singularity dealing properly
with the dispersion relations of the fermions.

As a first step, we can consider the decomposition Eq.(D.42), which, by construction,
distinguishes between the positive and negative energy contributions to the kinetic oper-
ator T, relatively to the Fermi surface. We can now utilize this decomposition in order to
regularize the particle and anti-particle modes separately. A possible class of regulators
which can be used for this purpose can be expressed as follows:

Rk,F(p, µ) = (−µ − | p⃗|)r−P−γ0 + (−µ + | p⃗|)r+P+γ0 , (D.50)

where

r± = r(x±) (D.51)

are generic dimensionless regulator shape functions which depend on the dimensionless
variables

x±k2 = (−µ ± | p⃗|)2 , (D.52)

which represent the dimensionless squared energies relative to the Fermi surface for
particles and anti-particles.

We observe that we constructed this regulators class using the same functional form
for r±, in such a way that the two regularizations for particles and anti-particles coincide
when considering a vanishing chemical potential, in order not to explicitly break the
charge conjugation symmetry in this case. As a final constrain we also imposed that
the regulator does not break chiral symmetry. On the other hand, the regulator class
we defined breaks the Silver-Blaze symmetry by construction. However, this symmetry
breaking is necessary in a derivative expansion of the effective action in order to properly
deal with the presence of Fermi-surface divergences and the related BCS scaling (see
Ref. [87] for more details). Analogously to the constraints we defined in Eq. (3.8), r±
should fulfill the following requirements:

lim
x±→0

√
x± r± > 0 , (D.53)

which implements the regularization of fluctuations around the Fermi surface, as we
will see in more detail soon, and
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lim
x±→∞

r± = 0 , (D.54)

which implies that the full effective action is recovered when k → 0.
We also require that

1 + r± ≥ 0 ∀x± (D.55)

in order not to introduce unphysical divergences in the calculations of loop diagrams.
We can now understand how the regulator acts by introducing the regularized kinetic

operator

T + Rk,F = C̄−P−γ0 + C̄+P+γ0 , (D.56)

where we defined

C̄± = ip0 + (−µ ± | p⃗|) (1 + r±) , (D.57)

which are nothing but the regularized quasi-particle dispersion relations. As for
Eq. (D.44), the inversion of Eq. (D.56) is straightforward using the properties of the pro-
jectors P±, and results in

(T + Rk,F)
−1 = C̄−1

− P−γ0 + C̄−1
+ P+γ0 . (D.58)

We now consider the implications of Eq. (D.53), and in particular from it we deduce
that

r(x+) =
k

|µ − | p⃗|| +O (|µ − | p⃗||) . (D.59)

We can notice that, after the introduction of the regulator, the Fermi surface | p⃗| = µ

does not represent a singular point for the inverse propagator anymore. In fact, if we
consider the particle modes, whose dispersion relation can be read from

R(C̄+) = (| p⃗| − µ) (1 + r±) , (D.60)

we can deduce from Eq. (D.59) that, close to the Fermi surface,

R(C̄+) = k sgn (| p⃗| − µ) + · · · . (D.61)

This implies that the regulator effectively introduces a gap of order k for these modes
and that, by construction, this gap vanishes in the limit k → 0, implying that fluctuations
are integrated out around the Fermi surface. Furthermore, R(C+) is not positive definite
but changes sign at the Fermi surface, implying that is discontinuous at | p⃗| = µ. This
can be seen in Fig. D.1, where we show R(C+) as a function of p/µ, where p = | p⃗|, for
various values of k/µ as obtained using the Litim shape function Eq. (5.111) (solid lines)
and the polynomial shape function

r(x±) = −1 +
1√

1 −
(

∑N
n=0

1
n! x

n
±
)−1

(N > 2) (D.62)

for N = 4 (dashed lines).
We note that the negative-energy modes associated with C̄− are regularized by the

presence of the chemical potential, such that

R(C̄−) < 0 (D.63)
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Figure D.1: R(C̄+) as a function of p/µ for various values of k/µ as obtained from
employing the litim shape function Eq. (5.111) (solid lines) and the polynomial shape
function Eq. (D.62) for N = 4 (dashed lines). Plot taken from [87].

even in the limit k → 0.
As emphasized at the beginning of this section, up to this point we discussed the case

of massless fermions. However, in the Quark-Meson model, fermions do have a mass,
hσ, which is dynamically generated by the Yukawa coupling with the σ field and its
non-vanishing expectation value. Indeed the kinetic operator T includes also the mass
term

T = iγ0p0 + i⃗/p − µγ0 + hσ . (D.64)

