
Cedric Borkowski
6807867
Informatik (BA)
Semester 10
s2936155@stud.uni-frankfurt.de

Ba挀栀elor 吀栀esis

A web-based interface for DUUI

Cedric Borkowski

March 18, 2024

wri琀琀en at the
Department of Text Technology Lab

at the Goethe-Universität Frankfurt am Main

Abstract

Natural Language Processing (NLP) for big data requires an e昀케cient and sophisticated in-
frastructure to complete tasks both fast and correctly. Providing an intuitive and lightweight
interaction with a framework that abstracts and simpli昀椀es complex tasks assists in reaching this
goal. 吀栀is bachelor thesis extends the NLP framework Docker Uni昀椀ed UIMA Interface (DUUI) by
an API and a web-based graphical user interface to control and manage pipelines for automated
analysis of large quantities of natural language. 吀栀e extension aims to reduce the entry bar-
rier into the 昀椀eld as well as to accelerate the creation and management of pipelines according to
UIMA standards. Pipelines can be executed in the browser or using the web API directly and then
monitored on a document level. 吀栀e evaluation in usability and user experience indicates that
the implementation bene昀椀ts the framework by making its usage more user friendly, lightweight,
and intuitive while also making the management of pipelines more e昀케cient.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 1
1.3. Outline . 2

2. Fundamentals 3
2.1. Natural Language Processing . 3
2.2. Representation State Transfer . 4
2.3. Docker Uni昀椀ed UIMA Interface . 4
2.4. Auxiliary Technologies . 5

2.4.1. MinIO . 5
2.4.2. MongoDB . 5
2.4.3. Spark Framework . 6
2.4.4. Svelte . 6

3. Related Work 8
3.1. Work昀氀ow Automation . 8
3.2. Monitoring . 9

4. Implementation 11
4.1. Updates to DUUI . 11

4.1.1. Input and Output . 11
4.1.2. Monitoring and Error Reporting . 13
4.1.3. Reusability . 13

4.2. Web API . 14
4.2.1. Database Interaction . 14
4.2.2. Processing . 15
4.2.3. Authorization . 17
4.2.4. Usage with Python . 18

4.3. Graphical User Interface . 18
4.3.1. Account . 18
4.3.2. Documentation and Help . 19
4.3.3. Pipelines . 19
4.3.4. Processes . 21
4.3.5. Mobile Support . 23

5. Evaluation 24
5.1. Approach . 24

5.1.1. Participants . 25

v

Contents Contents

5.1.2. Task . 26
5.2. Discussion . 27

5.2.1. Accomplishments . 28
5.2.2. Shortcomings . 28

5.3. Conclusion . 30

6. Future Work 31
6.1. Noti昀椀cations . 31
6.2. API Bindings . 31
6.3. Cloud Storage . 32
6.4. Branching . 32
6.5. Interaction with Documents . 32

Bibliography 33

A. Appendix 35
A.1. Code Examples . 35
A.2. Process Flow Chart . 40
A.3. Web Interface . 41

vi

1 Introduction

1.1. Motivation

吀栀e automated analysis of natural language in large quantities is a major challenge for exist-
ing tools and frameworks for Natural Language Processing (NLP) as scalability, performance
and usability are essential for big data analysis. As more and more data, be it in form of
speech, text, or video, becomes available for processing, the infrastructure has to meet new
requirements. With the increase in data also comes the possibility to greatly increase the
capabilities of language models, one of the major building blocks for NLP, that can be used
in areas like real time translation or processing of text and speech, automated chat bots in
customer service, and search engines algorithms to make be琀琀er and faster suggestions for
users. Although frameworks for NLP exist and are in active use, many do not meet the re-
quirements to e昀케ciently handle big data analysis. Reasons include the lack of scalability
and 昀氀exibility to support a wide range of existing tools, security concerns, the requirement
to have pro昀椀cient knowledge in computer science and NLP itself, as well as being outdated
(Leonhardt et al. 2023). To handle the mentioned shortcomings in existing frameworks, the
Text Technology Lab presents Docker Uni昀椀ed UIMA Interface (DUUI), a new approach to big
data analysis using NLP. DUUI is designed in a modular way to allow usage by a wide range
of users not limited to experts (Leonhardt et al. 2023, p. 388) and supports the operation of
existing and new Analysis Engines (AE) without any need for additional libraries (Leonhardt
et al. 2023, p. 390). 吀栀ough promising, the framework is still in development and not yet
fully realized. As of now the barrier of entry is still a concern as knowledge in the program-
ming language Java, Docker, and NLP are required to use the so昀琀ware. 吀栀is thesis presents a
solution that mostly removes this knowledge requirement by providing a web-based graph-
ical user interface (GUI), that handles the creation, management, and execution of pipelines
with DUUI using a simple online editor. 吀栀e website communicates via RESTful (Fielding
2000) with an application programming interface (API) that handles the usage and storage of
pipelines and their AEs. Since the communication is done via a RESTful API, the usage of
DUUI is not limited to the browser or Java, but also supports practically any other program-
ming language a user may be familiar with. While a GUI can not replace deep understanding
in a subject, it can signi昀椀cantly reduce the learning curve for beginners. By leveraging the
performance and capabilities of DUUI in a user-friendly environment, users can bene昀椀t from
a centralized, secure, and scalable system capable of big data analysis.

1.2. Contributions

With this thesis, 昀椀rst steps towards large scale usability for a wide target audience are taken.
To do so, a RESTful API for communicating with DUUI as well as a web-based, platform-
independent graphical user interface have been developed. NLP Pipelines can be created,

1

1.3. OUTLINE CHAPTER 1. INTRODUCTION

updated, executed, and monitored directly in the browser, improving e昀케ciency and usability.
Without the need for programming knowledge, the framework is approachable for users
with li琀琀le or no experience in programming. Additionally, because no setup or installation
is required by using the web interface, users can get started quickly. Monitoring and error
reporting are important parts of usability which is why the display of status and performance
on a document level has been a major focus for this work. 吀栀e web interface provides an
easy way to stay updated on the status per processed document.

1.3. Outline

Chapter 2 introduces fundamental concepts and technologies used in the implementation
of both DUUI and its supporting so昀琀ware - i.e, the web interface and RESTful API. Exist-
ing frameworks and editors for the creation of automated work昀氀ows as well as monitoring
solutions are introduced in chapter 3. A昀琀erwards, chapter 4 documents and describes the im-
plementation details for the web API and interface. 吀栀e evaluation of usability is discussed
in chapter 5 followed by the 昀椀nal chapter 6 that explains next possible steps and features for
both the API and web interface.

2

2 Fundamentals

Natural Language Processing and its application in big data analysis is a complex system of
frameworks and technologies complementing and enhancing each others capabilities. 吀栀e
following chapter introduces core concepts required as a basis for this thesis and gives a
broad overview about auxiliary technologies that have been used.

2.1. Natural Language Processing

Natural Language Processing (NLP) is an application of arti昀椀cial intelligence and machine
learning that deals with the analysis and interpretation of natural or human language by
computers. It is used to empower machines to understand, interpret, and generate human
language by analyzing text, speech, or video in a scope that is not limited to the purely literal.
NLP technologies utilize complex algorithms and machine learning to develop models that
can understand and respond to language. 吀栀ese models learn from large amounts of anno-
tated data to recognize pa琀琀erns and relationships in language. NLP is widely used in various
昀椀elds, including chat bots such as ChatGPT, automatic translation (e.g. DeepL), information
extraction or search engine optimisation. 吀栀ere are di昀昀erent levels of analysis ranging from
syntactic or grammatical to semantic analysis that vary in complexity (Liddy 2001). An NLP
analysis or task may be used to extract information and gain a deeper understanding of nu-
ances and indirect information as well as the extraction of speci昀椀c information such as time,
place, entities, or author sentiment. Many higher levels of analysis depend on information
gained from syntactic or lexical analysis like tokens or sentences (Nadkarni et al. 2011). Tasks
are o昀琀en combined in pipelines, a modular system in which data can be analyzed by multiple
tasks in sequence (Nadkarni et al. 2011) and outputs of one task passed to subsequent ones.

Natural language is a subset of unstructured information, a type of information that en-
compasses a spectrum of data types, ranging from text documents and multimedia 昀椀les to
sensor-generated datasets. Unlike structured data, which can be organized in well-de昀椀ned
formats and relational databases, unstructured information poses distinct challenges ow-
ing to its inherent lack of organization. As there is no prede昀椀ned structure for this type of
data, automatic analysis by machines is di昀케cult or even impossible. NLP, machine learning
algorithms, and advanced data analytics techniques have proven to be important tools for
deciphering pa琀琀erns and extracting meaningful information from unstructured data sets. To
overcome the challenges that result from the lack of structure in natural language, the Un-
structured Information Management Architecture (Ferrucci and Lally 2004)1 (UIMA), project
was launched by IBM in 2005. Since 2007 the project is managed by Apache and is used
to standardize unstructured information in a common format for automatic and e昀케cient
machine processing. UIMA de昀椀nes the Analysis Engine (AE) as the central processing unit.

1https://uima.apache.org/, last accessed 16/02/2024 14:07 MET

3

2.2. REPRESENTATION STATE TRANSFER CHAPTER 2. FUNDAMENTALS

An AE annotates its input data and stores these annotations in a Common Analysis Structure
(CAS) object for further processing by following AEs. 吀栀e CAS object is a tree like data struc-
ture commonly represented in the Extensible Markup Language (XML) format, that contains
the subject of analysis (sofa). 吀栀e sofa itself contains the data to be analyzed (Ferrucci, Lally,
et al. 2009) and all performed annotations - i.e. metadata. 吀栀e CAS gains great 昀氀exibility by
the use of a user-de昀椀ned type system for application speci昀椀c use cases. Each CAS object is
paired with a type system that de昀椀nes the structure of the data, such as tokens, sentences,
or parts of speech. UIMA provides a minimal or base type system that provides frequently
occurring and platform-independent types (Ferrucci, Lally, et al. 2009).

