Bachelor Thesis

A web-based interface for DUUI

Cedric Borkowski

March 18, 2024

written at the
Department of Text Technology Lab
at the Goethe-Universitiat Frankfurt am Main

Abstract

Natural Language Processing (NLP) for big data requires an efficient and sophisticated in-
frastructure to complete tasks both fast and correctly. Providing an intuitive and lightweight
interaction with a framework that abstracts and simplifies complex tasks assists in reaching this
goal. This bachelor thesis extends the NLP framework Docker Unified UIMA Interface (DUUI) by
an API and a web-based graphical user interface to control and manage pipelines for automated
analysis of large quantities of natural language. The extension aims to reduce the entry bar-
rier into the field as well as to accelerate the creation and management of pipelines according to
UIMA standards. Pipelines can be executed in the browser or using the web API directly and then
monitored on a document level. The evaluation in usability and user experience indicates that
the implementation benefits the framework by making its usage more user friendly, lightweight,
and intuitive while also making the management of pipelines more efficient.

Contents

1.

Introduction 1
1.1. Motivation L 1
1.2. Contributions 1
1.3. Outline 2
Fundamentals 3
2.1. Natural Language Processing 3
2.2. Representation State Transfer 4
2.3. Docker Unified UIMA Interface 4
2.4. Auxiliary Technologies 5
24.1. MinlO 5
242. MongoDB o 5
24.3. Spark Framework Lo 6
244, Svelte 6
Related Work 8
3.1. Workflow Automation 8
3.2. Monitoring 9
Implementation 11
41. UpdatestoDUUI. 11
41.1. InputandOutput 11
4.1.2. Monitoring and Error Reporting 13
41.3. Reusability 13
42. Web API 14
4.2.1. Database Interaction 14
422, Processing 15
4.2.3. Authorization Lo o 17
424. UsagewithPython 18
4.3. Graphical User Interface 18
43.1. Account 18
4.3.2. DocumentationandHelp 19
43.3. Pipelines. 19
43.4. Processes e 21
43.5. Mobile Support 23
Evaluation 24
51. Approach 24
5.1.1. Participants oo oo 25

Contents Contents
5.1.2. Task 26

5.2. DISCUSSION o e e e e e 27
5.2.1. Accomplishments o L. 28

5.2.2. Shortcomings 28

5.3. Conclusion 30
6. Future Work 31
6.1. Notifications e 31
6.2. APIBindings 31
6.3. Cloud Storage 32
6.4. Branching 32
6.5. Interaction with Documents 32
Bibliography 33
A. Appendix 35
Al. CodeExamples. 35
A.2. ProcessFlow Chart 40
A3. WeblInterface s 41

Vi

1 Introduction

1.1. Motivation

The automated analysis of natural language in large quantities is a major challenge for exist-
ing tools and frameworks for Natural Language Processing (NLP) as scalability, performance
and usability are essential for big data analysis. As more and more data, be it in form of
speech, text, or video, becomes available for processing, the infrastructure has to meet new
requirements. With the increase in data also comes the possibility to greatly increase the
capabilities of language models, one of the major building blocks for NLP, that can be used
in areas like real time translation or processing of text and speech, automated chat bots in
customer service, and search engines algorithms to make better and faster suggestions for
users. Although frameworks for NLP exist and are in active use, many do not meet the re-
quirements to efficiently handle big data analysis. Reasons include the lack of scalability
and flexibility to support a wide range of existing tools, security concerns, the requirement
to have proficient knowledge in computer science and NLP itself, as well as being outdated
(Leonhardt et al. 2023). To handle the mentioned shortcomings in existing frameworks, the
Text Technology Lab presents Docker Unified UIMA Interface (DUUI), a new approach to big
data analysis using NLP. DUUI is designed in a modular way to allow usage by a wide range
of users not limited to experts (Leonhardt et al. 2023, p. 388) and supports the operation of
existing and new Analysis Engines (AE) without any need for additional libraries (Leonhardt
et al. 2023, p. 390). Though promising, the framework is still in development and not yet
fully realized. As of now the barrier of entry is still a concern as knowledge in the program-
ming language Java, Docker, and NLP are required to use the software. This thesis presents a
solution that mostly removes this knowledge requirement by providing a web-based graph-
ical user interface (GUI), that handles the creation, management, and execution of pipelines
with DUUI using a simple online editor. The website communicates via RESTful (Fielding
2000) with an application programming interface (API) that handles the usage and storage of
pipelines and their AEs. Since the communication is done via a RESTful API, the usage of
DUUI is not limited to the browser or Java, but also supports practically any other program-
ming language a user may be familiar with. While a GUI can not replace deep understanding
in a subject, it can significantly reduce the learning curve for beginners. By leveraging the
performance and capabilities of DUUI in a user-friendly environment, users can benefit from
a centralized, secure, and scalable system capable of big data analysis.

1.2. Contributions

With this thesis, first steps towards large scale usability for a wide target audience are taken.
To do so, a RESTful API for communicating with DUUI as well as a web-based, platform-
independent graphical user interface have been developed. NLP Pipelines can be created,

1.3. OUTLINE CHAPIER 1. INTRODUCTION

updated, executed, and monitored directly in the browser, improving efficiency and usability.
Without the need for programming knowledge, the framework is approachable for users
with little or no experience in programming. Additionally, because no setup or installation
is required by using the web interface, users can get started quickly. Monitoring and error
reporting are important parts of usability which is why the display of status and performance
on a document level has been a major focus for this work. The web interface provides an
easy way to stay updated on the status per processed document.

1.3. QOutline

Chapter 2 introduces fundamental concepts and technologies used in the implementation
of both DUUI and its supporting software - i.e, the web interface and RESTful API. Exist-
ing frameworks and editors for the creation of automated workflows as well as monitoring
solutions are introduced in chapter 3. Afterwards, chapter 4 documents and describes the im-
plementation details for the web API and interface. The evaluation of usability is discussed
in chapter 5 followed by the final chapter 6 that explains next possible steps and features for
both the API and web interface.

2 Fundamentals

Natural Language Processing and its application in big data analysis is a complex system of
frameworks and technologies complementing and enhancing each others capabilities. The
following chapter introduces core concepts required as a basis for this thesis and gives a
broad overview about auxiliary technologies that have been used.

2.1. Natural Language Processing

Natural Language Processing (NLP) is an application of artificial intelligence and machine
learning that deals with the analysis and interpretation of natural or human language by
computers. It is used to empower machines to understand, interpret, and generate human
language by analyzing text, speech, or video in a scope that is not limited to the purely literal.
NLP technologies utilize complex algorithms and machine learning to develop models that
can understand and respond to language. These models learn from large amounts of anno-
tated data to recognize patterns and relationships in language. NLP is widely used in various
fields, including chat bots such as ChatGPT, automatic translation (e.g. DeepL), information
extraction or search engine optimisation. There are different levels of analysis ranging from
syntactic or grammatical to semantic analysis that vary in complexity (Liddy 2001). An NLP
analysis or task may be used to extract information and gain a deeper understanding of nu-
ances and indirect information as well as the extraction of specific information such as time,
place, entities, or author sentiment. Many higher levels of analysis depend on information
gained from syntactic or lexical analysis like tokens or sentences (Nadkarni et al. 2011). Tasks
are often combined in pipelines, a modular system in which data can be analyzed by multiple
tasks in sequence (Nadkarni et al. 2011) and outputs of one task passed to subsequent ones.

Natural language is a subset of unstructured information, a type of information that en-
compasses a spectrum of data types, ranging from text documents and multimedia files to
sensor-generated datasets. Unlike structured data, which can be organized in well-defined
formats and relational databases, unstructured information poses distinct challenges ow-
ing to its inherent lack of organization. As there is no predefined structure for this type of
data, automatic analysis by machines is difficult or even impossible. NLP, machine learning
algorithms, and advanced data analytics techniques have proven to be important tools for
deciphering patterns and extracting meaningful information from unstructured data sets. To
overcome the challenges that result from the lack of structure in natural language, the Un-
structured Information Management Architecture (Ferrucci and Lally 2004)! (UIMA), project
was launched by IBM in 2005. Since 2007 the project is managed by Apache and is used
to standardize unstructured information in a common format for automatic and efficient
machine processing. UIMA defines the Analysis Engine (AE) as the central processing unit.

'https://uima.apache.org/, last accessed 16/02/2024 14:07 MET

2.2. REPRESENTATION STATE TRANSFER CHAPTER 2. FUNDAMENTALS

An AF annotates its input data and stores these annotations in a Common Analysis Structure
(CAS) object for further processing by following AEs. The CAS object is a tree like data struc-
ture commonly represented in the Extensible Markup Language (XML) format, that contains
the subject of analysis (sofa). The sofa itself contains the data to be analyzed (Ferrucci, Lally,
et al. 2009) and all performed annotations - i.e. metadata. The CAS gains great flexibility by
the use of a user-defined type system for application specific use cases. Each CAS object is
paired with a type system that defines the structure of the data, such as tokens, sentences,
or parts of speech. UIMA provides a minimal or base type system that provides frequently
occurring and platform-independent types (Ferrucci, Lally, et al. 2009).

2.2. Representation State Transfer

Representation State Transfer (REST) (Fielding 2000) is an architectural style for building net-
worked applications and is used for communication between clients and servers. In REST,
resources are identified by a Uniform Resource Identifier (URI), and interactions with these
resources are performed using standard Hypertext Transfer Protocol (HTTP) methods such
as GET, POST, PUT and DELETE. These methods correspond to the CRUD operations (Cre-
ate, Read, Update, Delete) that are usually associated with database systems. One of the key
features of REST is that each request made by a client to a server must contain all infor-
mation required to understand and respond to the request. The server does not store any
client state between requests. Additionally, REST often employs a representation format,
such as JavaScript Object Notation (JSON) or Extensible Markup Language (XML), to serial-
ize and deserialize data exchanged between clients and servers. JSON is also the preferred
form of data transmission through HTTP for the implemented API in section 4.2. The design
decisions bring benefits in visibility because requests are self sufficient by providing all nec-
essary information to be fully understood, reliability because errors can be recovered from
much easier, and scalability because no resources have to be spent on state management by
the server (Fielding 2000, p. 79).