This implies that the Fermi surface gets deformed by the presence of the mass,
namely it is now located at

µ = ±ε , (D.65)

with
ε =

√
p⃗2 + (hσ)2 . (D.66)

In Ref. [87] a generalization to the massive fermions case of the approach we de-
scribed so far is presented. However, following similar steps to the previous ones, one
has to introduce a regulator which explicitly depends on the mass term, since the Fermi
surface divergence to regularized has been shifted. This approach works then perfectly
fine in the context of a bare current-quark mass, but the issue has to be treated more
carefully in presence of SSB. This is such since if we naively consider as a mass term hσ

and and insert it into the regulator, this would then result in a field dependent regulator.
This certainly imply a non-trivial modification of the Wetterich equation and thus it is
still object of an ongoing research.

In order to avoid this issue, we decided to use the previously described chiral regu-
lator, which does not contain the mass term. As previously emphasized, this regulator
does not regularize the true Fermi surface, but since the Quark meson model does not
involve Fermi surface dynamics (such as, for example, the formation of Cooper pairs)
we can still use the chiral quasi-particle regulator as another possibility to investigate
the model via the FRG.

As for Eq. (D.42), we use the projectors P± to rewrite the kinetic operator Eq. (D.64)
as

T = C−P−γ0 + C+P+γ0 + hσ , (D.67)
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where C± are the massless dispersion relations defined in Eq. (D.43).
We now proceed to the regularization of the kinetic operator by adding the regulator

defined in Eq. (D.50) to it:

T + Rk,F = C̄−P−γ0 + C̄+P+γ0 + hσ , (D.68)

where C̄± are the regularized dispersion relations introduced in Eq.(D.57). The inversion
of Eq. (D.68) is once again pretty straightforward using the properties of the projectors
P±, and it leads to:

(T + Rk,F)
−1 =

C̄−P−γ0 + C̄+P+γ0 − hσ

C̄+C̄− − (hσ)2 (D.69)

Since T = Γ2
Ψ̄Ψ, the final ingredient we need for the computation of the FRG flow

equation is ∂tRk,F, which trivially results in

∂t Rk,F(p, µ) = (−µ − | p⃗|)(∂tr−)P−γ0 + (−µ + | p⃗|)(∂tr+)P+γ0 . (D.70)

Thus, we now have to evaluate the quantity

−Tr[(∂t Rk,F)(T + Rk,F)
−1] , (D.71)

where the trace has to be intended in momentum (and Matsubara) space and in Dirac,
color and flavor spaces. It is convenient to evaluate the Dirac trace first, since some terms
will drop out. In particular we can use the properties Eqs. (D.34)-(D.40), together with

Tr(P±γ0) = 0 , (D.72)

to obtain the following flow equation in the mean-field approximation

∂tUk(σ) = −2TNcN f

∫ d3 p⃗
(2π)3

∞

∑
n=−∞

(−µ − | p⃗|)(∂tr+)C̄− + (−µ + | p⃗|)(∂tr−)C̄+

C̄−C̄+ − (hσ)2 , (D.73)

where the sum over n has to be intended as over the fermionic Matsubara frequencies
p0 = νn = (2n + 1)πT. Eq. (D.73) can be easily rewritten as

∂tUk(σ) = −2TNcN f

∫ d3 p⃗
(2π)3

∞

∑
n=−∞

∂t ln
(

C̄−C̄+ − (hσ)2
)

. (D.74)

In order to perform the Matsubara sum analytically, since we are interested in the
RG flow of ut(σ) = ∂σUk(σ), we take the σ-derivative of both sides of Eq. (D.74), thus
obtaining

∂tut(σ) = 4TNcN f (h2σ)
∫ d3 p⃗

(2π)3

∞

∑
n=−∞

∂t

[
1

C̄−C̄+ − (hσ)2

]
. (D.75)

We now introduce the following quantities:

ω± = (µ ∓ | p⃗|)(1 + r±) . (D.76)

In this way we can rewrite
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C̄−C̄+ − (hσ)2 = (iνn − ω+)(iνn − ω−)− (hσ)2 =

= −ν2 − iν(ω+ + ω−) + ω+ω− − (hσ)2 =

= −
[(

ν + i
ω+ + ω−

2

)2

+

(
ω+ − ω−

2

)2

+ (hσ)2

]
= −

[
(ν + iµ̃)2 + Ẽ2

]
, (D.77)

where we defined

Ẽ =

√(
ω+ − ω−

2

)2

+ h2σ2 , µ̃ =
ω+ + ω−

2
. (D.78)

These two quantities play the role of an effective regulated quasi-particle energy and
chemical potential, respectively. In fact, when r± = 0, Ẽ = | p⃗|, which is the energy of a
massless particle, and µ̃ = µ.