2.2. Representation State Transfer

Representation State Transfer (REST) (Fielding 2000) is an architectural style for building net-
worked applications and is used for communication between clients and servers. In REST,
resources are identi昀椀ed by a Uniform Resource Identi昀椀er (URI), and interactions with these
resources are performed using standard Hypertext Transfer Protocol (HTTP) methods such
as GET, POST, PUT and DELETE. 吀栀ese methods correspond to the CRUD operations (Cre-
ate, Read, Update, Delete) that are usually associated with database systems. One of the key
features of REST is that each request made by a client to a server must contain all infor-
mation required to understand and respond to the request. 吀栀e server does not store any
client state between requests. Additionally, REST o昀琀en employs a representation format,
such as JavaScript Object Notation (JSON) or Extensible Markup Language (XML), to serial-
ize and deserialize data exchanged between clients and servers. JSON is also the preferred
form of data transmission through HTTP for the implemented API in section 4.2. 吀栀e design
decisions bring bene昀椀ts in visibility because requests are self su昀케cient by providing all nec-
essary information to be fully understood, reliability because errors can be recovered from
much easier, and scalability because no resources have to be spent on state management by
the server (Fielding 2000, p. 79).

2.3. Docker Unified UIMA Interface

Docker Uni昀椀ed UIMA Interface is a lightweight NLP framework developed by the Text Tech-
nology Lab. It serves as a new approach for analyzing natural language for big data appli-
cations. At its core the framework is used to create and run pipelines that contain UIMA
based annotators. One of the main concepts is the uni昀椀cation of and support for annota-
tors developed in many di昀昀erent environments. 吀栀is allows for the integration of existing
tools while also providing a way to easily test and include newly developed tools. DUUI
has already proven to be e昀케cient and fast (Leonhardt et al. 2023, pp. 392–393) by utilizing
a native Docker Swarm implementation for horizontal scaling and Lua2 as a scripting lan-
guage for communication with annotators that are not native to UIMA. 吀栀e framework can
be used to process plain text or large quantities of 昀椀les in parallel. While the infrastructure

2https://www.lua.org/, last accessed: 14/02/2024 13:20 MET

4

2.4. AUXILIARY TECHNOLOGIES CHAPTER 2. FUNDAMENTALS

and foundation has been implemented, key features like integrating cloud storage for read-
ing and writing data are not yet available. Additionally, as described by Leonhardt et al.
(2023, p. 390), usage is limited to Java and the command line. A web-based interface and API
complemented by a sophisticated monitoring and error reporting system are the next steps
to allow for lightweight usability.

2.4. Auxiliary Technologies

吀栀is project is built with the help of tools and frameworks that o昀昀ered great 昀氀exibility in the
development phase. Some of the most important technologies are MinIO, MongoDB, Spark
Framework, and Svelte.

2.4.1. MinIO

MinIO3 is an s3 compatible object storage system designed for environments with heavy
workloads that require reliable performance and availability. It is both fast and 昀氀exible due
to its horizontal scaling capabilities using so-called server pools (MinIO, Inc. 2022). Access
management is achieved by creating users that authorize using access (username) and secret
(password) keys. Each user receives policies that de昀椀ne what resources are visible and can
be changed (MinIO, Inc. 2022). Performance is one of the biggest selling points for MinIO
which is backed by benchmark results (MinIO, Inc. 2022) showing much faster runtime when
compared to Hadoop Distributed File System (Borthakur 2007), a distributed 昀椀le system that
itself has many applications in big data due to its reliability.

2.4.2. MongoDB

MongoDB4 is a non-relational database that stores data in collections of documents. Docu-
ments are stored in a format very similar to JSON, a map of key value pairs. Because collec-
tions do not have to follow a pre-de昀椀ned schema, documents can quickly adapt to changes
in the so昀琀ware that can occur frequently during development. A feature that signi昀椀cantly
reduces server loads is the Aggregation Framework (Ken W. Alger 2022). 吀栀e Aggregation
Framework is used to build pipelines that enable developers to perform complex data trans-
formations and queries directly in the database. Its 昀氀exibility, performance, and the JSON-
like structure make MongoDB 昀椀t perfectly in many modern environments and web-based
applications.

MongoDB has been chosen as the database for this project because of its adaptability in
a frequently changing application. Additionally, MongoDB o昀昀ers built in support for the
conversion of JSON into simple data structures for usage in Java.

3h琀琀ps://min.io/, last accessed 04/02/2024 19:57 MET
4https://www.mongodb.com/, last accessed: 04/02/2024 18:47 MET

5

2.4. AUXILIARY TECHNOLOGIES CHAPTER 2. FUNDAMENTALS

2.4.3. Spark Framework

“Spark Framework is a simple and expressive Java/Kotlin web framework DSL built for rapid
development.” (Spark Framework 2024). Instead of objects and classes, Spark5 makes use
of static methods allowing for very concise and readable code. De昀椀ning an API endpoint
is as simple as creating a static method named a昀琀er a request method, e.g. GET or POST,
and providing a callback that handles the request. Spark proves to be extremely 昀氀exible and
easy to use during development, allowing changes to be implemented without the need for
complex refactoring. Using Spark, the entire /pipelines path group can be de昀椀ned in just 16
lines of code as seen in 昀椀gure 2.1.

1 path("/pipelines", () -> {
2 before("/*", (request, response) -> {
3 DUUIHTTPMetrics.incrementPipelinesRequests();
4 boolean isAuthorized = DUUIRequestHelper.isAuthorized(request);
5 if (!isAuthorized) {
6 halt(401, "Unauthorized");
7 }
8 });
9 get("/:id", DUUIPipelineRequestHandler::findOne);
10 get("", DUUIPipelineRequestHandler::findMany);
11 post("", DUUIPipelineRequestHandler::insertOne);
12 put("/:id", DUUIPipelineRequestHandler::updateOne);
13 post("/:id/start", DUUIPipelineRequestHandler::start);
14 put("/:id/stop", DUUIPipelineRequestHandler::stop);
15 delete("/:id", DUUIPipelineRequestHandler::deleteOne);
16 });

Figure 2.1. De昀椀ning a path group with Spark

2.4.4. Svelte

Svelte6 is a JavaScript framework designed to build web-based user interfaces. It was 昀椀rst
released in 2016 and has steadily gained popularity because of its unique design. Svelte is
distinct from many other frontend frameworks in that it shi昀琀s much of the work from the
browser to the build step. Code is wri琀琀en in a Svelte speci昀椀c language that allows for reac-
tivity and management of state with minimal e昀昀ort. In the build step, this code is compiled
into highly optimized JavaScript. Development with Svelte has proven to be both fast and
reliable. While the framework does not have a community as large as React7, there are still
many well designed component libraries available that help with development speed and
consistency. 吀栀e 2023 Developer Survey (StackOver昀氀ow 2023) revealed, that although not
5https://sparkjava.com/, last accessed: 04/02/2024 18:47 MET
6https://svelte.dev, last accessed: 04/02/2024 18:47 MET
7https://react.dev/, last accessed: 05/02/2024 00:16 MET

6

2.4. AUXILIARY TECHNOLOGIES CHAPTER 2. FUNDAMENTALS

used as much as long standing frameworks like React, Svelte is well-liked by its community.
Around 75% of developers that used Svelte would consider using it again.

7

3 Related Work

吀栀e work done in this thesis is split into the backend and frontend parts that interact with
each other to improve the usability of DUUI. As a starting point, di昀昀erent work昀氀ow automa-
tion tools have been explored in regards to what information about work昀氀ows is presented
and how it is visualized.

3.1. Workflow Automation

Web based user interfaces that o昀昀er visual feedback and a way for users to interact with
complex so昀琀ware is common in most areas of technology. 吀栀is holds for so昀琀ware designed
to automate repetitive tasks with work昀氀ows for data management, logging, and processing.
Automation is important for many reasons including the increase in productivity and ho-
mogenization of workloads under one so昀琀ware which makes maintenance much simpler.
吀栀ere are many tools available that allow for the creation or usage of automated work昀氀ows.
A simple annotation tool is Sparv (Borin et al. 2016) that can be used from the the command
line or in a web interface to annotate a text document with support for sentence, token,
lemma, and part of speech tagging. Tools like Flyte and argo are designed for large scale
data processing and machine learning tasks powered by Kubernetes with Natural Language
Processing being a subset of possible use cases. Work昀氀ow automation is applicable in other
areas as demonstrated by Zapier, a tool used by over two million businesses (Zapier 2024),
or Power Automate that is part of the Microso昀琀 365 ecosystem. Both focus on automating
business logic and managing communication between di昀昀erent third party applications with
countless integrations making them very 昀氀exible. While use cases di昀昀er, the core concept
for automation so昀琀ware is the same: Automate repetitive tasks e昀케ciently. Accessibility and
usability are vital for both user experience and e昀케cient maintenance by developers.

Providing an intuitive and simple way to interact with so昀琀ware is essential for usability.
Steep learning curves and high barriers of entry discourage the use of so昀琀ware early on for
many potential users. To prevent these issues from arising, graphical user interfaces for vi-
sual feedback pairedwith intuitive drag and drop editors are a common practice for work昀氀ow
building tools. argo, Zapier and Power Automate have web-based editors that make the cre-
ation of potentially complex work昀氀ows e昀케cient and quick. Work昀氀ows can be created from
scratch or from a wide range of templates that serve as a starting point and help new users
to explore existing features. In the editor a work昀氀ow is visually represented by a Directed
Acyclic Graph (DAG). In contrast, Flyte work昀氀ows are created in code, meaning expertise in
at least one of the supported programming languages is mandatory. 吀栀e framework aims to
reduce overhead and increase production speed in a scalable and hosted environment that
runs reproducible work昀氀ows (Gale 2020). While Flyte is a comprehensive, well-documented
framework in active development, ge琀琀ing started is di昀케cult due to the entry barrier being
higher than competing technologies. Installation and creation of work昀氀ows having the re-

8

3.2. MONITORING CHAPTER 3. RELATED WORK

quirement of at least some knowledge of the command line and programming may prevent
users from utilizing its full potential. Most mentioned tools include the option to monitor
the progress and status of work昀氀ows visually in a web-based interface. In case of errors, pre-
senting meaningful information that helps with the correction of such errors is invaluable
especially for less experienced users unfamiliar with the underlying so昀琀ware. Most existing
tools use very individual solutions to o昀昀er their users insights in the inner workings of the
so昀琀ware. While each tool has their own design and displays di昀昀erent information, the state
of individual tasks and their duration are provided by all mentioned tools. Power Automate
and Flyte have been explored in greater detail with a focus on GUI design, inspiring parts of
the web interface for DUUI.