2.3. Docker Unified UIMA Interface

Docker Unified UIMA Interface is a lightweight NLP framework developed by the Text Tech-
nology Lab. It serves as a new approach for analyzing natural language for big data appli-
cations. At its core the framework is used to create and run pipelines that contain UIMA
based annotators. One of the main concepts is the unification of and support for annota-
tors developed in many different environments. This allows for the integration of existing
tools while also providing a way to easily test and include newly developed tools. DUUI
has already proven to be efficient and fast (Leonhardt et al. 2023, pp. 392-393) by utilizing
a native Docker Swarm implementation for horizontal scaling and Lua? as a scripting lan-
guage for communication with annotators that are not native to UIMA. The framework can
be used to process plain text or large quantities of files in parallel. While the infrastructure

Zhttps://www.lua.org/, last accessed: 14/02/2024 13:20 MET

2.4. AUXILIARY TECHNOLOGIES CHAPTER 2. FUNDAMENTALS

and foundation has been implemented, key features like integrating cloud storage for read-
ing and writing data are not yet available. Additionally, as described by Leonhardt et al.
(2023, p. 390), usage is limited to Java and the command line. A web-based interface and API
complemented by a sophisticated monitoring and error reporting system are the next steps
to allow for lightweight usability.

2.4. Auxiliary Technologies

This project is built with the help of tools and frameworks that offered great flexibility in the
development phase. Some of the most important technologies are MinIO, MongoDB, Spark
Framework, and Svelte.

2.4.1. MinlO

MinlIO? is an s3 compatible object storage system designed for environments with heavy
workloads that require reliable performance and availability. It is both fast and flexible due
to its horizontal scaling capabilities using so-called server pools (MinlO, Inc. 2022). Access
management is achieved by creating users that authorize using access (username) and secret
(password) keys. Each user receives policies that define what resources are visible and can
be changed (MinlO, Inc. 2022). Performance is one of the biggest selling points for MinIO
which is backed by benchmark results (MinlO, Inc. 2022) showing much faster runtime when
compared to Hadoop Distributed File System (Borthakur 2007), a distributed file system that
itself has many applications in big data due to its reliability.

2.4.2. MongoDB

MongoDB* is a non-relational database that stores data in collections of documents. Docu-
ments are stored in a format very similar to JSON, a map of key value pairs. Because collec-
tions do not have to follow a pre-defined schema, documents can quickly adapt to changes
in the software that can occur frequently during development. A feature that significantly
reduces server loads is the Aggregation Framework (Ken W. Alger 2022). The Aggregation
Framework is used to build pipelines that enable developers to perform complex data trans-
formations and queries directly in the database. Its flexibility, performance, and the JSON-
like structure make MongoDB fit perfectly in many modern environments and web-based
applications.

MongoDB has been chosen as the database for this project because of its adaptability in
a frequently changing application. Additionally, MongoDB offers built in support for the
conversion of JSON into simple data structures for usage in Java.

Shttps://min.io/, last accessed 04/02/2024 19:57 MET
*nttps://www.mongodb. com/, last accessed: 04/02/2024 18:47 MET

2.4. AUXILIARY TECHNOLOGIES CHAPTER 2. FUNDAMENTALS

2.4.3. Spark Framework

“Spark Framework is a simple and expressive Java/Kotlin web framework DSL built for rapid
development” (Spark Framework 2024). Instead of objects and classes, Spark® makes use
of static methods allowing for very concise and readable code. Defining an API endpoint
is as simple as creating a static method named after a request method, e.g. GET or POST,
and providing a callback that handles the request. Spark proves to be extremely flexible and
easy to use during development, allowing changes to be implemented without the need for
complex refactoring. Using Spark, the entire /pipelines path group can be defined in just 16
lines of code as seen in figure 2.1.

path("/pipelines", () -> {
before("/*", (request, response) -> {
DUUIHTTPMetrics.incrementPipelinesRequests();
boolean isAuthorized = DUUIRequestHelper.isAuthorized(request);
if ('isAuthorized) {
halt (401, "Unauthorized");

1)

get("/:1d", DUUIPipelineRequestHandler::findOne);
get("", DUUIPipelineRequestHandler::findMany);
post("", DUUIPipelineRequestHandler::insertOne);
put("/:id", DUUIPipelineRequestHandler: :updateOne);
post("/:id/start", DUUIPipelineRequestHandler::start);
put("/:id/stop", DUUIPipelineRequestHandler::stop);
delete("/:id", DUUIPipelineRequestHandler::deleteOne);

13

Figure 2.1. Defining a path group with Spark

2.4.4. Svelte

Svelte® is a JavaScript framework designed to build web-based user interfaces. It was first
released in 2016 and has steadily gained popularity because of its unique design. Svelte is
distinct from many other frontend frameworks in that it shifts much of the work from the
browser to the build step. Code is written in a Svelte specific language that allows for reac-
tivity and management of state with minimal effort. In the build step, this code is compiled
into highly optimized JavaScript. Development with Svelte has proven to be both fast and
reliable. While the framework does not have a community as large as React’, there are still
many well designed component libraries available that help with development speed and
consistency. The 2023 Developer Survey (StackOverflow 2023) revealed, that although not

Shttps://sparkjava.com/, last accessed: 04/02/2024 18:47 MET
Shttps://svelte.dev, last accessed: 04/02/2024 18:47 MET
"https://react.dev/, last accessed: 05/02/2024 00:16 MET

2.4. AUXILIARY TECHNOLOGIES CHAPTER 2. FUNDAMENTALS

used as much as long standing frameworks like React, Svelte is well-liked by its community.
Around 75% of developers that used Svelte would consider using it again.

3 Related Work

The work done in this thesis is split into the backend and frontend parts that interact with
each other to improve the usability of DUUL As a starting point, different workflow automa-
tion tools have been explored in regards to what information about workflows is presented
and how it is visualized.

3.1. Workflow Automation

Web based user interfaces that offer visual feedback and a way for users to interact with
complex software is common in most areas of technology. This holds for software designed
to automate repetitive tasks with workflows for data management, logging, and processing.
Automation is important for many reasons including the increase in productivity and ho-
mogenization of workloads under one software which makes maintenance much simpler.
There are many tools available that allow for the creation or usage of automated workflows.
A simple annotation tool is Sparv (Borin et al. 2016) that can be used from the the command
line or in a web interface to annotate a text document with support for sentence, token,
lemma, and part of speech tagging. Tools like Flyte and argo are designed for large scale
data processing and machine learning tasks powered by Kubernetes with Natural Language
Processing being a subset of possible use cases. Workflow automation is applicable in other
areas as demonstrated by Zapier, a tool used by over two million businesses (Zapier 2024),
or Power Automate that is part of the Microsoft 365 ecosystem. Both focus on automating
business logic and managing communication between different third party applications with
countless integrations making them very flexible. While use cases differ, the core concept
for automation software is the same: Automate repetitive tasks efficiently. Accessibility and
usability are vital for both user experience and efficient maintenance by developers.
Providing an intuitive and simple way to interact with software is essential for usability.
Steep learning curves and high barriers of entry discourage the use of software early on for
many potential users. To prevent these issues from arising, graphical user interfaces for vi-
sual feedback paired with intuitive drag and drop editors are a common practice for workflow
building tools. argo, Zapier and Power Automate have web-based editors that make the cre-
ation of potentially complex workflows efficient and quick. Workflows can be created from
scratch or from a wide range of templates that serve as a starting point and help new users
to explore existing features. In the editor a workflow is visually represented by a Directed
Acyclic Graph (DAG). In contrast, Flyte workflows are created in code, meaning expertise in
at least one of the supported programming languages is mandatory. The framework aims to
reduce overhead and increase production speed in a scalable and hosted environment that
runs reproducible workflows (Gale 2020). While Flyte is a comprehensive, well-documented
framework in active development, getting started is difficult due to the entry barrier being
higher than competing technologies. Installation and creation of workflows having the re-

3.2. MONITORING CHAPIER 3. RELATED WORK

quirement of at least some knowledge of the command line and programming may prevent
users from utilizing its full potential. Most mentioned tools include the option to monitor
the progress and status of workflows visually in a web-based interface. In case of errors, pre-
senting meaningful information that helps with the correction of such errors is invaluable
especially for less experienced users unfamiliar with the underlying software. Most existing
tools use very individual solutions to offer their users insights in the inner workings of the
software. While each tool has their own design and displays different information, the state
of individual tasks and their duration are provided by all mentioned tools. Power Automate
and Flyte have been explored in greater detail with a focus on GUI design, inspiring parts of
the web interface for DUUL

3.2. Monitoring

Monitoring describes the process of tracking and interpreting application metrics by trans-
forming the information into a measurement of system integrity and user experience (Turn-
bull 2018, pp. 6-7). It relies on the applications to expose relevant metrics that can then
be scraped for further processing and possibly visualization. A popular, highly customizable
monitoring system is Prometheus which is used in this project due to its simple setup, compat-
ibility, and easy integration with many visualization tools. Prometheus works by scraping
metrics from HTTP endpoints exposed by applications (Turnbull 2018, p. 48) and storing
them in time series for further analysis. There are four types of metrics used by Prometheus
(Prometheus 2024):

« Counter, a metric for numerical values that can only be increased.
+ Gauge, a metric for numerical values that can be increased and decreased.

 Histogram, a metric that groups observations into customizable ranges and tracks the
total count in each range.

« Summary, similar to a histogram but instead of in ranges, values are grouped in quan-
tiles instead.

These metrics are exposed in a text-based format as seen in figure 3.1 and transformed into
meaningful data that can be visualized in a time series.

The visualization can be done by the local Prometheus dashboard or sent to a specialized
monitoring and visualization software. Two very flexible and well established metric visu-
alization tools are Grafana and Datadog, both of which have integrations for Prometheus.
Grafana is a tool for visualizing a diverse set of application and system related metrics in
intuitive dashboards (Grafana 2024). These dashboards allow developers to gain real time
insights in the integrity of servers, memory usage, network latency, or response times. The
representation of metrics in charts in a centralized dashboard helps with the fast identifica-
tion of critical failures and high system loads which increases the reliability and availability
of applications. Due to its intuitive interface, dashboards can be designed for one’s individ-
ual needs, making Grafana flexible. The platform’s versatility lies in its ability to connect

3.2. MONITORING CHAPIER 3. RELATED WORK

TYPE uptime counter

<|:jij HELP uptime Appliance uptime in seconds
ptime 132620 Metric Name

HELP appliance_iosize_total Appliance Total IO Size

: R Description
—]_# TYPE appliance_iosize_total gauge
appliance_iosize_total 72601.68 Metric Type
HELP vol_iops_read Volume Read IOPS
TYPE vol_iops_read gauge Reading
vol_iops_read{vol_name="ansible_@e1"} 13.8 Labels
vol_iops_read{vol_name="appl_vol-83"} 24.8
vol_iops_read{vol_name="ESX vol _@1"} 553.8
vol_iops_read{vol_name="ESX-vol-@2"} 271.@
Figure 3.1. Prometheus metrics format, https://vexpose.blog/2022/02/18/

prometheus-exporter-for-powerstore/, last accessed: 16/02/2024 15:46
MET (Screenshot from 16/02/2024 15:46 MET)

with various data sources (Grafana 2024), including databases, cloud services, and monitor-
ing tools like Prometheus.