Substituting Eq. (D.77) into Eq. (D.75), we obtain

∂tut(σ) = −4NcN f (h2σ)∂t

(∫ d3 p⃗
(2π)3 T

∞

∑
n=−∞

1
(ν + iµ̃)2 + Ẽ2

)
. (D.79)

In this way, we can use Eq. (D.28) to perform the sum over the Masubara frequencies
analytically, thus obtaining

∂tut(σ) = −∂t

(
4NcN f (h2σ)

∫ d3p
(2π)3

1
2Ẽ

[
1 − n f

(
Ẽ − µ̃

T

)
− n f

(
Ẽ + µ̃

T

)])
, (D.80)

which is the flow equation we obtain when choosing the quasi-particle regulator class.
The final flow equation depends then on the choice of the specific regulator shape func-
tions r±, which are contained in the definitions of Ẽ and µ̃.



Appendix E
Finite-Volume schemes and conservation
laws

E.1 Conservation laws and advection-diffusion equations

Conservation laws and advection-diffusion equations are of great practical importance
since they govern a variety of physical phenomena that appear in fluid mechanics, as-
trophysics, groundwater flow, meteorology, semiconductors, traffic flow, financial mod-
eling, and several other areas [169, 257, 258, 259, 260, 261]. Due to their wide range of
applications, the construction of approximate solutions for nonlinear conservation laws
and the related advection-diffusion equations is a very relevant task.

Let us now try to understand the physical meaning of this kind of equations. In
particular, let us consider a generic conserved quantity Q enclosed in a volume Ω ⊆ Rn.
We define the density u(x, t) of the conserved quantity as

u(x, t) =
conserved quantity

unit volume
, (E.1)

where, in general, u depends on time t and on the position x ∈ Ω ⊆ Rn. This means
that the total amount of the conserved quantity inside the volume Ω is given by

Q =
∫

Ω
u(x, t) dV . (E.2)

The easiest conservation law possible is given by

d
dt

∫
Ω

u(x, t) dV = 0 , (E.3)

which represents the static limit, according to which inside the volume Ω there is no
modification in time of Q, which is thus trivially conserved.

Let us now consider a more realistic scenario, the one in which there is a vector flux
f [u(x, t), x, t] of the conserved quantity through the boundary of the domain ∂Ω. In this
case the conservation law is given by

d
dt

∫
Ω

u(x, t) dV = −
∫

∂Ω
f [u(x, t), x, t] · n̂ dσ , (E.4)

where n̂ is the normal vector to the boundary of the domain, which is directed towards
the outside of the domain. This explains why we put the minus sign on the r.h.s., since
if we have an outflow ( f · n̂ > 0) the value of Q inside Ω decreases and vice versa.
Eq. (E.4) reduces to the trivial conservation law Eq. (E.3) assuming that the volume Ω
extends to all the Rn space, and that the flux f vanishes at ∂Rn.
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The form in which we wrote Eq. (E.4) is the so-called integral or global form of the conser-
vation law.
Now we want to introduce also the differential or local form. To do so, we just use Gauss’s
theorem on the flux integral:∫

∂Ω
f [u(x, t), x, t] · n̂ dσ =

∫
Ω
∇ · f [u(x, t), x, t] dV . (E.5)

Exploiting now the Reynolds transport theorem we can write∫
Ω

(
∂u(x, t)

∂t
+∇ · f [u(x, t), x, t]

)
dV = 0 (E.6)

and if this holds ∀Ω we can choose in the fluid, then we can write Eq. (E.4) in the local
form:

∂

∂t
u(x, t) +∇ · f [u(x, t), x, t] = 0 . (E.7)

This will be the starting point of all our further investigations.
A straightforward generalization of Eq. (E.4) and Eq. (E.7) may include a dissipation
term, leading to the so-called advection-diffusion equations, which, in the global form,
are represented by

d
dt

∫
Ω

u(x, t) dV =
∫

∂Ω

(
q[u(x, t),∇u(x, t), x, t]− f [u(x, t), x, t]

)
· n̂ dσ (E.8)

or equivalently in the local form

∂

∂t
u(x, t) +∇ · f [u(x, t), x, t] = ∇ · q[u(x, t),∇u(x, t), x, t] , (E.9)

where q[u(x, t),∇u(x, t), x, t] is a dissipation or diffusion flux.
For the sake of simplicity, we will now specify our further studies in one spatial

dimension, such that Ω reduces to an interval and ∂Ω is just given by the endpoints
of the interval. Then we will deal with the 1D version of the conservation law and the
advection-diffusion equation:

∂

∂t
u(x, t) +

∂

∂x
f [u(x, t), x, t] = 0 , (E.10)

∂

∂t
u(x, t) +

∂

∂x
f [u(x, t), x, t] =

∂

∂x
q[u(x, t), ux(x, t), x, t] . (E.11)

However, higher-dimensional generalizations are straightforward. The formulation Eq.(E.11)
is also-called conservative form of the conservation law. If one explicitly calculates the x-
derivatives, one obtains the so-called primitive form of the PDE

∂

∂t
u(x, t) +

∂

∂x
f [u(x, t), x, t] +

∂

∂u
f [u(x, t), x, t]

∂u(x, t)
∂x

=
∂

∂x
q[u(x, t), ux(x, t), x, t] +

(E.12)

+
∂

∂u
q[u(x, t), ux(x, t), x, t]

∂u(x, t)
∂x

+
∂

∂ux
q[u(x, t), ux(x, t), x, t]

∂ux(x, t)
∂x

,

(E.13)

which, if the flux f does not depend explicitly on x and q does not depend explicitly on
x and on u, takes a much more familiar form

∂

∂t
u(x, t) +

∂

∂u
f [u(x, t), t]

∂u(x, t)
∂x

=
∂

∂ux
q[ux(x, t), t]

∂ux(x, t)
∂x

. (E.14)
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E.2 Finite-Volume (FV) schemes

Finite-Volume Methods (FVM) represent one of the possible tools available to numer-
ically solve partial differential equations and in particular conservation laws. As the
name suggests, this class of methods transform a PDE into a system of algebraic equa-
tions by the use of the average of the solution inside some portions of the computational
domain. One of its main advantages is to be well suited to deal with functions which
present discontinuities, since in this case the derivative of the solution simply does not
exist and finite-difference (FD) methods produce an infinite truncation error. Let us try
to outline the key steps to build a FV scheme.

Figure E.1: Visual description of FV schemes [261].

The main feature of all numerical FV methods is the use of the so-called control
volumes (in space and time), which are the elements in which the computational domain
is discretized, such that all the domain is covered by the control volumes. In order to
keep the discussion as simple as possible but retaining the general idea, we will focus
on the 2D case (1 spatial + 1 temporal dimension), but the generalization to the higher-
dimensional case is straightforward. In order to fix the notation, we call V the total 2D
volume, divided into the total spatial volume I (which in our case is simply an interval)
and the time domain T = [tinitial, t f inal], such that V = I × T. Then V is discretized in
the control volumes Ix × [tn, tn + ∆t], where |Ix| = |I|/Nx is the spatial control volume
of width ∆x centered around the point x obtained sampling I with Nx grid points, and
tn is the n-th point in which T is discretized.

The next step to build a FVM is to consider the average ū of the solution u in the
interval Ix:

ū(x, t) =
1
|Ix|

∫
Ix

u(ξ, t) dξ, Ix =

{
ξ : |ξ − x| ≤ ∆x

2

}
. (E.15)

Once we defined the averages, we discretize the partial differential equations, transform-
ing them into algebraic equations by integrating them over each discrete element. Thus,
we integrate (E.7) over the control volume Ix × [tn, tn +∆t] and we get the exact equation:

ū(x, tn + ∆t) = ū(x, tn)− 1
∆x

[∫ tn+∆t

tn
f
(

u
(

x +
∆x
2

, τ

))
dτ

−
∫ tn+∆t

tn
f
(

u
(

x − ∆x
2

, τ

))
dτ

]
. (E.16)

Computing Eq. (E.16) at each grid point x = xj, at each time step tn we obtain the
algebraic system for the unknown quantities ūn+1

j = ū(xj, tn + ∆t), assuming that we
already know the solution at the previous time step ūn

j = ū(xj, tn).
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From Eq. (E.16) we can notice one of the main features of FVM: an evaluation of the
fluxes at the volume interfaces is needed. We will denote with xj the grid points of the
mesh, located in the middle of the control interval, and with xj+1/2 = xj + ∆x/2 the cell
interfaces where the fluxes have to be evaluated. Since in FVM the information on the
solution of the PDE is stored in the cell averages, one has no access to the value of the
solution at the cell interface, which we will label as ūn

j+1/2 = ū(xj + ∆x/2, tn). Thus, in
this case a reconstruction of ūn

j+1/2 is needed, as a function of the cell averages ūn
j . The

way in which this reconstruction is performed differentiates the various FVM. In this
work we will focus on the central schemes.