3.2. Monitoring

Monitoring describes the process of tracking and interpreting application metrics by trans-
forming the information into a measurement of system integrity and user experience (Turn-
bull 2018, pp. 6–7). It relies on the applications to expose relevant metrics that can then
be scraped for further processing and possibly visualization. A popular, highly customizable
monitoring system is Prometheuswhich is used in this project due to its simple setup, compat-
ibility, and easy integration with many visualization tools. Prometheus works by scraping
metrics from HTTP endpoints exposed by applications (Turnbull 2018, p. 48) and storing
them in time series for further analysis. 吀栀ere are four types of metrics used by Prometheus
(Prometheus 2024):

• Counter, a metric for numerical values that can only be increased.

• Gauge, a metric for numerical values that can be increased and decreased.

• Histogram, a metric that groups observations into customizable ranges and tracks the
total count in each range.

• Summary, similar to a histogram but instead of in ranges, values are grouped in quan-
tiles instead.

吀栀ese metrics are exposed in a text-based format as seen in 昀椀gure 3.1 and transformed into
meaningful data that can be visualized in a time series.

吀栀e visualization can be done by the local Prometheus dashboard or sent to a specialized
monitoring and visualization so昀琀ware. Two very 昀氀exible and well established metric visu-
alization tools are Grafana and Datadog, both of which have integrations for Prometheus.
Grafana is a tool for visualizing a diverse set of application and system related metrics in
intuitive dashboards (Grafana 2024). 吀栀ese dashboards allow developers to gain real time
insights in the integrity of servers, memory usage, network latency, or response times. 吀栀e
representation of metrics in charts in a centralized dashboard helps with the fast identi昀椀ca-
tion of critical failures and high system loads which increases the reliability and availability
of applications. Due to its intuitive interface, dashboards can be designed for one’s individ-
ual needs, making Grafana 昀氀exible. 吀栀e platform’s versatility lies in its ability to connect

9

3.2. MONITORING CHAPTER 3. RELATED WORK

Figure 3.1. Prometheus metrics format, https://vexpose.blog/2022/02/18/
prometheus-exporter-for-powerstore/, last accessed: 16/02/2024 15:46
MET (Screenshot from 16/02/2024 15:46 MET)

with various data sources (Grafana 2024), including databases, cloud services, and monitor-
ing tools like Prometheus.

Datadog is similar to Grafana as it also provides a platform to create dashboards that vi-
sualize metrics for more informative and robust monitoring of applications. Compared to
Grafana, Datadog is a more advanced tool with additional features that make it an all in one
monitoring solution. 吀栀e platform’s alerting system is a standout feature, allowing users
to set up noti昀椀cations based on speci昀椀c thresholds and conditions (Datadog 2024). With
machine learning algorithms, Datadog’s alerting becomes more intelligent over time. 吀栀is
ensures that developers are quickly noti昀椀ed of potential issues, reducing downtime and en-
hancing the overall reliability of the system. While this can be useful in many cases, the
complexity also increases signi昀椀cantly and many features may remain unused in projects
that do not require them.

Although both technologies o昀昀er very similar capabilities for visualizing application and
system metrics, Grafana has been chosen for this project because creating intuitive dash-
boards is simple and quick while most features that make Datadog stand out are simply not
required for DUUI at this point.

10

4 Implementation

Building an interface for DUUI requires multiple steps and prerequisites. Features and data
structures extending the framework to create the possibility for big data analysis that is not
limited to local 昀椀les have to be added. Furthermore, having control over and presenting
detailed insights about the state of processes is only possible if methods and data to achieve
these goals are available. 吀栀e following sections provide an overview into the changes made
to the framework and how these changes were used in the design of both the backend and
frontend parts of the web API. 吀栀e code wri琀琀en for this thesis can be found on GitHub1.

4.1. Updates to DUUI

Docker Uni昀椀ed UIMA Interface is the basis for the implementation of both the API and the
web-based interface. 吀栀e framework must provide a way to extract the integrity of pipelines
and progress of documents. As described in section 2.3, one key feature is the integration
of cloud storage providers as input sources and output locations for documents. Instead of
relying on local 昀椀les and plain text as data sources, the option to read from and write to cloud
providers greatly enhances productivity and enables DUUI to be used for real world big data
analysis.

4.1.1. Input and Output

吀栀e addition of the IDUUIDocumentHandler interface to DUUI provides easy integration with
a user’s cloud storage of choice. An implementation of the interface for a speci昀椀c provider
includes 昀椀ve basic methods that are used to interact with the API of the service. 吀栀ese 昀椀ve
methods o昀昀er a way to read, write, and list 昀椀les at a speci昀椀c location with the option to do
so recursively. 吀栀e read and list methods return DUUIDocuments that are the container for
the 昀椀les to be processed while also storing metrics during processing. 吀栀ere is also an im-
plementation called DUUILocalDocumentHandler for reading from and writing to disk. 吀栀e
simple interface design allows for the implementation of practically any third party cloud
storage as a provider as long as an API to interact with the data exists. As a starting point,
two cloud storage services namely, Dropbox and MinIO, have been implemented for DUUI.
Using these implementations requires the user to provide credentials for authorization. Ex-
ample code for the usage of MinIO can be found in the appendix at A.1. When used in a
process with DUUI, a handler is always used by a DUUIDocumentReader, a class that is re-
sponsible for the pre-processing of documents and managing both read and write operations
for the installed handlers. When the composer’s run method for using a DUUIDocumen-
tReader is called, 昀椀le metadata is retrieved by calling the listDocuments method. 吀栀is initial

1https://github.com/texttechnologylab/DUUIController, last accessed 12/03/2024 12:55 MET

11

4.1. UPDATES TO DUUI CHAPTER 4. IMPLEMENTATION

listing of documents in the source location is followed by multiple 昀椀lters that may reduce the
number of 昀椀les to be processed, depending on the se琀琀ings that were passed to the reader.
吀栀e remaining documents are then read and processed by one or multiple threads or workers.
Figure 4.1 visualizes these steps in a 昀氀ow chart. 吀栀e actual 昀椀le content is stored as raw bytes
in a DUUIDocument object during processing and cleared when the document has been up-
loaded to the output location or is otherwise 昀椀nished. Clearing the bytes a昀琀er processing the
document is done to reduce peaks in memory usage that would occur if all 昀椀les were stored
in memory at once. 吀栀e 昀椀nal part of writing 昀椀les is planned to be extracted into a separate
class (DUUIDocumentWriter) in the future but has been implemented here for simplicity.

�����

����

���������
���

�����
��
�����
�

 �

��
��
�����
��"
��
�

��
��
�8448����
��1����
�

H���
��FE���>

�����FE���>

�
��K
��H�������Q
�

ZWXYWVU

`W\Y_[

gVd\ba_

�
�������
��

s���
�����
��

����E>

�
��K
�H������
�

��
�������
��

v
�

���{
��yx��H���

Figure 4.1. Flow of data through a process using the DUUIDocumentReader class and IDU-
UIDocumentHandler interface.

12

4.1. UPDATES TO DUUI CHAPTER 4. IMPLEMENTATION

4.1.2. Monitoring and Error Reporting

Docker Uni昀椀ed UIMA Interface used simple logging to the console as a way to provide a way
of monitoring the state on progress of a pipeline. To allow for more sophisticated logging
of important stages and tracking the exact timestamp at which these events occur, an event
system has been added. Events can be added at any desired stage of a pipeline by calling
the composer’s addEvent method. 吀栀e method then creates a DUUIEvent object that holds a
timestamp, sender, and message. In the addEvent method, the event can be processed further,
stored in a database, or simply logged to the console by se琀琀ing the composer’s DebugLevel
which acts as a 昀椀lter. In the process of adding events in various places, the possibility to can-
cel a process has been added as well by providing the composer’s shutdown 昀氀ag in multiple
processing steps. Cancelling a process is then done by simply calling the shutdown method
on the composer which signals drivers and components to stop as soon as possible. 吀栀rough
the addition of a DUUIDocument class, a per 昀椀le monitoring is achieved. A DUUIDocument
object not only contains 昀椀le metadata and content but also tracks many metrics including
progress, status, 昀椀le size, durations for the di昀昀erent steps in the pipeline, and errors.

4.1.3. Reusability

吀栀e 昀椀nal addition to the framework is an alternate approach to the instantiation and usage
of pipelines. With the exception of native UIMA based annotators, instantiating components
takes up to ten seconds per component because communication via RESTful has to be estab-
lished before it can be used. Additionally each instance of a component running as a Docker
container has to be started individually by the Docker Daemon which further increases the
duration of instantiation. Although not as much of an issue for simple pipelines, instanti-
ating a complex pipeline every time a process is started is both unnecessary and delays the
actual process. 吀栀ere have been multiple a琀琀empts to circumvent this issue that each had
their downsides. 吀栀e 昀椀rst a琀琀empt was to prevent the composer from going through its de-
fault shutdown procedure by se琀琀ing a 昀氀ag that would skip the shutdown of the pipeline. Al-
though this approach worked, it revealed a di昀昀erent issue caused by the fact that a pipeline
is tied to the composer that instantiated it. Because of this coupling, stopping one pro-
cess would also cancel all other active processes using this pipeline. One way to resolve
this problem is to reduce coupling between pipelines and composers and share instantiated
pipelines among di昀昀erent composer instances. In the 昀椀nal implementation, methods have
been added to the composer class that instantiate and return a pipeline for future processing.
吀栀ese instantiated pipelines can then be stored and passed to another composer by calling
the withInstantiatedPipeline method. Using this approach, processing can start immediately
without any time spent on creating the type system or starting docker containers. Pipelines
can be instantiated sending a POST request to the /pipelines/start endpoint or through the
web interface.

Running a pipeline in the background could be extended by a scheduled job that period-
ically checks for 昀椀les in a speci昀椀c input location. When unprocessed 昀椀les are detected, the
pipeline would then automatically process these 昀椀les without the need to manually start the
pipeline each time.