Datadog is similar to Grafana as it also provides a platform to create dashboards that vi-
sualize metrics for more informative and robust monitoring of applications. Compared to
Grafana, Datadog is a more advanced tool with additional features that make it an all in one
monitoring solution. The platform’s alerting system is a standout feature, allowing users
to set up notifications based on specific thresholds and conditions (Datadog 2024). With
machine learning algorithms, Datadog’s alerting becomes more intelligent over time. This
ensures that developers are quickly notified of potential issues, reducing downtime and en-
hancing the overall reliability of the system. While this can be useful in many cases, the
complexity also increases significantly and many features may remain unused in projects
that do not require them.

Although both technologies offer very similar capabilities for visualizing application and
system metrics, Grafana has been chosen for this project because creating intuitive dash-
boards is simple and quick while most features that make Datadog stand out are simply not
required for DUUI at this point.

10

4 Implementation

Building an interface for DUUI requires multiple steps and prerequisites. Features and data
structures extending the framework to create the possibility for big data analysis that is not
limited to local files have to be added. Furthermore, having control over and presenting
detailed insights about the state of processes is only possible if methods and data to achieve
these goals are available. The following sections provide an overview into the changes made
to the framework and how these changes were used in the design of both the backend and
frontend parts of the web APIL The code written for this thesis can be found on GitHub'.

4.1. Updates to DUUI

Docker Unified UIMA Interface is the basis for the implementation of both the API and the
web-based interface. The framework must provide a way to extract the integrity of pipelines
and progress of documents. As described in section 2.3, one key feature is the integration
of cloud storage providers as input sources and output locations for documents. Instead of
relying on local files and plain text as data sources, the option to read from and write to cloud
providers greatly enhances productivity and enables DUUI to be used for real world big data
analysis.

4.1.1. Input and Output

The addition of the IDUUIDocumentHandler interface to DUUI provides easy integration with
a user’s cloud storage of choice. An implementation of the interface for a specific provider
includes five basic methods that are used to interact with the API of the service. These five
methods offer a way to read, write, and list files at a specific location with the option to do
so recursively. The read and list methods return DUUIDocuments that are the container for
the files to be processed while also storing metrics during processing. There is also an im-
plementation called DUUILocalDocumentHandler for reading from and writing to disk. The
simple interface design allows for the implementation of practically any third party cloud
storage as a provider as long as an API to interact with the data exists. As a starting point,
two cloud storage services namely, Dropbox and MinlO, have been implemented for DUUL
Using these implementations requires the user to provide credentials for authorization. Ex-
ample code for the usage of MinlO can be found in the appendix at A.1. When used in a
process with DUUI a handler is always used by a DUUIDocumentReader, a class that is re-
sponsible for the pre-processing of documents and managing both read and write operations
for the installed handlers. When the composer’s run method for using a DUUIDocumen-
tReader is called, file metadata is retrieved by calling the listDocuments method. This initial

'https://github.com/texttechnologylab/DUUIController, last accessed 12/03/2024 12:55 MET

11

4.1. UPDATES TO DUUI CHAPITER 4. IMPLEMENTATION

listing of documents in the source location is followed by multiple filters that may reduce the
number of files to be processed, depending on the settings that were passed to the reader.
The remaining documents are then read and processed by one or multiple threads or workers.
Figure 4.1 visualizes these steps in a flow chart. The actual file content is stored as raw bytes
in a DUUIDocument object during processing and cleared when the document has been up-
loaded to the output location or is otherwise finished. Clearing the bytes after processing the
document is done to reduce peaks in memory usage that would occur if all files were stored
in memory at once. The final part of writing files is planned to be extracted into a separate
class (DUUIDocumentWriter) in the future but has been implemented here for simplicity.

Listing Start

create DocumentReader
create IDUUIDocumentHandler

list Documents

Fllter filter by size

sort by size

remove if in target

Analyze

document

Stop No ;
in queue

Worker (1 of n)

Yes

read Document
remove from queue
analyze
write Document
clear content

Figure 4.1. Flow of data through a process using the DUUIDocumentReader class and IDU-
UIDocumentHandler interface.

12

4.1. UPDATES TO DUUI CHAPITER 4. IMPLEMENTATION

4.1.2. Monitoring and Error Reporting

Docker Unified UIMA Interface used simple logging to the console as a way to provide a way
of monitoring the state on progress of a pipeline. To allow for more sophisticated logging
of important stages and tracking the exact timestamp at which these events occur, an event
system has been added. Events can be added at any desired stage of a pipeline by calling
the composer’s addEvent method. The method then creates a DUUIEvent object that holds a
timestamp, sender, and message. In the addEvent method, the event can be processed further,
stored in a database, or simply logged to the console by setting the composer’s DebugLevel
which acts as a filter. In the process of adding events in various places, the possibility to can-
cel a process has been added as well by providing the composer’s shutdown flag in multiple
processing steps. Cancelling a process is then done by simply calling the shutdown method
on the composer which signals drivers and components to stop as soon as possible. Through
the addition of a DUUIDocument class, a per file monitoring is achieved. A DUUIDocument
object not only contains file metadata and content but also tracks many metrics including
progress, status, file size, durations for the different steps in the pipeline, and errors.

4.1.3. Reusability

The final addition to the framework is an alternate approach to the instantiation and usage
of pipelines. With the exception of native UIMA based annotators, instantiating components
takes up to ten seconds per component because communication via RESTful has to be estab-
lished before it can be used. Additionally each instance of a component running as a Docker
container has to be started individually by the Docker Daemon which further increases the
duration of instantiation. Although not as much of an issue for simple pipelines, instanti-
ating a complex pipeline every time a process is started is both unnecessary and delays the
actual process. There have been multiple attempts to circumvent this issue that each had
their downsides. The first attempt was to prevent the composer from going through its de-
fault shutdown procedure by setting a flag that would skip the shutdown of the pipeline. Al-
though this approach worked, it revealed a different issue caused by the fact that a pipeline
is tied to the composer that instantiated it. Because of this coupling, stopping one pro-
cess would also cancel all other active processes using this pipeline. One way to resolve
this problem is to reduce coupling between pipelines and composers and share instantiated
pipelines among different composer instances. In the final implementation, methods have
been added to the composer class that instantiate and return a pipeline for future processing.
These instantiated pipelines can then be stored and passed to another composer by calling
the withInstantiatedPipeline method. Using this approach, processing can start immediately
without any time spent on creating the type system or starting docker containers. Pipelines
can be instantiated sending a POST request to the /pipelines/start endpoint or through the
web interface.

Running a pipeline in the background could be extended by a scheduled job that period-
ically checks for files in a specific input location. When unprocessed files are detected, the
pipeline would then automatically process these files without the need to manually start the
pipeline each time.

13

4.2. WEB API CHAPITER 4. IMPLEMENTATION

4.2. Web API

The backend is responsible for handling the communication between clients, the database,
and DUUL It has been implemented in Java using the Spark Framework by defining a set of
routes that are organized in path groups. Routes can be split into three categories that are
responsible for different tasks. The first type of routes is used to interact with the database by
reading and writing resources that are then displayed to the user. The second type commu-
nicates with DUUI directly, providing functionalities to start and cancel processes. Addition-
ally, instantiating and shutting down pipelines, as described in section 4.1.3, is possible using
routes in the pipelines path group. These routes operate through two classes, a controller
and a request handler. The request handler validates the incoming request and transforms
its data into a usable format before passing it to the appropriate controller. The controller
then uses this transformed data to perform the requested action. The structure of DUUI is
reflected in the web API through five controllers that represent different building blocks of
analysis. Lastly there are two routes that can be used for uploading and downloading files
using the IDUUIDocumentHandler interface and one that exposes metrics that are scraped
by Prometheus for monitoring purposes. The web API integrates Prometheus by exporting
a variety of different metrics that can be scraped from the /metrics endpoint and visualized
with a tool like Grafana or Datadog introduced in section 3.2. Prometheus metrics should
follow a specific text-based format that is automatically applied to metrics when using the
Prometheus Java-Driver. Figure 4.2 shows an example of the creation and export of a metric
as a static variable using methods provided by Prometheus. Expanding the set of exported
metrics is simply done be registering new metrics as variables and providing methods to
update them.

4.2.1. Database Interaction

MongoDB has in many ways improved the readability of code used in the backend by pro-
viding a simple API for database operations and handling of data in the JSON format. The
MongoDB Java driver works with the Document class that in its core is a wrapper around a
Map object in Java. Documents can be created from a JSON string using the parse method
and also transformed into a JSON string with the to7SON method. This capability has been
very useful for most routes by reducing the amount of code and therefore improving read-
ability. With the transformed data available, making changes to the database is as simple as
calling a method like insertOne, updateOne, or deleteOne for the appropriate collection. Write
operations are, in most cases, straightforward and can be executed by providing the required
data. Read operations on the other hand can be more challenging because not all available
entries in the database are of interest or should be accessible to a user. Additionally, retriev-
ing a large dataset all at once from the database causes performance issues because more data
has to be sent over the network. This is especially problematic in graphical user interfaces
that have to deal with longer loading times. The solution to this issue is the reduction of
returned entries by applying filters to a dataset. MongoDB has a feature called the Aggre-
gation Framework (Ken W. Alger 2022), a powerful tool for complex data transformations
used in the implementations for most controllers in this project and especially important in

14

4.2. WEB API CHAPTER 4. IMPLEMENTATION

private static final Gauge requestsActive = Gauge.build()
.name("duui requests active")
.help("The number of active requests")
.register();

public static void incrementActiveRequests() {
requestsActive.inc();

public static void decrementActiveRequests() {
requestsActive.dec();

public static String export() throws IOException {
StringWriter writer = new StringWriter();
CollectorRegistry registry = CollectorRegistry.defaultRegistry;

TextFormat.write004 (writer, registry.metricFamilySamples());
return writer.toString();

Figure 4.2. Creation and export of a Prometheus metric in Java.

the implementation of the pagination system for tables in the web interface. The aggregation
framework is used to build so-called aggregation pipelines that consist of one or more stages,
each of which applies a specific operation to entries in the database. These operations include
filters, projections for adding and removing fields from entries, grouping, sorts, and many
more that are case specific. Database read operations are complemented by the MongoDB-
Filters convenience class that groups common filters applied to collections including limit,
skip, sort, order, search, and comparison filters into a single object for easy access. Filters are
extracted from the request and added to a MongoDBFilters object that is then used in database
operations. Figure 4.3 shows the different steps and interactions in data base operations. The
web interface makes use of these filters with the PaginationSettings type that allows for the
retrieval of a specific range of entries from the database. Only three values are required for a
functioning pagination system: the page number, the page size (limit), and the total number
of matching entries.