A key feature, that makes also FV schemes so often used, is that, in the purely ad-
vective case, no conserved quantity is lost, since the flux that enters into a given volume
through an interface is the same as the one that leaves the adjacent volume. This implies
that FVM retain the property of being conservative.

E.3 LxF and NT central schemes

As we discussed before, the different FV schemes differ depending both on how Eq.(E.16)
is sampled and on how the value of the function is reconstructed at the cell interface.
Central schemes are a class of schemes which are based on sampling Eq. (E.16) at the
interfacing breakpoints, x = xj±1/2, which yields

ūn+1
j+1/2 = ūn

j+1/2 −
1

∆x

[∫ t+∆t

t
f (uj+1, τ)dτ −

∫ t+∆t

t
f (uj, τ)dτ

]
. (E.17)

Figure E.2: Example of a central scheme with linear reconstruction of the solution to the
cell center, where the reconstructed solution is discontinuous. Figure taken from [142].

We now assume that we have already computed an approximation to the solution at
time level t = tn as piecewise linear approximation û(x, tn) of the form
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u(x, tn) ≈ û(x, tn) = ∑
j
[ūn

j + (ux)
n
j (x − xj)]I[xj−1/2, xj+1/2]

, (E.18)

where

I[xj−1/2, xj+1/2]
=


1 i f xj−1/2 ≤ x ≤ xj+1/2

0 elsewhere

and (ux)n
j are approximations to the exact derivatives, ux(xj, tn). These approximate

derivatives are reconstructed from the computed cell averages, and this can be done in
several ways, leading to different central schemes.
The easiest possible central scheme was introduced by Lax and Friedrichs ([262], [263])
in 1954, the celebrated Lax–Friedrichs (LxF) scheme.

This scheme simply derives from the choice of a piecewise-constant reconstruction

u(x, tn) ≈ û(x, tn) = ∑
j

ūn
j I[xj−1/2, xj+1/2]

, (E.19)

which corresponds to set (ux)n
j = 0 in Eq. (E.18). In this way, we can easily evaluate the

staggered cell averages

ūn
j+1/2 = ū(xj+1/2, tn) =

1
∆x

∫ xj+1

xj

u(ξ, t) dξ =
ūn

j+1 + ūn
j

2
. (E.20)

Now the flux integrals are trivial and thus we obtain the LxF scheme:

ūn+1
j+1/2 =

ūn
j+1 + ūn

j

2
− λ

2
[ f (ūn

j+1)− f (ūn
j )] , (E.21)

where λ = ∆t/∆x is the fixed mesh ratio.
Despite its simplicity, the LxF scheme is hampered by a significantly large numerical

dissipation, which of course prevents the correct detection of discontinuities and non-
analyticities.

We highlighted that in the LxF scheme we used a piecewise-constant reconstruction.
Thus, the most immediate generalization would involve a piecewise-linear approxima-
tion. This result in the so-called Nessyahu- Tadmor (NT) scheme [264].

Moving along the previously described steps, we start again from Eq. (E.17) and we
assume the knowledge of the approximate solution at time t = tn as piecewise-linear
approximation û(x, tn), the so-called MUSCL reconstruction [265], of the form

u(x, tn) ≈ û(x, tn) = ∑
j
[ūn

j + (ux)
n
j (x − xj)]I[xj−1/2, xj+1/2]

. (E.22)

In this case, we do not have access to the derivatives of the function (ux)n
j , thus they need

to be reconstructed using as an input the already known cell averages. This reconstruc-
tion process involves the use of the so-called TVD (Total Variation Diminishing) limiter
functions, which, as the word says, have the task of limiting the reconstructed slopes to
avoid unphysical oscillations of the solution close to the cell interfaces. However, we will
not further comment on such a topic and the interested reader can refer to [266]. As an
example, we present the limiter used in this work, the so-called minmod limiter

(ux)
n
j = minmod

(
ūn

j − ūn
j−1

∆x
,

ūn
j+1 − ūn

j

∆x

)
, (E.23)

with
minmod(a, b) =

1
2
[sgn(a) + sgn(b)] · min(|a|, |b|) . (E.24)
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We then proceed to solve Eq. (E.16) subject to the piecewise-linear initial data (E.22).
In this case the cell averages will trivially result in

ūn
j+1/2 = ū(xj+1/2, tn) =

1
∆x

∫ xj+1

xj

u(ξ, t) dξ =
ūn

j+1 + ūn
j

2
+

∆x
8

(
(ux)

n
j − (ux)

n
j+1

)
.