13

4.2. WEB API CHAPTER 4. IMPLEMENTATION

4.2. Web API

吀栀e backend is responsible for handling the communication between clients, the database,
and DUUI. It has been implemented in Java using the Spark Framework by de昀椀ning a set of
routes that are organized in path groups. Routes can be split into three categories that are
responsible for di昀昀erent tasks. 吀栀e 昀椀rst type of routes is used to interact with the database by
reading and writing resources that are then displayed to the user. 吀栀e second type commu-
nicates with DUUI directly, providing functionalities to start and cancel processes. Addition-
ally, instantiating and shu琀琀ing down pipelines, as described in section 4.1.3, is possible using
routes in the pipelines path group. 吀栀ese routes operate through two classes, a controller
and a request handler. 吀栀e request handler validates the incoming request and transforms
its data into a usable format before passing it to the appropriate controller. 吀栀e controller
then uses this transformed data to perform the requested action. 吀栀e structure of DUUI is
re昀氀ected in the web API through 昀椀ve controllers that represent di昀昀erent building blocks of
analysis. Lastly there are two routes that can be used for uploading and downloading 昀椀les
using the IDUUIDocumentHandler interface and one that exposes metrics that are scraped
by Prometheus for monitoring purposes. 吀栀e web API integrates Prometheus by exporting
a variety of di昀昀erent metrics that can be scraped from the /metrics endpoint and visualized
with a tool like Grafana or Datadog introduced in section 3.2. Prometheus metrics should
follow a speci昀椀c text-based format that is automatically applied to metrics when using the
Prometheus Java-Driver. Figure 4.2 shows an example of the creation and export of a metric
as a static variable using methods provided by Prometheus. Expanding the set of exported
metrics is simply done be registering new metrics as variables and providing methods to
update them.

4.2.1. Database Interaction

MongoDB has in many ways improved the readability of code used in the backend by pro-
viding a simple API for database operations and handling of data in the JSON format. 吀栀e
MongoDB Java driver works with the Document class that in its core is a wrapper around a
Map object in Java. Documents can be created from a JSON string using the parse method
and also transformed into a JSON string with the toJSON method. 吀栀is capability has been
very useful for most routes by reducing the amount of code and therefore improving read-
ability. With the transformed data available, making changes to the database is as simple as
calling a method like insertOne, updateOne, or deleteOne for the appropriate collection. Write
operations are, in most cases, straightforward and can be executed by providing the required
data. Read operations on the other hand can be more challenging because not all available
entries in the database are of interest or should be accessible to a user. Additionally, retriev-
ing a large dataset all at once from the database causes performance issues because more data
has to be sent over the network. 吀栀is is especially problematic in graphical user interfaces
that have to deal with longer loading times. 吀栀e solution to this issue is the reduction of
returned entries by applying 昀椀lters to a dataset. MongoDB has a feature called the Aggre-
gation Framework (Ken W. Alger 2022), a powerful tool for complex data transformations
used in the implementations for most controllers in this project and especially important in

14

4.2. WEB API CHAPTER 4. IMPLEMENTATION

private static final Gauge requestsActive = Gauge.build()
.name("duui_requests_active")
.help("The number of active requests")
.register();

public static void incrementActiveRequests() {
requestsActive.inc();

}

public static void decrementActiveRequests() {
requestsActive.dec();

}

public static String export() throws IOException {
StringWriter writer = new StringWriter();
CollectorRegistry registry = CollectorRegistry.defaultRegistry;

TextFormat.write004(writer, registry.metricFamilySamples());
return writer.toString();

}

Figure 4.2. Creation and export of a Prometheus metric in Java.

the implementation of the pagination system for tables in the web interface. 吀栀e aggregation
framework is used to build so-called aggregation pipelines that consist of one or more stages,
each of which applies a speci昀椀c operation to entries in the database. 吀栀ese operations include
昀椀lters, projections for adding and removing 昀椀elds from entries, grouping, sorts, and many
more that are case speci昀椀c. Database read operations are complemented by the MongoDB-
Filters convenience class that groups common 昀椀lters applied to collections including limit,
skip, sort, order, search, and comparison 昀椀lters into a single object for easy access. Filters are
extracted from the request and added to aMongoDBFilters object that is then used in database
operations. Figure 4.3 shows the di昀昀erent steps and interactions in data base operations. 吀栀e
web interface makes use of these 昀椀lters with the PaginationSe琀琀ings type that allows for the
retrieval of a speci昀椀c range of entries from the database. Only three values are required for a
functioning pagination system: the page number, the page size (limit), and the total number
of matching entries.

4.2.2. Processing

With the database interaction implemented, the next step is being able to use pipelines with
DUUI. To do so, the DUUISimpleProcessHandler class has been created. An instance of a
process handler encapsulates the execution of a pipeline by administrating all steps from ac-
quiring data to running the pipeline, possibly writing the result to the output location, and
cleaning up resources once the process has 昀椀nished successfully or failed due to an error. A

15

4.2. WEB API CHAPTER 4. IMPLEMENTATION

Figure 4.3. Interactions between di昀昀erent classes and objects during a request.

昀氀ow chart representing a process can be found in the appendix in 昀椀gure A.1.

A process is initiated by sending a POST request to the /processes endpoint. 吀栀e request
body must include the id of the pipeline to be executed and an object containing the infor-
mation for the data source (input). Optionally, an object for the output location and addi-
tional se琀琀ings for the process can be sent in the request as well. Before creating an instance
of a DUUISimpleProcessHandler, the controller checks if a pipeline with the speci昀椀ed id is
available and instantiated already. If so, the instantiated pipeline is passed in the handler’s
constructor for reduced setup time. Otherwise, a new pipeline is instantiated and used for
processing instead. Once an instantiated pipeline is available, the process handler starts the
execution by reading data from the input location, applying 昀椀lters from the se琀琀ings object
to possibly reduce the number of documents that need to be processed. 吀栀e remaining doc-
uments are then processed by one or more workers in parallel until the queue is empty. If
an output handler and location have been declared during setup, each document is wri琀琀en
to the output location as soon as it has 昀椀nished processing. 吀栀e output step is performed
per document and not a昀琀er all documents have 昀椀nished to reduce memory loads. Memory
usage can be high because the document stores 昀椀le contents in bytes during processing. 吀栀e
bytes are cleared right a昀琀er uploading as storing them is no longer required. In each stage
the progress and status of documents is updated in the database using a separate, scheduled
thread to re昀氀ect the current state in the web interface. 吀栀e 昀椀nal stage in a process is called
exit and cleans up resources that are no longer used. 吀栀e exit step can be reached in three
states:

Completed 吀栀e process completed without fatal errors. 吀栀is does not guarantee that all
documents have been processed successfully. If the ignore_errors 昀氀ag has been set, docu-
ments encountering errors are skipped without throwing an exception.

16

4.2. WEB API CHAPTER 4. IMPLEMENTATION

Failed 吀栀e process has failed during execution due to a fatal error. Fatal errors can occur
at any stage of a process and immediately interrupt the pipeline.

Cancelled 吀栀e process has been cancelled by sending a PUT request directly to /pro-
cesses/:id or by submi琀琀ing a cancel request from the web interface. A cancellation is not an
immediate interruption but prevents further documents from being processed by signalling
the composer to shutdown as soon as possible.

Regardless of the state that lead to the exit stage, one last update is performed , se琀琀ing the
昀椀nal result of both the process and each document. If the pipeline has been reused, it is not
shut down but remains active for future requests.

4.2.3. Authorization

To utilize cloud solutions in a process, users need to authorize DUUI to make requests on
their behalf. For Dropbox, this involves undergoing an OAuth 2.0 authorization process
on the Dropbox website, granting DUUI access to create a dedicated folder for performing
IO operations. Upon user acceptance, Dropbox returns a one-time code used to generate
an access token. Because access tokens have a limited lifespan, a more practical approach
involves generating a refresh token alongside the access token using the code returned a昀琀er
the OAuth 2.0 authorization. 吀栀e refresh token allows DUUI to generate a new access token
as needed without requiring the user to repeat the authorization 昀氀ow. 吀栀is method ensures
continued access while still allowing the user to revoke access at any time. For MinIO, users
must provide DUUI with an access key and a secret key for authorized requests in addition
to the endpoint at which the service can be reached. 吀栀e user creates an account for DUUI
in their s3 solution, allowing DUUI to store both a username (access key) and a password
(secret key) for a speci昀椀ed endpoint. 吀栀ese credentials, which de昀椀ne the scopes and buckets
DUUI can access, can be managed by the user. Unlike Dropbox, there is no need for repeated
authorization 昀氀ows, as the username and password alone are su昀케cient formaking authorized
requests on behalf of the user.

As anyone can send requests to a URL, the security of data depends on the veri昀椀cation
of the clients identity (authentication) and if the client is allowed to access the resources
(authorization). To prevent unauthorized requests and unwanted changes in data, clients
are asked to send an authorization header with each request. 吀栀e website uses a session id
as its method of authorization which means that the user must register and be logged in to
use the application. 吀栀e session id is automatically sent to the server as proof of identity.
Unauthorized requests are rejected by the server with the status code 401 - Unauthorized,
meaning only the owner can modify their data. Because the session id is created in the
web interface a昀琀er logging in and is therefore tied to the browser, it cannot be used for
authorization in any other environment. 吀栀is limits the support for the usage of DUUI from
other programming languages.

17

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

4.2.4. Usage with Python

To allow communication with the API from outside the web application, other authentica-
tion methods are required. A common solution is the usage of API keys, a unique proof of
identity, as an alternative to the session id. API keys allow the communication with DUUI
using any programming language the user may be familiar with which broadens the target
audience signi昀椀cantly. As an example, the usage of Python2 with DUUI has been explored.
Python is a well-liked and widely used interpreted programming language as can be seen in
the Developer Survey done by StackOver昀氀ow (2023). It has an easy to learn syntax and be-
cause of that o昀昀ers rapid development speed. It is also considered one of the most important
languages in machine learning, which includes the 昀椀eld of natural language processing, as
many frameworks and libraries such as Scikit-learn, TensorFlow, PyTorch, spaCy and Keras
are available for rapid development of machine learning applications. In addition, libraries
such as Pandas and NumPy o昀昀er the possibility of e昀케ciently transforming large amounts
of data and performing mathematical operations. Given that Python is so widely used and
beginner friendly, the target audience can be increased by providing simple bindings for the
usage of DUUI. 吀栀ese bindings should abstract the inner workings of the API by hiding raw
requests behind intuitive and well documented functions. 吀栀e usage of Python for creating
and using a pipeline with the API can be seen in A.1.