4.2.2. Processing

With the database interaction implemented, the next step is being able to use pipelines with
DUUL To do so, the DUUISimpleProcessHandler class has been created. An instance of a
process handler encapsulates the execution of a pipeline by administrating all steps from ac-
quiring data to running the pipeline, possibly writing the result to the output location, and
cleaning up resources once the process has finished successfully or failed due to an error. A

15

4.2. WEB API CHAPITER 4. IMPLEMENTATION

Request
extracts filters
vaildated by

MongoDBFilters creates RequestHandler returns Response

calls returns data
uses

Controller
communicates with

Database

Figure 4.3. Interactions between different classes and objects during a request.

flow chart representing a process can be found in the appendix in figure A.1.

A process is initiated by sending a POST request to the /processes endpoint. The request
body must include the id of the pipeline to be executed and an object containing the infor-
mation for the data source (input). Optionally, an object for the output location and addi-
tional settings for the process can be sent in the request as well. Before creating an instance
of a DUUISimpleProcessHandler, the controller checks if a pipeline with the specified id is
available and instantiated already. If so, the instantiated pipeline is passed in the handler’s
constructor for reduced setup time. Otherwise, a new pipeline is instantiated and used for
processing instead. Once an instantiated pipeline is available, the process handler starts the
execution by reading data from the input location, applying filters from the settings object
to possibly reduce the number of documents that need to be processed. The remaining doc-
uments are then processed by one or more workers in parallel until the queue is empty. If
an output handler and location have been declared during setup, each document is written
to the output location as soon as it has finished processing. The output step is performed
per document and not after all documents have finished to reduce memory loads. Memory
usage can be high because the document stores file contents in bytes during processing. The
bytes are cleared right after uploading as storing them is no longer required. In each stage
the progress and status of documents is updated in the database using a separate, scheduled
thread to reflect the current state in the web interface. The final stage in a process is called
exit and cleans up resources that are no longer used. The exit step can be reached in three
states:

Completed The process completed without fatal errors. This does not guarantee that all
documents have been processed successfully. If the ignore_errors flag has been set, docu-
ments encountering errors are skipped without throwing an exception.

16

4.2. WEB API CHAPITER 4. IMPLEMENTATION

Failed The process has failed during execution due to a fatal error. Fatal errors can occur
at any stage of a process and immediately interrupt the pipeline.

Cancelled The process has been cancelled by sending a PUT request directly to /pro-
cesses/:id or by submitting a cancel request from the web interface. A cancellation is not an
immediate interruption but prevents further documents from being processed by signalling
the composer to shutdown as soon as possible.

Regardless of the state that lead to the exit stage, one last update is performed , setting the
final result of both the process and each document. If the pipeline has been reused, it is not
shut down but remains active for future requests.

4.2.3. Authorization

To utilize cloud solutions in a process, users need to authorize DUUI to make requests on
their behalf. For Dropbox, this involves undergoing an OAuth 2.0 authorization process
on the Dropbox website, granting DUUI access to create a dedicated folder for performing
IO operations. Upon user acceptance, Dropbox returns a one-time code used to generate
an access token. Because access tokens have a limited lifespan, a more practical approach
involves generating a refresh token alongside the access token using the code returned after
the OAuth 2.0 authorization. The refresh token allows DUUI to generate a new access token
as needed without requiring the user to repeat the authorization flow. This method ensures
continued access while still allowing the user to revoke access at any time. For MinlO, users
must provide DUUI with an access key and a secret key for authorized requests in addition
to the endpoint at which the service can be reached. The user creates an account for DUUI
in their s3 solution, allowing DUUI to store both a username (access key) and a password
(secret key) for a specified endpoint. These credentials, which define the scopes and buckets
DUUI can access, can be managed by the user. Unlike Dropbox, there is no need for repeated
authorization flows, as the username and password alone are sufficient for making authorized
requests on behalf of the user.

As anyone can send requests to a URL, the security of data depends on the verification
of the clients identity (authentication) and if the client is allowed to access the resources
(authorization). To prevent unauthorized requests and unwanted changes in data, clients
are asked to send an authorization header with each request. The website uses a session id
as its method of authorization which means that the user must register and be logged in to
use the application. The session id is automatically sent to the server as proof of identity.
Unauthorized requests are rejected by the server with the status code 401 - Unauthorized,
meaning only the owner can modify their data. Because the session id is created in the
web interface after logging in and is therefore tied to the browser, it cannot be used for
authorization in any other environment. This limits the support for the usage of DUUI from
other programming languages.

17

4.3. GRAPHICAL USER INTERFACE CHAPIER 4. IMPLEMENTATION

4.2.4. Usage with Python

To allow communication with the API from outside the web application, other authentica-
tion methods are required. A common solution is the usage of API keys, a unique proof of
identity, as an alternative to the session id. API keys allow the communication with DUUI
using any programming language the user may be familiar with which broadens the target
audience significantly. As an example, the usage of Python? with DUUI has been explored.
Python is a well-liked and widely used interpreted programming language as can be seen in
the Developer Survey done by StackOverflow (2023). It has an easy to learn syntax and be-
cause of that offers rapid development speed. It is also considered one of the most important
languages in machine learning, which includes the field of natural language processing, as
many frameworks and libraries such as Scikit-learn, TensorFlow, PyTorch, spaCy and Keras
are available for rapid development of machine learning applications. In addition, libraries
such as Pandas and NumPy offer the possibility of efficiently transforming large amounts
of data and performing mathematical operations. Given that Python is so widely used and
beginner friendly, the target audience can be increased by providing simple bindings for the
usage of DUUL These bindings should abstract the inner workings of the API by hiding raw
requests behind intuitive and well documented functions. The usage of Python for creating
and using a pipeline with the API can be seen in A.1.

4.3. Graphical User Interface

The design of the web interface went through many iterations while always reflecting the
frequently changing capabilities of the web APL. Its primary goal is to increase the usability of
DUUI and offer the possibility of using the framework without having to code or even know
how to write code in the first place. This aligns with the purpose of a GUI to significantly
reduce the barrier of entry and open the possibility for inexperienced users to effectively use
a software (Cardinali 1994, p. 7). To do so, a multi-page website > with many capabilities for
the analysis of large quantities of data has been created.

4.3.1. Account

The account page is the first page a user visits after the registration has been completed
successfully. Profile information as well as preferences for the website’s behavior and ap-
pearance are available here. Additionally, the generation, deletion, and retrieval of the user’s
API key and connections to external cloud providers are managed on this page. Users with
the admin role can manage permissions of other accounts in an additional view that is hidden
for regular users.

Zhttps://www.python.org/, last accessed 16/02/2024 16:37 MET
3The web interface can be found at https://duui.texttechnologylab.org/.

18

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

4.3.2. Documentation and Help

The web interface includes a documentation page for the web API, its endpoints, and the
usage of the website itself. The website documentation introduces capabilities and features
in a linear structure by guiding a user through the process of creating pipelines and com-
ponents interactively. In addition, a modal dialog as seen in figure 4.4 can be opened from
the navigation at the top of any page that explains how to create and use pipelines. The API
reference includes detailed documentation for every endpoint that can be reached by users
including possible parameters and code examples as seen in figure A.17.

Welcome to DUUI Web! X

About DUUI

DUUI automates big data analysis using containers called Pipetines for

components Ehat make up an executable workflow. Each Component must
follow the implementation as defined by DUUI and is therefore a UIMA
conform annotator. A pipeline consists of one or multiple Components that
can be customized through various settings.

You can always open this guide from the navigation at the top
= under Documentation > Help

Do you want to start a small tour explaining the parts that make up DUUI?

Explare on yodrewn Q

Figure 4.4. A modal that is shown after registration or when opened from the navigation
under Documentation > Help.

4.3.3. Pipelines

Pipelines are created in the pipeline builder at /pipelines/build in a three step form. First
the user is asked if they want to create a pipeline from scratch, meaning all settings are set
to default and no components are predefined. If the user decides to start from one of the
templates provided by DUUI, all settings are copied from the template to a new pipeline that
can then be further customized. Regardless of the starting point, the user proceeds to the
second step, at which pipeline related information, including name, description, tags, and
pipeline settings, can be set. In the final step, components can be edited and added to the
pipeline. A component can also be created from scratch or from a template. There are a
few settings that are mandatory for components. These include the driver and the target

19

4.3. GRAPHICAL USER INTERFACE CHAPIER 4. IMPLEMENTATION

Components
&, Tokenizer (@ Clone # Edit
+
1:‘ Paragraph Splitter (@ Clone @ Edit
+

Figure 4.5. Representation of a pipeline with two components in the web interface. Com-
ponents can be added at the end or between existing components.

which can be a docker image name, a remote URL to the running component, or a class path
depending on the selected driver. Every other setting is optional but filling in meaningful
values in the description or tags input fields is recommend to help with documentation and
reusability. Depending on the selected driver, a set of options can be set that influence the
component’s behavior. All types of components offer the scale option that replicates the
Analysis Engine to increase processing speed. Other important options are use_ GPU and
docker_image_fetching. The latter allows DUUI to download the image from the docker hub
if it is not available locally.