(E.25)
The next step is to approximate the flux integrals by the midpoint rule:

∫ tn+∆t

tn
f (u(xj+1, τ))dτ ≈ ∆t · f (u(xj+1, τ = tn + ∆t/2)) = ∆t · f (un+1/2

j ) . (E.26)

Here, the midpoint values, un+1/2
j are given by Taylor expansion

un+1/2
j = u(xj, tn + ∆t/2) = ūn

j +
∆t
2

∂tu(xj, tn) = ūn
j −

∆t
2
( fx)

n
j . (E.27)

Putting together what we got so far we obtain the discrete formulation of the NT scheme

ūn+1
j+1/2 =

ūn
j + ūn

j+1

2
+

∆x
8

(
(ux)

n
j − (ux)

n
j+1

)
− λ[ f (un+1/2

j+1 )− f (un+1/2
j )] . (E.28)

Thus, this scheme allows us to compute the numerical solution ūn+1
j+1/2 at the next time

step t = tn+1 using as an input the staggered cell averages uj , uj+1.
The great improvement w.r.t. the LxF scheme is that, thanks to the use of higher-order
reconstructions, the resulting numerical dissipation is significantly lower, allowing to
achieve a higher resolution of shocks, rarefactions, and discontinuities in general. An-
other significant advantage of this scheme, as the whole central schemes class, is that
they do not require the solution of the Riemann problem, which is usually required
in other types of schemes, usually via an approximate Riemann solver (see for exam-
ple [267]). One can easily notice that, if the reconstructed derivatives are set to zero,
(ux)n

j = 0, the NT scheme simply results, as expected from the previous discussion, into
a staggered version of the LxF scheme.

One of the main issues with the NT scheme is that it does not admit a semi-discrete
formulation (see [142]), which means that it is not allowed to take the limit ∆t → 0. This
could result in problems when a very small time step is needed, for example when the
equation becomes particularly stiff, as in the case of FRG flow equation.

That is why we now finally move to the Kurganov and Tadmor scheme, which while
retaining all the positive aspects of the NT scheme, allows indeed for a semi-discrete
formulation.

In order to simplify the notation, due to the fact that most of the considered quantities
are cell averages of the solution, when there is no possibility of ambiguity, we will omit
the bar notation from now on.

E.4 Kurganov and Tadmor fully discrete scheme

In this section we follow closely [142], the paper in which the KT scheme was firstly
introduced. In particular, we sketch how to derive the discrete formulation of the KT
scheme. In the previous section we deliberately provided several details on how the
schemes are built such that the reader can understand the steps even omitting some of
the tedious explicit calculations.
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In the NT scheme we performed an average over the nonsmooth Riemann fans using
spatial cells of the fixed width, ∆x. The key forward step made in the Kurganov and
Tadmor central scheme is to extrapolate more precise information about the local speed
of wave propagation, and use it to average the nonsmooth parts of the computed solution
over smaller cells of variable size. As previously, we start from the piecewise-linear
reconstruction, which we assume is a solution at time level tn based on the cell averages
un

j , and we approximate derivatives (ux)n
j in (E.22) using a limiter. We now estimate the

local speed of propagation at the cell interfaces, xj+1/2: the upper bound is denoted by
an

j+1/2 and given by

an
j+1/2 = max

{
ρ

(
∂ f
∂u

(u−
j+1/2)

)
, ρ

(
∂ f
∂u

(u+
j+1/2)

)}
, (E.29)

where ρ denotes the spectral radius of the flux Jacobian, u−
j+1/2 = un

j+1 − ∆x
2 (ux)n

j+1 and

u+
j+1/2 = un

j +
∆x
2 (ux)n

j are the correspondent left and right intermediate values of û(x, t)
at xj+1/2.

Figure E.3: Kurganov and Tadmor central approach. [142]

The Kurganov and Tadmor scheme is then constructed in two steps. First, we proceed
along the lines of the NT scheme. The NT scheme is based on averaging over the stag-
gered control volumes [xj, xj+1]× [tn, tn+1] of fixed spatial width ∆x. Instead, we now
use narrower control volumes, where at each time step we integrate over the intervals
[xn

j+1/2,l, xn
j+1/2,r]× [tn, tn+1] where:

xn
j+1/2,r = xj+1/2 + an

j+1/2∆t , xn
j+1/2,l = xj+1/2 − an

j+1/2∆t . (E.30)

We proceed with the exact evaluation of the new cell averages wn+1
j+1/2 and wn+1

j at

tn+1. Let

∆xj+1/2 = xn
j+1/2,r − xn

j+1/2,l = 2an
j+1/2∆t (E.31)