4.3. Graphical User Interface

吀栀e design of the web interface went through many iterations while always re昀氀ecting the
frequently changing capabilities of the webAPI. Its primary goal is to increase the usability of
DUUI and o昀昀er the possibility of using the framework without having to code or even know
how to write code in the 昀椀rst place. 吀栀is aligns with the purpose of a GUI to signi昀椀cantly
reduce the barrier of entry and open the possibility for inexperienced users to e昀昀ectively use
a so昀琀ware (Cardinali 1994, p. 7). To do so, a multi-page website 3 with many capabilities for
the analysis of large quantities of data has been created.

4.3.1. Account

吀栀e account page is the 昀椀rst page a user visits a昀琀er the registration has been completed
successfully. Pro昀椀le information as well as preferences for the website’s behavior and ap-
pearance are available here. Additionally, the generation, deletion, and retrieval of the user’s
API key and connections to external cloud providers are managed on this page. Users with
the admin role canmanage permissions of other accounts in an additional view that is hidden
for regular users.

2https://www.python.org/, last accessed 16/02/2024 16:37 MET
3吀栀e web interface can be found at https://duui.texttechnologylab.org/.

18

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

4.3.2. Documentation and Help

吀栀e web interface includes a documentation page for the web API, its endpoints, and the
usage of the website itself. 吀栀e website documentation introduces capabilities and features
in a linear structure by guiding a user through the process of creating pipelines and com-
ponents interactively. In addition, a modal dialog as seen in 昀椀gure 4.4 can be opened from
the navigation at the top of any page that explains how to create and use pipelines. 吀栀e API
reference includes detailed documentation for every endpoint that can be reached by users
including possible parameters and code examples as seen in 昀椀gure A.17.

Figure 4.4. A modal that is shown a昀琀er registration or when opened from the navigation
under Documentation > Help.

4.3.3. Pipelines

Pipelines are created in the pipeline builder at /pipelines/build in a three step form. First
the user is asked if they want to create a pipeline from scratch, meaning all se琀琀ings are set
to default and no components are prede昀椀ned. If the user decides to start from one of the
templates provided by DUUI, all se琀琀ings are copied from the template to a new pipeline that
can then be further customized. Regardless of the starting point, the user proceeds to the
second step, at which pipeline related information, including name, description, tags, and
pipeline se琀琀ings, can be set. In the 昀椀nal step, components can be edited and added to the
pipeline. A component can also be created from scratch or from a template. 吀栀ere are a
few se琀琀ings that are mandatory for components. 吀栀ese include the driver and the target

19

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

Figure 4.5. Representation of a pipeline with two components in the web interface. Com-
ponents can be added at the end or between existing components.

which can be a docker image name, a remote URL to the running component, or a class path
depending on the selected driver. Every other se琀琀ing is optional but 昀椀lling in meaningful
values in the description or tags input 昀椀elds is recommend to help with documentation and
reusability. Depending on the selected driver, a set of options can be set that in昀氀uence the
component’s behavior. All types of components o昀昀er the scale option that replicates the
Analysis Engine to increase processing speed. Other important options are use_GPU and
docker_image_fetching. 吀栀e la琀琀er allows DUUI to download the image from the docker hub
if it is not available locally.

All user created pipelines are found at /pipelineswhere a dashboard showing a grid of cards
with broad information about a pipeline can be found. 吀栀is includes name, description, tags,
how o昀琀en the pipeline has been used, and how many components are part of the pipeline.
By clicking one of the cards the website navigates to a pipeline speci昀椀c page that provides
a more detailed look in the speci昀椀c pipeline. 吀栀e page for an individual pipeline is reached
at /pipelines/id and split into the three tabs: se琀琀ings, processes, and statistics. 吀栀e se琀琀ings tab
allows the user to manage options and properties for the pipeline and its component. 吀栀e
pipeline name, description, tags, and se琀琀ings can be updated here. Additionally, this tab lists
all pipeline components in a DAG that can be rearranged to change the order of execution.
Components can also be added to the pipeline either at the end or at a speci昀椀c position both
from scratch or using one of the available templates. Each component can be edited in a
Drawer (昀椀gure A.13) on the right side of the screen. 吀栀is drawer shows all se琀琀ings related
to this speci昀椀c component and o昀昀ers actions to update and delete the component. When
focusing certain input elements, a tooltip is displayed that clari昀椀es the expected input. 吀栀e
processes tab lists all started processes in a table that uses a pagination system to reduce the
amount of data that has to be retrieved from the database at once. By default, the limit is set to
10 processes per page. MongoDB aggregation pipelines as described in section 4.2.1 are used

20

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

Figure 4.6. Processes that used a speci昀椀c pipeline are listed in a table that can be sorted by
any column and 昀椀ltered by multiple criteria. 吀栀e table can be traversed using
the pagination system below.

by the backend to 昀椀lter and sort data that is requested for the current page in the table while
at the same time keeping track of the total amount of matching documents. 吀栀is is required
for the pagination system to know howmany pages it can display. Charts that display details
about the usage of pipelines can be found in the statistics tab. 吀栀ere are currently four charts
available that display the status of executions, errors that have been encountered, usage of
di昀昀erent types of input and output, and the usage of the pipeline per month. Regardless
of the current tab, the page includes a group of actions that perform di昀昀erent actions like
copying and exporting a pipeline. Additionally, pipelines can be instantiated as a service
running in the background as described in section 4.1.3.

4.3.4. Processes

When starting a new process from a pipeline, the user is 昀椀rst asked about the input source
of documents. 吀栀ere are currently four input options available: Text, 昀椀les, Dropbox, and
MinIO. Each option comes with se琀琀ings that can be applied, changing the way the input is
pre-processed. 吀栀e simplest way to use a pipeline is to process plain text that is entered into
a text area. Internally a new CAS object with the supplied text as the subject of analysis
is created and processed. Choosing 昀椀les as the input source allows to process local 昀椀les on
the client’s machine. Optionally, input 昀椀les can be uploaded to one of the available cloud
storage systems to make them available across multiple machines. Dropbox and MinIO di-
rectly obtain 昀椀les from the respective storage at the speci昀椀ed path. Input 昀椀les are wrapped
by the DUUIDocument class during processing to store metrics and update their progress in
the database. With the exception for the processing of text, documents can be 昀椀ltered and
sorted as a pre-processing step to reduce the number of documents that need to be processed
in the pipeline. 吀栀ese se琀琀ings include the exclusion of 昀椀les smaller that a certain size in
bytes or documents that are already present in the output location. Additionally, documents
can be sorted in ascending order by their size so that smaller documents that are faster to

21

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

process are prioritized. 吀栀e result of a process can either be ignored by se琀琀ing the output to
none, or wri琀琀en to a cloud storage by providing the full path to the target location, excluding
the Apps/Docker Uni昀椀ed UIMA Interface component that is created when connecting with
Dropbox. A process is then started by clicking the submit bu琀琀on.

Once submi琀琀ed, the process is started by the web API and the user is redirected to a page
that is used to monitor the progress and status of documents and the process itself. 吀栀e
page can also be reached by clicking on the appropriate row in the table that displays the
processes using the pipeline. All se琀琀ings that were used in the creation of the process can also
be viewed on this page and copied in the JSON format for usage outside the web interface.
Another functionality on this page is the option to restart a process with the exact same
se琀琀ings by redirecting to the creation page and copying all se琀琀ings used. 吀栀is speeds up
the creation of identical or similar processes for which only a single se琀琀ing may change. In
case of small errors during the creation of a process, it can be cancelled and restarted quickly
without the need to manually repeat all required steps.

Processes are used as a container to control the analysis of documents with a speci昀椀c
pipeline. Because documents contain the data to be analyzed, they are monitored especially
thoroughly. Documents are listed in a table that can be sorted, 昀椀ltered, searched, and tra-
versed similar to the one listing processes for pipelines. It includes columns for the document
name, its progress, status, size in bytes, and process duration. Clicking on a row in the table
opens a drawer that displays additional information about a single document. If an out-
put location has been speci昀椀ed and the document has been processed successfully, it can be
downloaded directly from the dialog in the web interface. 吀栀ere are currently two sections
with metrics and results available each of which includes a chart. 吀栀e annotates that have
been added by the pipeline’s components are displayed in text format as well as in form of a
reactive and 昀椀lterable treemap. 吀栀e duration of each step in the process is measured, stored,
and displayed in a timeline chart. Examples can be seen in 昀椀gure 4.7 and A.16.

Figure 4.7. Timeline of individual steps in a process (processing by each component only
took milliseconds to complete in this case). 吀栀is documents has been processed
by the components BreakIteratorSegmenter (Tokenizer) and GerVADER for sen-
timent analysis.

22

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

4.3.5. Mobile Support

Although the web interface is designed to be used on desktop, making it responsive and
therefore usable on smaller screen sizes adds to usability. All features are available and can
be used on mobile devices without the need to install a platform speci昀椀c app. On mobile de-
vices, users typically interact with the screen using their thumbs or a pen. Placing important
bu琀琀ons towards the bo琀琀om of the screen ensures that users can easily reach and tap them
without having to stretch or adjust their grip. Reacting to changes in screen size and orien-
tation by rearranging or resizing elements is part of Responsive Web Design as described by
E. Marco琀琀e (2010). While working on mobile might be less desirable overall because there is
less space to show important details and charts, the ability to check the progress of a process
or quickly resubmit on the phone can be convenient nonetheless.

Figure 4.8. Navigation and controls on mobile devices adjusted to be more usable on small
screens.

23

5 Evaluation

吀栀e evaluation discusses the web interface’s bene昀椀ts and shortcomings regarding usability
and if lowering the barrier of entry for inexperienced users is achieved. In order to rate the
e昀昀ectiveness of the web interface its usability is rated by users with di昀昀erent background
experience with DUUI, NLP, and programming.