All user created pipelines are found at /pipelines where a dashboard showing a grid of cards
with broad information about a pipeline can be found. This includes name, description, tags,
how often the pipeline has been used, and how many components are part of the pipeline.
By clicking one of the cards the website navigates to a pipeline specific page that provides
a more detailed look in the specific pipeline. The page for an individual pipeline is reached
at /pipelines/id and split into the three tabs: settings, processes, and statistics. The settings tab
allows the user to manage options and properties for the pipeline and its component. The
pipeline name, description, tags, and settings can be updated here. Additionally, this tab lists
all pipeline components in a DAG that can be rearranged to change the order of execution.
Components can also be added to the pipeline either at the end or at a specific position both
from scratch or using one of the available templates. Each component can be edited in a
Drawer (figure A.13) on the right side of the screen. This drawer shows all settings related
to this specific component and offers actions to update and delete the component. When
focusing certain input elements, a tooltip is displayed that clarifies the expected input. The
processes tab lists all started processes in a table that uses a pagination system to reduce the
amount of data that has to be retrieved from the database at once. By default, the limit is set to
10 processes per page. MongoDB aggregation pipelines as described in section 4.2.1 are used

20

4.3. GRAPHICAL USER INTERFACE CHAPIER 4. IMPLEMENTATION

Settings Processes Statistics Status v Input v Output v
Started At 15 Input Output # Documents Progress Status Duration
16.02.2024, 11:56:39,627 File None 17 100.00% Completed 55
16.02.2024, 11:52:49,835 File None 17 100.00 %
16.02.2024, 11:52:28,409 File None 17 100.00%
16.02.2024, 11:51:37,515 File None B 100.00%

16.02.2024, 11:29:43,546 File None 3 100.00%

16.02.2026, 11:11:26,400 Drophox Minio 16 100.00%

5 g 9o o ©§ @
2 2 2 2 2 32
o

16.02.2024, 09:59:23,262 Text None 1 100.00%
16.02.2024, 09:59:13,809 Text None 1 100.00% Completed ES

16.02.2024, 09:58:45,725 Text None 1 100.00% Completed 175

I R IR R S S SR R R

16.02.2024, 03:56:26,050 Text None 1 100.00% Completed 2s

10 v < < 1-100f 239 > »

Figure 4.6. Processes that used a specific pipeline are listed in a table that can be sorted by
any column and filtered by multiple criteria. The table can be traversed using
the pagination system below.

by the backend to filter and sort data that is requested for the current page in the table while
at the same time keeping track of the total amount of matching documents. This is required
for the pagination system to know how many pages it can display. Charts that display details
about the usage of pipelines can be found in the statistics tab. There are currently four charts
available that display the status of executions, errors that have been encountered, usage of
different types of input and output, and the usage of the pipeline per month. Regardless
of the current tab, the page includes a group of actions that perform different actions like
copying and exporting a pipeline. Additionally, pipelines can be instantiated as a service
running in the background as described in section 4.1.3.

4.3.4. Processes

When starting a new process from a pipeline, the user is first asked about the input source
of documents. There are currently four input options available: Text, files, Dropbox, and
MinlO. Each option comes with settings that can be applied, changing the way the input is
pre-processed. The simplest way to use a pipeline is to process plain text that is entered into
a text area. Internally a new CAS object with the supplied text as the subject of analysis
is created and processed. Choosing files as the input source allows to process local files on
the client’s machine. Optionally, input files can be uploaded to one of the available cloud
storage systems to make them available across multiple machines. Dropbox and MinIO di-
rectly obtain files from the respective storage at the specified path. Input files are wrapped
by the DUUIDocument class during processing to store metrics and update their progress in
the database. With the exception for the processing of text, documents can be filtered and
sorted as a pre-processing step to reduce the number of documents that need to be processed
in the pipeline. These settings include the exclusion of files smaller that a certain size in
bytes or documents that are already present in the output location. Additionally, documents
can be sorted in ascending order by their size so that smaller documents that are faster to

21

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. IMPLEMENTATION

process are prioritized. The result of a process can either be ignored by setting the output to
none, or written to a cloud storage by providing the full path to the target location, excluding
the Apps/Docker Unified UIMA Interface component that is created when connecting with
Dropbox. A process is then started by clicking the submit button.

Once submitted, the process is started by the web API and the user is redirected to a page
that is used to monitor the progress and status of documents and the process itself. The
page can also be reached by clicking on the appropriate row in the table that displays the
processes using the pipeline. All settings that were used in the creation of the process can also
be viewed on this page and copied in the JSON format for usage outside the web interface.
Another functionality on this page is the option to restart a process with the exact same
settings by redirecting to the creation page and copying all settings used. This speeds up
the creation of identical or similar processes for which only a single setting may change. In
case of small errors during the creation of a process, it can be cancelled and restarted quickly
without the need to manually repeat all required steps.

Processes are used as a container to control the analysis of documents with a specific
pipeline. Because documents contain the data to be analyzed, they are monitored especially
thoroughly. Documents are listed in a table that can be sorted, filtered, searched, and tra-
versed similar to the one listing processes for pipelines. It includes columns for the document
name, its progress, status, size in bytes, and process duration. Clicking on a row in the table
opens a drawer that displays additional information about a single document. If an out-
put location has been specified and the document has been processed successfully, it can be
downloaded directly from the dialog in the web interface. There are currently two sections
with metrics and results available each of which includes a chart. The annotates that have
been added by the pipeline’s components are displayed in text format as well as in form of a
reactive and filterable treemap. The duration of each step in the process is measured, stored,
and displayed in a timeline chart. Examples can be seen in figure 4.7 and A.16.

Timeline

Tokenizer (1)

GerVADER (2)

+23s +23s +23s +23s +23s. +23s +23s

Figure 4.7. Timeline of individual steps in a process (processing by each component only
took milliseconds to complete in this case). This documents has been processed
by the components BreaklteratorSegmenter (Tokenizer) and GerVADER for sen-
timent analysis.

22

4.3. GRAPHICAL USER INTERFACE CHAPIER 4. IMPLEMENTATION

4.3.5. Mobile Support

Although the web interface is designed to be used on desktop, making it responsive and
therefore usable on smaller screen sizes adds to usability. All features are available and can
be used on mobile devices without the need to install a platform specific app. On mobile de-
vices, users typically interact with the screen using their thumbs or a pen. Placing important
buttons towards the bottom of the screen ensures that users can easily reach and tap them
without having to stretch or adjust their grip. Reacting to changes in screen size and orien-
tation by rearranging or resizing elements is part of Responsive Web Design as described by
E. Marcotte (2010). While working on mobile might be less desirable overall because there is
less space to show important details and charts, the ability to check the progress of a process
or quickly resubmit on the phone can be convenient nonetheless.

= ADMIN (%) = ADMIN DUUI
ﬁ Home Settings Processes Statistics
Name
£ Pipelines
My Python Pipeline
S Builder
;\ Description
E Documentation Das ist eine Beschreibung, die ich mit
Python verschickt habe. Eigentlich dient
diese Pipeline nur dafir Tests
BA APIReference durchzufiihren, da sie schnell ausfihrbar ist
favich Fiir nina nrnla 7okl an Nabiimankan)
& Help Tags
Add a tag...
Feedback
Java X Sentence X Token X
2 Account
Settings
B LDgDUt + New Clear Al X
O X & R
A\ /4 Pipelines Process Update Delete Maore

Figure 4.8. Navigation and controls on mobile devices adjusted to be more usable on small
screens.

23

5 Evaluation

The evaluation discusses the web interface’s benefits and shortcomings regarding usability
and if lowering the barrier of entry for inexperienced users is achieved. In order to rate the
effectiveness of the web interface its usability is rated by users with different background
experience with DUUI, NLP, and programming.

5.1. Approach

Determining whether the web interface is effective and usable as an extension to DUUI has
been set as the goal for the evaluation in this thesis. The ISO 9241-11 standard defines usabil-
ity as follows: “Extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use” (Lopez
et al. 1998, p. 2). Measuring the usability of an application can offer detailed insights about
what features and design decisions are well received as well as highlight flaws that should
be reviewed. An important part of this process is testing by different users (Lopez et al. 1998,
p. 5) by asking to complete a specific task that represents a representative or real use case.
A common way to ask for feedback that can easily be evaluated is the use of a Likert scale.
A Likert scale is an evaluation tool that uses a numbered scale to determine agreement with
a question or statement. The evaluation done for this thesis uses Likert Scales as part of the
Usability Metric for User Experience. “The Usability Metric for User Experience (UMUX) is
a four-item Likert scale used for the subjective assessment of an application’s perceived us-
ability” (Finstad 2010, p. 323). All four items are simple statements about the user experience
in different categories on a scale of 1 (Strongly Disagree) up to 7 (Strongly Agree). Figure 5.1
shows the four statements proposed by the UMUX which are part of the feedback form in a
slightly modified way. Statements can be worded positively or negatively, which influences
the evaluation of the rating. To evaluate the available data, it is transformed by scoring pos-
itively worded statements as score - 1, while negatively worded statements are scored as 7
- score (Finstad 2010, p. 326). This is done because a low value for negatively worded state-
ments is considered a desirable score, e.g. when rating the experienced frustration with the
system. The transformed scores are then summed, normalized, and finally scaled between
0-100. The mean score across all submissions is the result, representing the perceived usabil-
ity of the system. To allow for accurate and useful feedback for the web interface, a set of
test users with different background experience in topics like programming, NLP, and DUUI
have been asked to participate in a simple assessment split into two parts. Participants start
by completing a task that requires different functionalities of the web interface to be used.
The experience is then evaluated in a short feedback form on the website, which consists
of a total of eleven questions and statements. In addition to the four statements from the
UMUX, the participants’ background knowledge is also recorded. The full list of questions
and statements in the form is available in table 5.1.

24

5.1. APPROACH CHAPIER 5. EVALUATION

1. [This system's] capabilities meet my requirements.
1 2 3 4 5 6 7
Strongly Strongly
Disagree Agree
Z Using [this system] is a frustrating experience.
1 2 3 4 5 6 7
Strongly Strongly
Disagree Agree
3. [This system] is easy to use.
1 2 3 4 5, 6 7
Strongly Strongly
Disagree Agree
4, 1 have to spend too much time correcting things with
[this system].
1 2 3 4 5 6 T
Strongly Strongly
Disagree Agree

Figure 5.1. 'The four statements from the UMUX (Finstad 2010, p. 326) without modifica-
tions.

5.1.1. Participants

A total of 19 submissions of the feedback form have been used to evaluate the usability and
overall perception of the web interface. Eight of the participants are familiar with and have
used DUUI before. The same is true for experience with NLP, which is expected due to the
connection between DUUI and NLP. Most participants are experienced in programming with
Python being more prevalent than Java. Participants with different levels of expertise can
provide a well-rounded insight into the usability and effectiveness of the web interface. This
helps mitigate the potential bias that may arise from solely relying on experienced users of
DUUL The evaluation becomes more representative of the broader user base.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Programming Java Python NLP DUUI

B

R

R

B

B

R

R

B

W Experienced M Inexperienced

Figure 5.2. A stacked bar chart displaying the distribution of experienced and inexperi-
enced participants in programming, NLP, and DUUL

25

5.1. APPROACH CHAPIER 5. EVALUATION

5.1.2. Task

Each participant has been asked to complete a specific task with the web interface. The cho-
sen task requires most important functionalities provided by the web interface and encour-
ages the usage of optional but performance increasing capabilities such as copying pipelines
or using templates. The task consists of six steps followed by the submission of the feedback
form. The individual steps are:

1.
2.