178 APPENDIX E. FINITE-VOLUME SCHEMES AND CONSERVATION LAWS

denote the width of the Riemann fan which originates at xj+1/2. Due to the finite speed
of propagation, the points xn

j+1/2,l and xn
j+1/2,r separate between smooth and nonsmooth

regions, and hence the nonsmooth parts of the solution are contained inside these nar-
rower control volumes of spatial width 2an

j+1/2∆t. Exact computation of the spatial inte-
grals, combined to midpoint rule to approximate the flux integrals yields to

wn+1
j+1/2 =

1
∆xj+1/2

∫ xn
j+1/2,r

xn
j+1/2,l

u(ξ, tn+1) =
1

∆xj+1/2

∫ xn
j+1/2,r

xn
j+1/2,l

u(ξ, tn)

− 1
∆xj+1/2

[∫ t+∆t

t
f (uj+1/2,r, τ)dτ −

∫ t+∆t

t
f (uj+1/2,l, τ)dτ

]
=

=
un

j + un
j+1

2
+

∆x − an
j+1/2∆t

4
((ux)

n
j − (ux)

n
j+1)

− 1
2an

j+1/2
[ f (un+1/2

j+1/2,r)− f (un+1/2
j+1/2,l)] , (E.32)

where the midpoint values are obtained through Taylor expansions for the time integrals,
and via the linear-piecewise reconstruction for the spatial midpoints:

un+1/2
j+1/2,l = un

j+1/2,l −
∆t
2

f (un
j+1/2,l)x , un

j+1/2,l = un
j + ∆x(ux)

n
j

(
1
2
− λan

j+1/2

)
,

(E.33)

un+1/2
j+1/2,r = un

j+1/2,r −
∆t
2

f (un
j+1/2,r)x , un

j+1/2,r = un
j − ∆x(ux)

n
j+1

(
1
2
− λan

j+1/2

)
.

(E.34)
Analogously, let

∆xj = xn
j+1/2,l − xn

j−1/2,r = ∆x − ∆t(an
j−1/2 + an

j+1/2) (E.35)

denote the width of strip around xj which is free of the neighboring Riemann fans. Then
as previously we obtain

wn+1
j =

1
∆xj

∫ xn
j+1/2,l

xn
j−1/2,r

u(ξ, tn+1) =
1

∆xj

∫ xn
j+1/2,l

xn
j−1/2,r

u(ξ, tn)

− 1
∆xj

[∫ t+∆t

t
f (uj+1/2,l, τ)dτ −

∫ t+∆t

t
f (uj−1/2,r, τ)dτ

]
=

= un
j +

∆t
2
(an

j−1/2 − an
j+1/2)(ux)

n
j

− λ

1 − λ(an
j−1/2 + an

j+1/2)
[ f (un+1/2

j+1/2,r)− f (un+1/2
j+1/2,l)] . (E.36)

So we computed the solution at time level t = tn+1 in terms of the approximate cell
averages, wn+1

j+1/2 , wn+1
j . These averages spread over a nonuniform grid which is over-

sampled by twice the number of the original cells at t = tn. So the second and final step
of the construction of Kurganov and Tadmor scheme is to convert these nonuniform av-
erages back into the original grid we started with at t = tn.
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To obtain the cell averages over the original grid of the uniform, nonstaggered cells
[xj−1/2, xj+1/2], we consider the piecewise-linear reconstruction over the nonuniform
cells at t = tn+1 , and we project its averages back onto the original uniform grid. Note
that we do not need to reconstruct the average of the smooth portion of the solution,
wn+1

j , as it will be averaged out. Hence the required piecewise-linear approximation
takes the form:

ŵ(x, tn+1) = ∑
j
{[wn+1

j+1/2 + (ux)
n+1
j+1/2(x − xj+1/2)]I[xn

j+1/2,l ,x
n
j+1/2,r]

+wn+1
j I[xn

j−1/2,r,xn
j+1/2,l ]

} , (E.37)

where the spatial derivatives ux(xj+1/2, tn+1) are approximated by

(ux)
n+1
j+1/2 =

2
∆x

· minmod

(
wn+1

j+1 − wn+1
j+1/2

1 + λ(an
j+1/2 − an

j+3/2)
,

wn+1
j+1/2 − wn+1

j

1 + λ(an
j+1/2 − an

j−1/2)

)
. (E.38)