5.1. Approach

Determining whether the web interface is e昀昀ective and usable as an extension to DUUI has
been set as the goal for the evaluation in this thesis. 吀栀e ISO 9241-11 standard de昀椀nes usabil-
ity as follows: “Extent to which a product can be used by speci昀椀ed users to achieve speci昀椀ed
goals with e昀昀ectiveness, e昀케ciency and satisfaction in a speci昀椀ed context of use.” (Lopez
et al. 1998, p. 2). Measuring the usability of an application can o昀昀er detailed insights about
what features and design decisions are well received as well as highlight 昀氀aws that should
be reviewed. An important part of this process is testing by di昀昀erent users (Lopez et al. 1998,
p. 5) by asking to complete a speci昀椀c task that represents a representative or real use case.
A common way to ask for feedback that can easily be evaluated is the use of a Likert scale.
A Likert scale is an evaluation tool that uses a numbered scale to determine agreement with
a question or statement. 吀栀e evaluation done for this thesis uses Likert Scales as part of the
Usability Metric for User Experience. “吀栀e Usability Metric for User Experience (UMUX) is
a four-item Likert scale used for the subjective assessment of an application’s perceived us-
ability.” (Finstad 2010, p. 323). All four items are simple statements about the user experience
in di昀昀erent categories on a scale of 1 (Strongly Disagree) up to 7 (Strongly Agree). Figure 5.1
shows the four statements proposed by the UMUX which are part of the feedback form in a
slightly modi昀椀ed way. Statements can be worded positively or negatively, which in昀氀uences
the evaluation of the rating. To evaluate the available data, it is transformed by scoring pos-
itively worded statements as score - 1, while negatively worded statements are scored as 7
- score (Finstad 2010, p. 326). 吀栀is is done because a low value for negatively worded state-
ments is considered a desirable score, e.g. when rating the experienced frustration with the
system. 吀栀e transformed scores are then summed, normalized, and 昀椀nally scaled between
0-100. 吀栀e mean score across all submissions is the result, representing the perceived usabil-
ity of the system. To allow for accurate and useful feedback for the web interface, a set of
test users with di昀昀erent background experience in topics like programming, NLP, and DUUI
have been asked to participate in a simple assessment split into two parts. Participants start
by completing a task that requires di昀昀erent functionalities of the web interface to be used.
吀栀e experience is then evaluated in a short feedback form on the website, which consists
of a total of eleven questions and statements. In addition to the four statements from the
UMUX, the participants’ background knowledge is also recorded. 吀栀e full list of questions
and statements in the form is available in table 5.1.

24

5.1. APPROACH CHAPTER 5. EVALUATION

Figure 5.1. 吀栀e four statements from the UMUX (Finstad 2010, p. 326) without modi昀椀ca-
tions.

5.1.1. Participants

A total of 19 submissions of the feedback form have been used to evaluate the usability and
overall perception of the web interface. Eight of the participants are familiar with and have
used DUUI before. 吀栀e same is true for experience with NLP, which is expected due to the
connection between DUUI and NLP. Most participants are experienced in programming with
Python being more prevalent than Java. Participants with di昀昀erent levels of expertise can
provide a well-rounded insight into the usability and e昀昀ectiveness of the web interface. 吀栀is
helps mitigate the potential bias that may arise from solely relying on experienced users of
DUUI. 吀栀e evaluation becomes more representative of the broader user base.

Figure 5.2. A stacked bar chart displaying the distribution of experienced and inexperi-
enced participants in programming, NLP, and DUUI.

25

5.1. APPROACH CHAPTER 5. EVALUATION

5.1.2. Task

Each participant has been asked to complete a speci昀椀c task with the web interface. 吀栀e cho-
sen task requires most important functionalities provided by the web interface and encour-
ages the usage of optional but performance increasing capabilities such as copying pipelines
or using templates. 吀栀e task consists of six steps followed by the submission of the feedback
form. 吀栀e individual steps are:

1. Log in with the provided credentials
2. Verify a connection to MinIO has been established or establish one with the provided

credentials
3. Create a pipeline that contains spaCy as its only component
4. Start a process that analyzes text 昀椀les stored inMinIO.吀栀e result should also be wri琀琀en

to MinIO.
5. Create another pipeline that contains spaCy as its 昀椀rst and GerVADER as its second

component.
6. Start another process that has the same input and output but only processes 昀椀les that

are larger than 1000 bytes.
7. Fill out and submit the feedback form.

Credentials for logging in and connecting to MinIO, the source and output path, and docker
image names have been provided as part of the instructions.

Table 5.1. 吀栀e questions and statements in the feedback form used for the evaluation of the
web interface’s perceived usability.

儀甀estion Type
I have experience in programming Scored
I have experience in Natural Language Processing Scored
I will work with Natural Language Processing in the future Yes / No
I have used DUUI before Yes / No
Using DUUI has been pleasant with a graphical user interface Scored
I can program in Java Scored
I can program in Python Scored
吀栀e website’s capabilities meet my requirements Scored
Using the website is a frustrating experience. Scored
吀栀e website is easy to use Scored
I have to spend too much time reading the documentation Scored

26

5.2. DISCUSSION CHAPTER 5. EVALUATION

5.2. Discussion

吀栀eweb interface has generally been well received and has an average score of 5.92/7 with an
exceptionally high rating of 6.5/7 by experienced users of DUUI. UMUX scores of individual
participants lie between 29.17 and 95.83, with more than two thirds of participants giving
good to excellent feedback. 吀栀e distribution can be seen in 昀椀gure 5.3. While the feedback
with a total UMUX score of 79.61 is positive, the lower ratings primarily come from partic-
ipants with li琀琀le or no experience in topics related to the framework. Figure 5.4 shows the
average of score for the web interface and four UMUX statements split by experience with
DUUI. 吀栀e labels Requirements, Frustration, Ease, and Correction represent the UMUX state-
ments seen in 5.1. 吀栀e last statement (Correction) has been changed to represent extensive
reading of documentation. 吀栀is is because rather than correcting parts of the system, users
were encouraged to read the documentation to complete the task. 吀栀e score therefore be琀琀er
re昀氀ects how intuitive the website is to use and how much extra reading is required. Scores
for frustration and correction are expected and desired to be lower because of the negative
wording. 吀栀e results show that the task has been completed correctly in most cases. Some-
times the se琀琀ing for skipping 昀椀les smaller than 1000 bytes in the second process has not been
used. Although small errors happened, the data has been analyzed and stored in MinIO by
both experienced and inexperienced users without major issues. 吀栀ere is, however, a no-
table di昀昀erence in the experienced frustration with the web interface between participants
with and without experience with DUUI. Knowledge about the inner workings of DUUI and
昀氀ow of data appears to be an advantage that reduces the overall frustration with the system.
Additionally, inexperienced participants had to spend more time reading documentation to
resolve confusion and errors. Although this is expected and experience can only be gained
over time, this target audience needs to be more e昀昀ectively introduced to the interface and
related topics, e.g. by increased guidance for users who are just ge琀琀ing started with NLP.

Figure 5.3. 吀栀e distribution of UMUX scores in a histogram showing a clear trend towards
positive reception of the web interface.

27

5.2. DISCUSSION CHAPTER 5. EVALUATION

5.2.1. Accomplishments

吀栀e fact that most participants, despite varying levels of experience, were able to complete
the task correctly is a great success for the project. Although the levels frustration of inexpe-
rienced users may have been higher, the web interface opened the possibility to work with
NLP regardless of prior experience. Doing the same work without the web interface in Java
likely would not have or hardly been possible for inexperienced users.

Because the web API is not part of the evaluation directly, no direct feedback is avail-
able. However, participants who are more pro昀椀cient in Python than Java provide indirect
feedback. 吀栀ey make up an interesting subset because of the connection to the support for
di昀昀erent programming languages introduced in section 4.2.4. An audience of experienced
Python programmers that is not or not as pro昀椀cient in Java indicates that using alterna-
tive programming languages may lead to improved productivity and reduce hesitation to get
started with DUUI.

Table 5.2. 吀栀e average score for the UMUX statements and web interface split into experi-
ence and inexperience with programming and DUUI.

Group Web
Interface Requirements Frustration Ease Correction/

Documentation UMUX

DUUI 6.50 6.13 1.75 5.88 1.50 86.46
No DUUI 5.45 5.45 2.45 5.18 2.27 74.62
Programming 6.29 6.21 2.00 5.86 1.64 85.12
No
Programming 4.80 4.40 2.60 4.40 2.80 64.17

Average 5.89 5.74 2.16 5.47 1.95 79.61

5.2.2. Shortcomings

While the result from the UMUX can be used to get a sense of the perceived usability of the
web interface, it is unclear what caused frustration or made it di昀케cult to use for certain par-
ticipants. However, to enable feedback with concrete and speci昀椀c comments, an optional text
昀椀eld has been added at the end of the form. Based on responses by some participants the web
interface is not intuitive to use in some places. Navigating through the creation of pipelines
and processes has taken more time for some users, because important bu琀琀ons e.g. for navi-
gating to the next and previous steps are easy to overlook. 吀栀is caused confusion as to how
they should proceed. Another issue has been missing or insu昀케cient explanation in places
that use terminology from programming like for example key-value pairs. While experienced
programmers understand what is being asked for, a lack of programming knowledge may
cause confusion and the feature to be dismissed due to not understanding it. Some feedback
responses indicate that a more comprehensive introduction for DUUI and NLP is desired for
a be琀琀er understanding of the system. Being unfamiliar with core concepts decreases overall

28

5.2. DISCUSSION CHAPTER 5. EVALUATION

Figure 5.4. Radar charts showing the average score for the UMUX statements and web in-
terface split into experience and inexperience with programming and DUUI.

usability and satisfaction. Adding an introduction to NLP in the documentation and extend-
ing the existing documentation of the system and its parts is therefore an important step
towards improved usability.