Log in with the provided credentials

Verity a connection to MinlO has been established or establish one with the provided
credentials

3. Create a pipeline that contains spaCy as its only component

7.

Start a process that analyzes text files stored in MinlO. The result should also be written
to MinlO.

Create another pipeline that contains spaCy as its first and GerVADER as its second
component.

Start another process that has the same input and output but only processes files that
are larger than 1000 bytes.

Fill out and submit the feedback form.

Credentials for logging in and connecting to MinlO, the source and output path, and docker
image names have been provided as part of the instructions.

Table 5.1. The questions and statements in the feedback form used for the evaluation of the

web interface’s perceived usability.

Question Type

I have experience in programming Scored
I have experience in Natural Language Processing Scored
I will work with Natural Language Processing in the future Yes / No
I have used DUUI before Yes / No
Using DUUI has been pleasant with a graphical user interface Scored
I can program in Java Scored
I can program in Python Scored
The website’s capabilities meet my requirements Scored
Using the website is a frustrating experience. Scored
The website is easy to use Scored
I have to spend too much time reading the documentation Scored

26

5.2. DISCUSSION CHAPIER 5. EVALUATION

5.2. Discussion

The web interface has generally been well received and has an average score of 5.92/7 with an
exceptionally high rating of 6.5/7 by experienced users of DUUIL. UMUX scores of individual
participants lie between 29.17 and 95.83, with more than two thirds of participants giving
good to excellent feedback. The distribution can be seen in figure 5.3. While the feedback
with a total UMUX score of 79.61 is positive, the lower ratings primarily come from partic-
ipants with little or no experience in topics related to the framework. Figure 5.4 shows the
average of score for the web interface and four UMUX statements split by experience with
DUUIL The labels Requirements, Frustration, Ease, and Correction represent the UMUX state-
ments seen in 5.1. The last statement (Correction) has been changed to represent extensive
reading of documentation. This is because rather than correcting parts of the system, users
were encouraged to read the documentation to complete the task. The score therefore better
reflects how intuitive the website is to use and how much extra reading is required. Scores
for frustration and correction are expected and desired to be lower because of the negative
wording. The results show that the task has been completed correctly in most cases. Some-
times the setting for skipping files smaller than 1000 bytes in the second process has not been
used. Although small errors happened, the data has been analyzed and stored in MinIO by
both experienced and inexperienced users without major issues. There is, however, a no-
table difference in the experienced frustration with the web interface between participants
with and without experience with DUUL Knowledge about the inner workings of DUUI and
flow of data appears to be an advantage that reduces the overall frustration with the system.
Additionally, inexperienced participants had to spend more time reading documentation to
resolve confusion and errors. Although this is expected and experience can only be gained
over time, this target audience needs to be more effectively introduced to the interface and
related topics, e.g. by increased guidance for users who are just getting started with NLP.

[29.17, 51,39] (5139, 73,61 (73,61, 95.83]

Figure 5.3. 'The distribution of UMUX scores in a histogram showing a clear trend towards
positive reception of the web interface.

27

5.2. DISCUSSION CHAPIER 5. EVALUATION

5.2.1. Accomplishments

The fact that most participants, despite varying levels of experience, were able to complete
the task correctly is a great success for the project. Although the levels frustration of inexpe-
rienced users may have been higher, the web interface opened the possibility to work with
NLP regardless of prior experience. Doing the same work without the web interface in Java
likely would not have or hardly been possible for inexperienced users.

Because the web API is not part of the evaluation directly, no direct feedback is avail-
able. However, participants who are more proficient in Python than Java provide indirect
feedback. They make up an interesting subset because of the connection to the support for
different programming languages introduced in section 4.2.4. An audience of experienced
Python programmers that is not or not as proficient in Java indicates that using alterna-
tive programming languages may lead to improved productivity and reduce hesitation to get
started with DUUL

Table 5.2. The average score for the UMUX statements and web interface split into experi-
ence and inexperience with programming and DUUL.

Web Correction/

Group Interface Requirements Frustration Ease Documentation UMUX
DUUI 6.50 6.13 1.75 5.88 1.50 86.46
No DUUI 5.45 5.45 2.45 5.18 2.27 74.62
Programming 6.29 6.21 2.00 5.86 1.64 85.12
N

° . 4.80 4.40 2.60 4.40 2.80 64.17
Programming
Average 5.89 5.74 2.16 5.47 1.95 79.61

5.2.2. Shortcomings

While the result from the UMUX can be used to get a sense of the perceived usability of the
web interface, it is unclear what caused frustration or made it difficult to use for certain par-
ticipants. However, to enable feedback with concrete and specific comments, an optional text
field has been added at the end of the form. Based on responses by some participants the web
interface is not intuitive to use in some places. Navigating through the creation of pipelines
and processes has taken more time for some users, because important buttons e.g. for navi-
gating to the next and previous steps are easy to overlook. This caused confusion as to how
they should proceed. Another issue has been missing or insufficient explanation in places
that use terminology from programming like for example key-value pairs. While experienced
programmers understand what is being asked for, a lack of programming knowledge may
cause confusion and the feature to be dismissed due to not understanding it. Some feedback
responses indicate that a more comprehensive introduction for DUUI and NLP is desired for
a better understanding of the system. Being unfamiliar with core concepts decreases overall

28

5.2. DISCUSSION CHAPIER 5. EVALUATION

Web interface

Correction Requirements

Ease Frustration

—O—Used DUUI —O—Neverused DUUI

Web interface

Correction Requirements

Ease Frustration

—O—Progamming —O— No Programming

Figure 5.4. Radar charts showing the average score for the UMUX statements and web in-
terface split into experience and inexperience with programming and DUUL.

usability and satisfaction. Adding an introduction to NLP in the documentation and extend-
ing the existing documentation of the system and its parts is therefore an important step
towards improved usability.

Some of the lower ratings for the web interface did not provide a feedback message as
to what went wrong or caused the frustration, making the interpretation difficult. These
participants may have faced issues with understanding the task or available documentation
and therefore experienced higher levels of frustration because of the system not working as
expected. In such cases, participants might rush through the task without fully understand-
ing it, leading to confusion, errors, and ultimately frustration. As a result, they may provide
lower ratings due to their negative experience with the interface. The existing user guid-
ance in form of an introductory modal dialog mentioned in 4.3.2 may have been skipped or

29

5.3. CONCLUSION CHAPIER 5. EVALUATION

is insufficient. Table 5.3 contains ratings for all participants with little or no programming
experience'. Because only a small amount of data is available, the reliability is somewhat
limited. Further studies and surveys should therefore be conducted after existing feedback
has been taken into account.

Table 5.3. Ratings of participants with little or no programming experience highlighting
the subjectivity of the evaluation.

Web Interface Requirements Frustration Ease Correctlon./ UMUX
Documentation
7 6 1 6 1 91.67
7 6 1 6 1 91.67
2 2 5 2 3 33.33
3 3 5 2 5 29.17
5 5 1 6 4 75.00

5.3. Conclusion

The web interface and API serve as a first step towards large scale usability for big data anal-
ysis of natural language. The graphical user interface introduced in chapter 4.3 allows inex-
perienced users to get started quickly without the need to invest additional time in installing
software, which can be a challenge in itself. Additionally, the standalone web API enables
communication with DUUI by using any programming language and therefore increasing
the framework’s flexibility. By leveraging the performance and capabilities of DUUI in a
user-friendly environment, users can benefit from a centralized, secure, and scalable system
capable of big data analysis. Chapter 5 highlights that both experienced and inexperienced
users were able to use the web interface with satisfaction while also being able to mostly
complete work correctly. There is however a notable difference in overall satisfaction be-
tween participants with and without experience with programming and DUUI. Experienced
users, having an advantage due to being familiar with core concepts and inner workings of
the framework, are less frustrated with the web interface. This indicates that a more compre-
hensive introduction into DUUL NLP, and their use cases are necessary to further improve
user experience and usability.

!The entire evaluation dataset can be found on GitHub.

30

6 Future Work

The web interface is a first step towards improved usability and user experience when analyz-
ing text documents with Docker Unified UIMA interface. Essential capabilities, as described
in chapter 4, have been implemented and allow for the direct control over pipelines and pro-
cesses from the browser. Despite the improvement in usability, further development for both
the web interface and the API are necessary to handle shortcomings and add beneficial or
desired capabilities.

6.1. Notifications

During development most processes did not take long to complete so there was no need for
sending notifications when errors occurred or the process finished. Because the goal is to
allow for the analysis of large amounts of data, longer processing times are expected in a pro-
duction environment. Having a notification system for important events during a process is
mandatory at that point and adds to a positive user experience. Power Automate, a work-
flow automation tool introduced in section 3.1, uses an email notification system that informs
users when workflows have failed. DUUI could head in a similar direction by providing error
or summary emails when processes finished execution.

6.2. API Bindings

To make the framework efficient and easy to work with in programming languages other
than Java, implementing API bindings for languages like Python or JavaScript could reach a
large target audience. Both of these languages are used extensively and are well-liked by de-
velopers (StackOverflow 2023). Especially Python is relevant to NLP as it is one of the most
used languages for machine learning related work. Additionally, as mentioned in section 5.2,
users not as proficient in Java as in Python would benefit from this alternative. This can be
achieved by abstracting away requests to the API by providing simple functions that hide
the implementation details. Not only is the user not confronted with making requests to a
server directly but is also provided with better documentation on what parameters are avail-
able as function parameters. Showing possible properties as optional function parameters is
much clearer than working with raw requests that do not provide hints or autocompletion.
A simple set of bindings have been written to provide an example for future implementa-
tions. These bindings are incomplete and not optimized but should nevertheless showcase
the simplification that can be achieved by abstracting away raw requests. The usage can be
seen in section A.1 of the appendix.

31

6.3. CLOUD STORAGE CHAPITER 6. FUTURE WORK

6.3. Cloud Storage

Another possible addition to the backend is support for other cloud providers like OneDrive,
Google Drive, or NextCloud. Due to the simple design of the IDUUIDocumentHandler inter-
face, any cloud provider that offers a way to list, read, and write files is a candidate. It also
makes sense to give users the option of using several different inputs and outputs in a single
process. This could include several locations from a single cloud provider as well as multiple
different cloud providers.