Finally, the desired cell averages, un+1
j are obtained by averaging the approximate so-

lution in (E.37). Kurganov and Tadmor fully discrete second-order central scheme then
takes the form

un+1
j =

1
∆x

∫ xj+1/2

xj−1/2

ŵ(ξ, tn+1)dξ = λan
j−1/2wn+1

j−1/2 + [1 − λ(an
j−1/2 + an

j+1/2)]w
n+1
j

+λan
j+1/2wn+1

j+1/2 +
∆x
2
[(λan

j−1/2)
2(ux)

n+1
j−1/2 − (λan

j+1/2)
2(ux)

n+1
j+1/2] . (E.39)

E.5 Semi-discrete formulation

E.5.1 One-dimensional hyperbolic conservation laws

Let us consider the previously derived fully discrete second-order central scheme. To
perform the semi-discrete reduction it is sufficient to send ∆t → 0, which also means
λ → 0. Rearranging the divided differences and separating the vanishing terms propor-
tional to λ we find the semi-discrete formulation of the Kurganov and Tadmor scheme:

d
dt

uj(t) = −
( f (u+

j+1/2(t) + f (u−
j+1/2(t))− ( f (u+

j−1/2(t) + f (u−
j−1/2(t))

2∆x

+
1

2∆x
{aj+1/2[u+

j+1/2(t)− u−
j+1/2(t)]− aj−1/2[u+

j−1/2(t)− u−
j−1/2(t)]} , (E.40)

where we used

lim
∆t→0

un+1
j − un

j

∆t
=

d
dt

uj(t) , (E.41)

u+
j+1/2(t) = lim

∆t→0
un+1/2

j+1/2,r = uj+1(t)−
∆x
2
(ux)j+1(t) , (E.42)

u−
j+1/2(t) = lim

∆t→0
un+1/2

j+1/2,l = uj(t) +
∆x
2
(ux)j(t) . (E.43)

In this reduction the maximal local speed aj+1/2(t) takes the form

an
j+1/2(t) = max

{
ρ

(
∂ f
∂u

(u−
j+1/2(t))

)
, ρ

(
∂ f
∂u

(u+
j+1/2(t))

)}
. (E.44)
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This semi-discrete scheme admits a conservative form

d
dt

uj(t) = −Hj+1/2(t)− Hj−1/2(t)
∆x

, (E.45)

with the numerical flux

Hj+1/2(t) =
f (u+

j+1/2(t)) + f (u−
j+1/2(t))

2
− aj+1/2(t)

2
[u+

j+1/2(t)− u−
j+1/2(t)] . (E.46)

One verifies that Hj+1/2(t) ≡ H(uj−1(t), uj(t), uj+1(t), uj+2(t)) is a numerical flux con-
sistent with Eq. (E.7), i.e., H(v, v, v, v) = f (v).
We again would like to emphasize the simplicity of the second-order semi-discrete cen-
tral scheme, so that it does not require any information about the eigenstructure of the
underlying problem beyond the CFL-related speeds, aj+1/2(t). The computation of the
numerical derivatives, (ux)j(t) is carried out componentwise; no specific knowledge of
characteristic decomposition based on (approximate) Riemann solvers is required.

E.5.2 One-dimensional advection–diffusion equations

Let us consider the advection–diffusion equation (E.11). The Kurganov and Tadmor
second-order semi-discrete scheme can be applied to this kind of equations in a straight-
forward manner, since we can treat the advection flux f and the diffusion flux q simul-
taneously. This results in the following scheme:

d
dt

uj(t) = −Hj+1/2(t)− Hj−1/2(t)
∆x

+
Pj+1/2(t)− Pj−1/2(t)

∆x
. (E.47)

Here, Hj+1/2(t) is our numerical advection flux, and Pj+1/2(t) is a reasonable approxi-
mation to the diffusion flux, e.g., the simplest central-difference approximation

Pj+1/2(t) =
1
2

[
q
(

uj(t),
uj+1(t)− uj(t)

∆x

)
+ q

(
uj+1(t),

uj+1(t)− uj(t)
∆x

)]
. (E.48)

Higher-dimensional generalizations are immediate and follow the same line of reasoning
without significant differences.
In conclusion, the one-dimensional semi-discrete central scheme leads to a system of
coupled nonlinear ODEs. Of course, if one wants to solve it numerically one has to
introduce a time discretization, with the definition of a time step, ∆t, stepping forward
from time level tn to tn+1 = tn +∆t. In particular it is convenient to exploit high-precision
built-in steppers provided by ODE solvers libraries. For example most of the result
showed in this thesis are obtained using GNU Scientific Library (GSL) or SUNDIALS
CVODE for stiff problems.
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