Some of the lower ratings for the web interface did not provide a feedback message as
to what went wrong or caused the frustration, making the interpretation di昀케cult. 吀栀ese
participants may have faced issues with understanding the task or available documentation
and therefore experienced higher levels of frustration because of the system not working as
expected. In such cases, participants might rush through the task without fully understand-
ing it, leading to confusion, errors, and ultimately frustration. As a result, they may provide
lower ratings due to their negative experience with the interface. 吀栀e existing user guid-
ance in form of an introductory modal dialog mentioned in 4.3.2 may have been skipped or

29

5.3. CONCLUSION CHAPTER 5. EVALUATION

is insu昀케cient. Table 5.3 contains ratings for all participants with li琀琀le or no programming
experience1. Because only a small amount of data is available, the reliability is somewhat
limited. Further studies and surveys should therefore be conducted a昀琀er existing feedback
has been taken into account.

Table 5.3. Ratings of participants with li琀琀le or no programming experience highlighting
the subjectivity of the evaluation.

Web Interface Requirements Frustration Ease Correction/
Documentation UMUX

7 6 1 6 1 91.67
7 6 1 6 1 91.67
2 2 5 2 3 33.33
3 3 5 2 5 29.17
5 5 1 6 4 75.00

5.3. Conclusion

吀栀eweb interface and API serve as a 昀椀rst step towards large scale usability for big data anal-
ysis of natural language. 吀栀e graphical user interface introduced in chapter 4.3 allows inex-
perienced users to get started quickly without the need to invest additional time in installing
so昀琀ware, which can be a challenge in itself. Additionally, the standalone web API enables
communication with DUUI by using any programming language and therefore increasing
the framework’s 昀氀exibility. By leveraging the performance and capabilities of DUUI in a
user-friendly environment, users can bene昀椀t from a centralized, secure, and scalable system
capable of big data analysis. Chapter 5 highlights that both experienced and inexperienced
users were able to use the web interface with satisfaction while also being able to mostly
complete work correctly. 吀栀ere is however a notable di昀昀erence in overall satisfaction be-
tween participants with and without experience with programming and DUUI. Experienced
users, having an advantage due to being familiar with core concepts and inner workings of
the framework, are less frustrated with the web interface. 吀栀is indicates that a more compre-
hensive introduction into DUUI, NLP, and their use cases are necessary to further improve
user experience and usability.

1吀栀e entire evaluation dataset can be found on GitHub.

30

6 Future Work

吀栀eweb interface is a 昀椀rst step towards improved usability and user experience when analyz-
ing text documents with Docker Uni昀椀ed UIMA interface. Essential capabilities, as described
in chapter 4, have been implemented and allow for the direct control over pipelines and pro-
cesses from the browser. Despite the improvement in usability, further development for both
the web interface and the API are necessary to handle shortcomings and add bene昀椀cial or
desired capabilities.

6.1. Notifications

During development most processes did not take long to complete so there was no need for
sending noti昀椀cations when errors occurred or the process 昀椀nished. Because the goal is to
allow for the analysis of large amounts of data, longer processing times are expected in a pro-
duction environment. Having a noti昀椀cation system for important events during a process is
mandatory at that point and adds to a positive user experience. Power Automate, a work-
昀氀ow automation tool introduced in section 3.1, uses an email noti昀椀cation system that informs
users when work昀氀ows have failed. DUUI could head in a similar direction by providing error
or summary emails when processes 昀椀nished execution.

6.2. API Bindings

To make the framework e昀케cient and easy to work with in programming languages other
than Java, implementing API bindings for languages like Python or JavaScript could reach a
large target audience. Both of these languages are used extensively and are well-liked by de-
velopers (StackOver昀氀ow 2023). Especially Python is relevant to NLP as it is one of the most
used languages for machine learning related work. Additionally, as mentioned in section 5.2,
users not as pro昀椀cient in Java as in Python would bene昀椀t from this alternative. 吀栀is can be
achieved by abstracting away requests to the API by providing simple functions that hide
the implementation details. Not only is the user not confronted with making requests to a
server directly but is also provided with be琀琀er documentation on what parameters are avail-
able as function parameters. Showing possible properties as optional function parameters is
much clearer than working with raw requests that do not provide hints or autocompletion.
A simple set of bindings have been wri琀琀en to provide an example for future implementa-
tions. 吀栀ese bindings are incomplete and not optimized but should nevertheless showcase
the simpli昀椀cation that can be achieved by abstracting away raw requests. 吀栀e usage can be
seen in section A.1 of the appendix.

31

6.3. CLOUD STORAGE CHAPTER 6. FUTURE WORK

6.3. Cloud Storage

Another possible addition to the backend is support for other cloud providers like OneDrive,
Google Drive, or NextCloud. Due to the simple design of the IDUUIDocumentHandler inter-
face, any cloud provider that o昀昀ers a way to list, read, and write 昀椀les is a candidate. It also
makes sense to give users the option of using several di昀昀erent inputs and outputs in a single
process. 吀栀is could include several locations from a single cloud provider as well as multiple
di昀昀erent cloud providers.

6.4. Branching

Implementing branching in work昀氀ows to allow for an alternate 昀氀ow in case of errors may be
a useful feature. In cases where a component encounters an error or can not be reached, pro-
viding a backup component that can do the same or similar work prevents the failure of the
entire pipeline. 吀栀is is especially important for pipelines where components depend on each
others outputs. For example, a component that detects the language of sentences depends
upon the existence of annotations for sentences and can not function properly otherwise.
Branching can be implemented with simple try-catch logic in the composer by providing a
backup component that is only executed when the original component encounters an error.

6.5. Interaction with Documents

While the annotations that resulted from a process are displayed both as text and visually
in charts, there is currently no way to know what part of the text the annotations reference.
吀栀e generated output is not intuitive if one is not familiar with UIMA and the structure of
the CAS object, but can be transformed into a more visual and intuitive representation due
to it being stored in a standardized XML format. Both internal and third party so昀琀ware could
be used to visualize the output.

32

Bibliography

Borin, Lars et al. (2016). “Sparv : Språkbanken ’ s corpus annotation pipeline infrastructure”.
In: uRl: https://api.semanticscholar.org/CorpusID:198906001.

Borthakur, Dhruba (2007). “吀栀e hadoop distributed 昀椀le system: Architecture and design”. In:
Hadoop Project Website 11.2007, p. 21.

Cardinali, Richard (1994). “Productivity improvements through the use of graphic user inter-
faces”. In: Industrial Management & Data Systems 94.4, pp. 3–7.

Datadog (2024). See it all in one place. https://www.datadoghq.com/product/, last accessed
on 01/03/2024 11:13 MET.

E. Marco琀琀e (2010). Responsive Web Design. https://alistapart.com/article/responsive-
web-design/, last accessed on 16/02/2024 13:20 MET.

Ferrucci, David and Adam Lally (2004). “UIMA: an architectural approach to unstructured
information processing in the corporate research environment”. In: Natural Language En-
gineering 10.3-4, pp. 327–348.

Ferrucci, David, Adam Lally, Karin Verspoor, and Eric Nyberg (Mar. 2009). Unstructured In-
formation Management Architecture (UIMA) Version 1.0. OASIS Standard. uRl: https://
docs.oasis-open.org/uima/v1.0/uima-v1.0.html.

Fielding, Roy吀栀omas (2000). “Architectural Styles and theDesign of Network-based So昀琀ware
Architectures.” PhD thesis. University of California, Irvine.

Finstad, Kraig (Sept. 2010). “吀栀e Usability Metric for User Experience”. In: Interacting with
Computers 22, pp. 323–327. doi: 10.1016/j.intcom.2010.04.004.

Gale, Allyson (2020). Introducing Flyte: A Cloud Native Machine Learning and Data Process-
ing Platform. https://eng.lyft.com/introducing- flyte- cloud- native- machine-
learning-and-data-processing-platform-fb2bb3046a59, last accessed on 01/03/2024
11:12 MET.

Grafana (2024).Why Grafana? https://grafana.com/grafana/?plcmt=footer, last accessed
on 01/03/2024 11:12 MET.

Ken W. Alger (2022). Introduction to the MongoDB Aggregation Framework. https://www.
mongodb.com/developer/products/mongodb/introduction-aggregation-framework/,
last accessed 09/02/2024 10:24 MET.

Leonhardt, Alexander, GiuseppeAbrami, Daniel Baumartz, andAlexanderMehler (Dec. 2023).
“Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI”. In: Findings of the
Association for Computational Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan Pino,
and Kalika Bali. Singapore: Association for Computational Linguistics, pp. 385–399. doi:
10 . 18653 / v1 / 2023 . findings - emnlp . 29. uRl: https : / / aclanthology . org / 2023 .
findings-emnlp.29.

Liddy, Elizabeth D (2001). “Natural language processing”. In.
Lopez, Crhistian Michael Ramos, Jhon Edinson Castro Lopez, Alberto Bravo Buchely, and

Dayner Felipe Ordoñez Lopez (1998). “Ergonomic requirements for o昀케ce work with visual

33

Bibliography Bibliography

display terminals (VDTs) —”. In: uRl: https://api.semanticscholar.org/CorpusID:
14947257.

MinIO, Inc. (2022).High PerformanceMulti-CloudObject Storage. https://min.io/resources/
docs/MinIO-High-Performance-Multi-Cloud-Object-Storage.pdf, last accessed on
27/01/2024, 12:57 MET.

Nadkarni, Prakash M, Lucila Ohno-Machado, and Wendy W Chapman (Sept. 2011). “Natural
language processing: an introduction”. In: Journal of the American Medical Informatics As-
sociation 18.5, pp. 544–551. issn: 1067-5027. doi: 10.1136/amiajnl-2011-000464. eprint:
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf. uRl:
https://doi.org/10.1136/amiajnl-2011-000464.

Prometheus (2024). Metric Types. https://prometheus.io/docs/concepts/metric_types/,
last accessed on 01/03/2024 11:13 MET.

Spark Framework (2024). Spark - A micro framework for creating web applications in Kotlin
and Java 8 with minimal e昀昀ort. https://sparkjava.com/, last accessed on 30/01/2024,
09:11 MET.

StackOver昀氀ow (2023). 2023 Developer Survey. https://survey.stackoverflow.co/2023/,
last accessed on 27/01/2024, 12:57 MET.