6.4. Branching

Implementing branching in workflows to allow for an alternate flow in case of errors may be
a useful feature. In cases where a component encounters an error or can not be reached, pro-
viding a backup component that can do the same or similar work prevents the failure of the
entire pipeline. This is especially important for pipelines where components depend on each
others outputs. For example, a component that detects the language of sentences depends
upon the existence of annotations for sentences and can not function properly otherwise.
Branching can be implemented with simple try-catch logic in the composer by providing a
backup component that is only executed when the original component encounters an error.

6.5. Interaction with Documents

While the annotations that resulted from a process are displayed both as text and visually
in charts, there is currently no way to know what part of the text the annotations reference.
The generated output is not intuitive if one is not familiar with UIMA and the structure of
the CAS object, but can be transformed into a more visual and intuitive representation due
to it being stored in a standardized XML format. Both internal and third party software could
be used to visualize the output.

32

Bibliography

Borin, Lars et al. (2016). “Sparv : Sprakbanken ’ s corpus annotation pipeline infrastructure”.
In: URL: https://api.semanticscholar.org/CorpusID:198906001.

Borthakur, Dhruba (2007). “The hadoop distributed file system: Architecture and design”. In:
Hadoop Project Website 11.2007, p. 21.

Cardinali, Richard (1994). “Productivity improvements through the use of graphic user inter-
faces”. In: Industrial Management & Data Systems 94.4, pp. 3—7.

Datadog (2024). See it all in one place. https://www.datadoghq.com/product/, last accessed
on 01/03/2024 11:13 MET.

E. Marcotte (2010). Responsive Web Design. https://alistapart.com/article/responsive-
web-design/, last accessed on 16/02/2024 13:20 MET.

Ferrucci, David and Adam Lally (2004). “UIMA: an architectural approach to unstructured
information processing in the corporate research environment”. In: Natural Language En-
gineering 10.3-4, pp. 327-348.

Ferrucci, David, Adam Lally, Karin Verspoor, and Eric Nyberg (Mar. 2009). Unstructured In-
formation Management Architecture (UIMA) Version 1.0. OASIS Standard. URL: https://
docs.oasis-open.org/uima/v1.0/uima-v1.0.html.

Fielding, Roy Thomas (2000). “Architectural Styles and the Design of Network-based Software
Architectures.” PhD thesis. University of California, Irvine.

Finstad, Kraig (Sept. 2010). “The Usability Metric for User Experience”. In: Interacting with
Computers 22, pp. 323-327. poI: 10.1016/j.intcom.2010.04.004.

Gale, Allyson (2020). Introducing Flyte: A Cloud Native Machine Learning and Data Process-
ing Platform. https://eng. lyft.com/introducing - flyte - cloud - native - machine -
learning-and-data- processing- platform- fb2bb3046a59, last accessed on 01/03/2024
11:12 MET.

Grafana (2024). Why Grafana? https://grafana.com/grafana/?plcmt=footer, last accessed
on 01/03/2024 11:12 MET.

Ken W. Alger (2022). Introduction to the MongoDB Aggregation Framework. https : //www .
mongodb . com/developer/products/mongodb/introduction - aggregation- framework/,
last accessed 09/02/2024 10:24 MET.

Leonhardt, Alexander, Giuseppe Abrami, Daniel Baumartz, and Alexander Mehler (Dec. 2023).
“Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI". In: Findings of the
Association for Computational Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan Pino,
and Kalika Bali. Singapore: Association for Computational Linguistics, pp. 385-399. por:
10 . 18653 /v1 /2023 . findings - emnlp . 29. URL: https: //aclanthology . org/2023.
findings-emnlp.29.

Liddy, Elizabeth D (2001). “Natural language processing”. In.

Lopez, Crhistian Michael Ramos, Jhon Edinson Castro Lopez, Alberto Bravo Buchely, and
Dayner Felipe Ordofiez Lopez (1998). “Ergonomic requirements for office work with visual

33

Bibliography Bibliography

display terminals (VDTs) —”. In: URL: https://api.semanticscholar.org/CorpusID:
14947257.

MinlO, Inc. (2022). High Performance Multi-Cloud Object Storage. https://min.io/resources/
docs /MinIO - High - Performance - Multi - Cloud - Object - Storage . pdf, last accessed on
27/01/2024, 12:57 MET.

Nadkarni, Prakash M, Lucila Ohno-Machado, and Wendy W Chapman (Sept. 2011). “Natural
language processing: an introduction”. In: Journal of the American Medical Informatics As-
sociation 18.5, pp. 544-551. 1ssN: 1067-5027. DOI: 10.1136/amiajnl-2011- 000464. eprint:
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf. URL:
https://doi.org/10.1136/amiajnl-2011-000464.

Prometheus (2024). Metric Types. https://prometheus.io/docs/concepts/metric_types/,
last accessed on 01/03/2024 11:13 MET.

Spark Framework (2024). Spark - A micro framework for creating web applications in Kotlin
and Java 8 with minimal effort. https://sparkjava. com/, last accessed on 30/01/2024,
09:11 MET.

StackOverflow (2023). 2023 Developer Survey. https://survey.stackoverflow.co/2023/,
last accessed on 27/01/2024, 12:57 MET.

Turnbull, J. (2018). Monitoring with Prometheus. James Turnbull. 1SBN: 9780988820289.

Zapier (2024). Zapier newsroom. https://zapier.com/press, last accessed on 01/03/2024
11:12 MET.

34

A Appendix

A.1. Code Examples

The following code example shows an example usage of a MinlO document handler with Java.
The handler is then used by a DUUIDocumentReader both as the input and output handler.
Other settings are provided to filter documents before processing. Below the code is an
excerpt of events that are printed to the console because the DebugLevel for the composer
has been set to DEBUG.

DUUIComposer composer = new DUUIComposer()
.withLuaContext(new DUUILuaContext().withJsonLibrary())
.withSkipVerification(true)
// Prints all events with a DebuglLevel >= DEBUG
.withDebugLevel (DUUIComposer.DebuglLevel.DEBUG)
.withWorkers(5)
.withIgnoreErrors(true);

// Create a DUUIMinioDocumentHandler with an endpoint, username and password
DUUIMinioDocumentHandler minio = new DUUIMinioDocumentHandler(

endpoint,

username,

password
);

DUUIDocumentReader reader = DUUIDocumentReader
.builder(composer)
.withInputHandler(minio)
.withInputPath("input/sample txt")
.withInputFileExtension(".txt")
.withOutputHandler(minio)
.withOutputPath("output/xmi")
.withOutputFileExtension(".xmi")

.withRecursive(true) // Look for documents recursively
.withSortBySize(true) // Sort files in ascending order
.withCheckTarget(true) // Filter already processed documents

.withAddMetadata(true)
.withMinimumDocumentSize (1024 * 3) // Files must be at least 3 kB in size
Lbuild();

composer.addDriver(new DUUIUIMADriver());

35

A.1. CODE EXAMPLES

APPENDIX A. APPENDIX

composer.addDriver(new DUUIDockerDriver());

composer.add(new DUUIUIMADriver.Component (
createEngineDescription(BreakIteratorSegmenter.class))

.withName("Tokenizer"));

composer.add(new DUUIDockerDriver.Component (
"docker.texttechnologylab.org/gervader duui:latest")
.withName("GerVADER"));

composer.run(reader, "example-minio");

/**Excerpt from the debug output of events in the process.

*

¥ OO K X X K X X X X X X K X X X X X ¥ *

R R SR R

N

*/

Timestamp

1707413608359
1707413608359
1707413608360
1707413608361
1707413608361
1707413608372
1707413608372

1707413628184
1707413628184

1707413628184
1707413628190

1707413628190
1707413628190

1707413628212

1707413628212

1707413629297

1707413629300
1707413629357

1707413629357

[SENDER]

[READER]
[READER]
[READER]
[READER]
[READER]
[READER]

[READER]

[READER]
[READER]

[READER]
[READER]

[DOCUMENT] :
[DOCUMENT] :

[DOCUMENT] :

[DOCUMENT] :

[DOCUMENT] :

[READER]

[COMPOSER] :

: Message

: Skip files smaller than 3072 bytes.

: Number of files before skipping 17.

: Number of files after skipping 13.

: Sorted files by size in ascending order

: Checking output location output/xmi for existing documents.
: Found 0 documents in output location.

Keeping all files from input location.

: Processing 13 files.

: Decoding document input/sample txt/sample 14 92120.txt
: Document input/sample txt/sample 14 92120.txt

decoded after 0 ms

: Deserializing document input/sample txt/sample 14 92120.txt
: Document input/sample txt/sample 14 92120.txt

deserialized after 6 ms

Starting to process input/sample txt/sample 14 92120. txt
input/sample txt/sample 14 92120.txt

1s being processed by component Tokenizer

input/sample txt/sample 14 92120.txt

has been processed by component Tokenizer

input/sample txt/sample 14 92120.txt

1s being processed by component GerVADER

input/sample txt/sample 09 34261.txt

has been processed by component GerVADER

: Uploading document input/sample txt/sample 09 34261.txt
[DOCUMENT] :

input/sample txt/sample 09 34261.txt
has been processed after 3370 ms
5 Documents have been processed

36

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

Python Bindings

The following code example uses Python to create a pipeline, instantiate

it and start a process. All these actions performed with Python are also reflected in the web
interface. This code is part of a small implementation of API bindings for Python. The full
code can be found on GitHub at PythonClient.

from duui.client import DUUIClient
from duui.config import API KEY

CLIENT = DUUIClient(API_KEY)

def main() -> None:

my pipeline

= CLIENT.pipelines.create(

name="My Pipeline",
components=[

{

"name": "Tokenizer",

"tags": ["Token", "Sentence"],

"description": """Split the document into Tokens and Sentences
using the DKPro BreakIteratorSegmenter AnalysisEngine.""",

"driver": "DUUIUIMADriver",

"target": "de.tudarmstadt.ukp.dkpro.core.tokit.BreakIteratorSegmenter",

}
{

"name": "GerVADER",

"description": """GerVADER is a German adaptation of the sentiment
classification tool VADER. Classify sentences into positive,
negative or neutral statements.""",

"tags": ["Sentiment", "German"],

"driver": "DUUIDockerDriver",

"target": "docker.texttechnologylab.org/gervader duui:latest",

"options": {"scale": 2, "use GPU": True},

}
1,
description="""This pipeline has been created using the API with Python.