Turnbull, J. (2018). Monitoring with Prometheus. James Turnbull. isbn: 9780988820289.
Zapier (2024). Zapier newsroom. https://zapier.com/press, last accessed on 01/03/2024

11:12 MET.

34

A Appendix

A.1. Code Examples

吀栀e following code example shows an example usage of aMinIO document handler with Java.
吀栀e handler is then used by a DUUIDocumentReader both as the input and output handler.
Other se琀琀ings are provided to 昀椀lter documents before processing. Below the code is an
excerpt of events that are printed to the console because the DebugLevel for the composer
has been set to DEBUG.
DUUIComposer composer = new DUUIComposer()

.withLuaContext(new DUUILuaContext().withJsonLibrary())

.withSkipVerification(true)
// Prints all events with a DebugLevel >= DEBUG
.withDebugLevel(DUUIComposer.DebugLevel.DEBUG)
.withWorkers(5)
.withIgnoreErrors(true);

// Create a DUUIMinioDocumentHandler with an endpoint, username and password
DUUIMinioDocumentHandler minio = new DUUIMinioDocumentHandler(

endpoint,
username,
password

);

DUUIDocumentReader reader = DUUIDocumentReader
.builder(composer)
.withInputHandler(minio)
.withInputPath("input/sample_txt")
.withInputFileExtension(".txt")
.withOutputHandler(minio)
.withOutputPath("output/xmi")
.withOutputFileExtension(".xmi")
.withRecursive(true) // Look for documents recursively
.withSortBySize(true) // Sort files in ascending order
.withCheckTarget(true) // Filter already processed documents
.withAddMetadata(true)
.withMinimumDocumentSize(1024 * 3) // Files must be at least 3 kB in size
.build();

composer.addDriver(new DUUIUIMADriver());

35

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

composer.addDriver(new DUUIDockerDriver());

composer.add(new DUUIUIMADriver.Component(
createEngineDescription(BreakIteratorSegmenter.class))
.withName("Tokenizer"));

composer.add(new DUUIDockerDriver.Component(
"docker.texttechnologylab.org/gervader_duui:latest")
.withName("GerVADER"));

composer.run(reader, "example-minio");

/**Excerpt from the debug output of events in the process.
* Timestamp [SENDER] : Message
*
* 1707413608359 [READER] : Skip files smaller than 3072 bytes.
* 1707413608359 [READER] : Number of files before skipping 17.
* 1707413608360 [READER] : Number of files after skipping 13.
* 1707413608361 [READER] : Sorted files by size in ascending order
* 1707413608361 [READER] : Checking output location output/xmi for existing documents.
* 1707413608372 [READER] : Found 0 documents in output location.
* Keeping all files from input location.
* 1707413608372 [READER] : Processing 13 files.
*
* 1707413628184 [READER] : Decoding document input/sample_txt/sample_14_92120.txt
* 1707413628184 [READER] : Document input/sample_txt/sample_14_92120.txt
* decoded after 0 ms
* 1707413628184 [READER] : Deserializing document input/sample_txt/sample_14_92120.txt
* 1707413628190 [READER] : Document input/sample_txt/sample_14_92120.txt
* deserialized after 6 ms
* 1707413628190 [DOCUMENT]: Starting to process input/sample_txt/sample_14_92120.txt
* 1707413628190 [DOCUMENT]: input/sample_txt/sample_14_92120.txt
* is being processed by component Tokenizer
* 1707413628212 [DOCUMENT]: input/sample_txt/sample_14_92120.txt
* has been processed by component Tokenizer
* 1707413628212 [DOCUMENT]: input/sample_txt/sample_14_92120.txt
* is being processed by component GerVADER
* 1707413629297 [DOCUMENT]: input/sample_txt/sample_09_34261.txt
* has been processed by component GerVADER
* 1707413629300 [READER] : Uploading document input/sample_txt/sample_09_34261.txt
* 1707413629357 [DOCUMENT]: input/sample_txt/sample_09_34261.txt
* has been processed after 3370 ms
* 1707413629357 [COMPOSER]: 5 Documents have been processed
*/

36

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

PythonBindings 吀栀e following code example uses Python to create a pipeline, instantiate
it and start a process. All these actions performed with Python are also re昀氀ected in the web
interface. 吀栀is code is part of a small implementation of API bindings for Python. 吀栀e full
code can be found on GitHub at PythonClient.

from duui.client import DUUIClient
from duui.config import API_KEY

CLIENT = DUUIClient(API_KEY)

def main() -> None:
my_pipeline = CLIENT.pipelines.create(

name="My Pipeline",
components=[

{
"name": "Tokenizer",
"tags": ["Token", "Sentence"],
"description": """Split the document into Tokens and Sentences
using the DKPro BreakIteratorSegmenter AnalysisEngine.""",

"driver": "DUUIUIMADriver",
"target": "de.tudarmstadt.ukp.dkpro.core.tokit.BreakIteratorSegmenter",

},
{

"name": "GerVADER",
"description": """GerVADER is a German adaptation of the sentiment
classification tool VADER. Classify sentences into positive,
negative or neutral statements.""",

"tags": ["Sentiment", "German"],
"driver": "DUUIDockerDriver",
"target": "docker.texttechnologylab.org/gervader_duui:latest",
"options": {"scale": 2, "use_GPU": True},

},
],
description="""This pipeline has been created using the API with Python.
It splits the document text into Tokens and Sentences
and then analyzes the Sentiment of these Sentences.""",
tags=["Python", "Sentence", "Sentiment"],

)

pipeline_id = my_pipeline.get("oid")
Instantiate the pipeline so it can be used multiple times
without the need to restart Docker components
CLIENT.pipelines.instantiate(pipeline_id)

37

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

Start a process that finds .txt files with a minimum size of 500 bytes
recursively start from the /input directory in Dropbox.
CLIENT.processes.start(

pipeline_id,
input={

"provider": "Dropbox",
"path": "/input",
"file_extension": ".txt"

},
output={

"provider": "Dropbox",
"path": "/output/python",
"file_extension": ".txt",

},
recursive=True,
sort_by_size=True,
minimum_size=500,
worker_count=3

)

if __name__ == "__main__":
main()

38

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

吀栀e status and progress of a process and its documents can be retrieved by using the schedule
Python library. Schedule provides a simple API for the execution of tasks in a regular interval.
In this case, process and document information is retrieved and printed to the console every
昀椀ve seconds.

...
ID = create_process(...)
Code from the previous example has been omitted to reduce the space taken up.

import schedule
import sys
import time

def update() -> None:
process = CLIENT.processes.findOne(ID)
result = CLIENT.processes.documents(

ID, status_filter=["Failed"], include_count=True
)
total = len(process["document_names"])

print(
f"""Progress: {round(process['progress'] / total * 100)}%
\t{result['count']} Documents have failed.\r""",
end="",

)

if process["status"] in ["Completed", "Failed", "Cancelled"]:
print(

f"""Progress: {round(process['progress'] / total * 100)}
%\t{result['count']} Documents have failed.""",

)

print(f"Process finished with status {process['status']}.")
sys.exit(0)

schedule.every(5).seconds.do(update)

while True:
schedule.run_pending()
time.sleep(1)

39

A.2. PROCESS FLOW CHART APPENDIX A. APPENDIX

A.2. Process Flow Chart

吀栀e following 昀氀ow chart represents a process and all its stages. When an exception occurs,
the process is interrupted and its status set to Failed. 吀栀is can happen at any stage indicated
by the line on the le昀琀 side.

�����

����

����

��������������������

�������������

����*���*�����$
����!�*��� ��!�&!�

�*�����/
�!��*���2�

���=�*�����

K��������!�*B
��� �

����������

N��

N��

P�

P�

P�

P�

�*���*����� �����

���������������*�!��

������W��S�*�T�*�!��

�������������*_

�������m*

������

!��*���

uyxwyvt

~ytwz

��zwt

����yvv

�wtzwt

N��

N��

N��

N��

!�����2���*�!�=�!��

m�����������

���yzt���

���yzt���

���yzt���

��ty��wzt

���yzt���

P�

P�

Figure A.1. Flow Chart for a process. 吀栀e process can be cancelled at any stage by sending
a PUT request to /processes/:id and providing the id of the process. Cancelling
has been omi琀琀ed in the chart for clarity.

40

A.3. WEB INTERFACE APPENDIX A. APPENDIX

A.3. Web Interface

吀栀is section includes additional screenshots and illustrations from the web interface not part
of chapter 4.3. For a live demonstration visit https://duui.texttechnologylab.org/.

Figure A.2. 吀栀e home page of the web interface including the hero and footer sections.

41

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.3. Introduction to the feedback form available in English and German and an ex-
ample for a question posed in the feedback survey described in section 5.1. 吀栀is
is one of eleven total question and statements.

42

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.4. 吀栀e account page for an admin user. Connections to Dropbox and MinIO have
been established.

43

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.5. 吀栀e dashboard that displays a grid of intractable card elements. Each card rep-
resents a pipeline that has been created by the user. Users with the admin role
can also view pipeline templates.

Figure A.6. A card element representing a pipeline.

44

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.7. 吀栀e 昀椀rst step in the creation of a new pipeline is asking the user whether to
start from scratch or from a template that can either be a user de昀椀ned pipeline
created earlier or provided by DUUI.

Figure A.8. Second step of the pipeline builder used to set pipeline speci昀椀c properties.

45

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.9. In the 昀椀nal step, components can be added, removed, and edited. 吀栀e order of
components can be changed via drag & drop.

Figure A.10. Se琀琀ings tab for a pipeline

46

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.11. Processes tab for a pipeline

Figure A.12. Two of the four charts used to visualize statistics for a pipeline.

47

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.13. A component named GerVADER using the DUUIDockerDriver is edited in a
sidebar drawer.

Figure A.14. A process that completed successfully.

48

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.15. A document that encountered an error.

Figure A.16. A document that completed successfully. 吀栀e download bu琀琀on on the top
right allows a direct download of the processed 昀椀le from the target location.
吀栀e annotations that have been added to a document are displayed in text
format and in a treemap. 吀栀e chart reacts to 昀椀lters.

49

A.3. WEB INTERFACE APPENDIX A. APPENDIX

Figure A.17. Example for the documentation of endpoints in the web interface.

50