It splits the document text into Tokens and Sentences

and then analyzes the Sentiment of these Sentences. ,
tags=["Python", "Sentence", "Sentiment"],

pipeline id

= my pipeline.get("oid")

Instantiate the pipeline so it can be used multiple times
without the need to restart Docker components
CLIENT.pipelines.instantiate(pipeline id)

37

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

Start a process that finds .txt files with a minimum size of 500 bytes
recursively start from the /input directory in Dropbox.
CLIENT.processes.start(

pipeline_id,

input={
"provider": "Dropbox",
"path": "/input",
"file extension": ".txt"
}
output={
"provider": "Dropbox",
"path": "/output/python",
"file extension": ".txt",
}

recursive=True,
sort by size=True,
minimum_ size=500,
worker count=3

if name == " main_ ":
main()

38

A.1. CODE EXAMPLES APPENDIX A. APPENDIX

The status and progress of a process and its documents can be retrieved by using the schedule
Python library. Schedule provides a simple API for the execution of tasks in a regular interval.
In this case, process and document information is retrieved and printed to the console every
five seconds.

ID = create process(...)
Code from the previous example has been omitted to reduce the space taken up.

import schedule
import sys
import time

def update() -> None:
process = CLIENT.processes.findOne(ID)
result = CLIENT.processes.documents(
ID, status filter=["Failed"], include count=True
)
total = len(process["document names"])

print(
f"""Progress: {round(process['progress'] / total * 100)}%
\t{result['count']} Documents have failed.\r""",
end=|l n ,

if process["status"] in ["Completed", "Failed", "Cancelled"]:
print(
f"""Progress: {round(process['progress'] / total * 100)}
%\t{result['count']} Documents have failed.""",

print(f"Process finished with status {process['status']}.")
sys.exit(0)

schedule.every(5).seconds.do(update)

while True:

schedule. run_pending()
time.sleep(1l)

39

A.2. PROCESS FLOW CHART APPENDIX A. APPENDIX

A.2. Process Flow Chart

The following flow chart represents a process and all its stages. When an exception occurs,
the process is interrupted and its status set to Failed. This can happen at any stage indicated
by the line on the left side.

Request start

start process request

Stop No Is authorized

Setup

Is instantiated
pipeline available

instantiate reuse

Exception create process handler

Input

create DocumentHandler

input is

load external files No
plain text

Exception
Process

start processing

update

is finished

Exception

Output

has output
Exception write output

interrupt clean up

keep pipeline

shut down
active

stop

Figure A.1. Flow Chart for a process. The process can be cancelled at any stage by sending
a PUT request to /processes/:id and providing the id of the process. Cancelling
has been omitted in the chart for clarity.

40

A.3. WEB INTERFACE APPENDIX A. APPENDIX

A.3. Web Interface

This section includes additional screenshots and illustrations from the web interface not part
of chapter 4.3. For a live demonstration visit https://duui.texttechnologylab.org/.

DUUL Documentatin v Acount v (@

Docker Unified UIMA Interface

One platform. Unlimited Tools.

Ascalable, Flexible, lightweight and Feature rich NLP framework for
automated and distributed analysis of large text carpora.

Get Started > Documentation &

v Catch attention
% Convert to User
+

& 3

Accessible Scalable

Automate big data analysis with DUUI

CREATEACCOUNT > GITHUE

0 X &

&
Pipelines Documentation Account
et ranen)

Figure A.2. The home page of the web interface including the hero and footer sections.

41

A.3. WEB INTERFACE APPENDIX A. APPENDIX

English Deutsch

Thank you for testing the web interface.

This Feedback form is a short survey about your experience in different
topics related to Natural Language Processing and the usability of the web
interface. Your feedback is important for developing the best possible user

experience.

Start)

| have used DUUI before

@

Using DUUI has been pleasent with a graphical
user interface

Strongly Strongly
disagree agree
1 2 3 4 5 b 7

Figure A.3. Introduction to the feedback form available in English and German and an ex-
ample for a question posed in the feedback survey described in section 5.1. This
is one of eleven total question and statements.

42

A.3. WEB INTERFACE APPENDIX A. APPENDIX

2 Profile

Dropbox

Your Dropbox account has been connected successfully.
The folder Apps/Docker Unified UIMA Interface has been created.

& Connections
+/ Read files and folders contained in your Dropbox Account

2 Admin

Figure A.4.

+/ Create files and folders in your Dropbox Account

@ Reconnect © Delete

Visit Dropbox Apps for Further reading.

Minio / AWS

Your account has been connected to Minio / AWS successFully.
Endpoint

http://api.minio.texttechnologylab.org

Username (Access Key)

W XHXXKKKAHKKARXXX

Passwaord (Secret Key)

W OOXXXXXXKXXXXXKX

& Update © Delete

The account page for an admin user. Connections to Dropbox and MinlO have
been established.

43

A.3. WEB INTERFACE APPENDIX A. APPENDIX

DUUL Feedback Pieties v Documentaton v Account v (@

Spacy

My Python Pipeline

EElEE A combination of different Tools provided by spaCy. iment using HeidelTime
ests
& | 1oom ponent &
Triple Counter New Pipeline
r was lang i the docum
3 Components 1 & 1 Component 2 2 Components 0 &
Language Detection 10x Token
2Components 9 =
uuuuuuuuuuuuuuuuuuuuuu

Spacy Paper Example rempiate Example
A combination o different Tools provided by spacy. Detect Language, Tokenize and find Sentiment

Figure A.5. The dashboard that displays a grid of intractable card elements. Each card rep-
resents a pipeline that has been created by the user. Users with the admin role
can also view pipeline templates.

Example

This pipeline has been created using the API with
Python. It splits the document text into Tokens and...

2 Compaonents 11 (N "
Python Sentence Token UiMA

Figure A.6. A card element representing a pipeline.

44

A.3. WEB INTERFACE APPENDIX A. APPENDIX

DUUI o Feedback Pipelines v Documentation v Account v ©

Build a new Pipeline

Start from scratch New

A new Pipeline without any predefined settings.

Templates : @
My Python Pipeline user Spacy user Flair POS-Tagger
S R T A, ‘A combination of different Tools provided by spaCy. Find position of speech (POS)
verschck: habe. Eigentich dient e Pipeine
32 1Component u & 2Companents 1 &
Language Detection user 10x Token user Complex Example
2 Components) 3 Companents 5 &y
& Components s

Figure A.7. The first step in the creation of a new pipeline is asking the user whether to
start from scratch or from a template that can either be a user defined pipeline
created earlier or provided by DUUL

DUUI ADMIN Feedback Pipelines Builder Documentation APIReference Account Logout (> Help)

« Back Next -

Build a new Pipeline

Name

My Python Pipeline I

Description

Das ist eine Beschreibung, die ich mit Python verschickt habe. Eigentlich dient diese Pipeline nur dafir Tests
durchzufiihren, da sie schnell ausfiihrbar ist (auch fir eine groBe Zahl an Dokumenten).

y

Tags

Add a tag.

(e x)] (G = (o =)

Settings ~
+ New

Click new, enter both a key and value then press enter or click confirm

Figure A.8. Second step of the pipeline builder used to set pipeline specific properties.

45

A.3. WEB INTERFACE

APPENDIX A. APPENDIX

DUUI =

€ Back

BreaklteratorSegmenter

Templates

BreakiteratorSegmenter

St the document into Tokens using the DKPro
BreaklteratorSegmenter AnalysisEngine.

Figure A.9.

(o)

Feedback Pipelines v Documentation v Account v

2 PublishasTemplate Finish +

© e
-
@ e
+
0rchaose atemplate
any v Q
GerVader

GNFinder

Very fast finder of scientific names. It uses dictionary
and NLP approaches.

rman adaptation of th
VADER. Classify senter
tral statements.

GerVADER s

In the final step, components can be added, removed, and edited. The order of

components can be changed via drag & drop.

DUUIL

© Pipelnes B Expot W Copy B Instantiste 4 Process
Settings Processes Statistics

Name

EBample

Descripti

Python, into

Tags

Adda

Prthon x senis u

Tokenizer

Figure A.10.

(o)

Feedback Pipelines v Documentation v Account v

B Updste W Delete

Settings
+ New
Click new, enter both a key and value then press enter or click confirm.

Sentiment of these

Components
L @ Edt
+
@ Cone @ ede
m

Settings tab for a pipeline

46

A.3. WEB INTERFACE

APPENDIX A. APPENDIX

DUUI ==

« Pipelines

Settings

& Export

Processes

M Copy B Instantiate

Statistics

et

04032026 15:30:18.411 Text
04032024, 15:1340,148 Text
04032024, 145353538 Minio
04032024, 1453:33,038 Text
04032024 1:2327,999 Text
01032024, 16:0307.521 Text
01032024, 135028771 Text
29022024, 182651520 Dropbox
29022024, 19:19:48.333 Text
29022024, 19:19:39.939 Dropbox
10 v
File Minio

200

150

100

50

o B a

Figure A.12.

4 Process

Output #Documents
None 1
None 1
Nene o
None 1
None 1
None 1
Nane 1
Dropox o
None 1
None o

Figure A.11.

10

i

None Text

Winput 1 Ouput

Progress

000%

ao0%

a00%

000%

000%

000%

ao0%

000%

000%

000%

Status

A Fes

A Fied

Falled

Falled

Falled

Falled

Faled

Falled

Falled

L A

Falled

Processes tab for a pipeline

Feedback Pipelines v

Status v

Duration

azms

4asms

sams

aams

327ms

Usage per Month

o

Jan2024 Feb2024

Documentation v

Acount v @
B Upste W Delete

Input Output v

< Moot > »

il

|

Mar 2024

ApI2024 May2024 Jn2024 Ju2024 AUg2024 Sep2024 Oct2024 Nov2024 Dec2024

Two of the four charts used to visualize statistics for a pipeline.

47

A.3. WEB INTERFACE APPENDIX A. APPENDIX

& GerVADER B Spot WeSwe W Delete

Properties

Name

GervADER

Target
docker.texttechnologylab.org/gervader_duiatest
Oriver

DUUIDockerDriver
Tags

Tag

Geman x sentment

Description

statements.

Options

@ o

‘When checked, allows Docker to utiize the GPU.

Docker Image Fetching

Scale
2

e
processing.

Parameters

+ New

Click new, enter both a key and value then press enter or click confirm.

Figure A.13. A component named GerVADER using the DUUIDockerDriver is edited in a
sidebar drawer.

DUUL o

Feedback Pipelines v Documentation v Account v @
¢ Bample T Restart W Delete
o g -8"2
Requestid></Error>
A Failed = 0/0(0%) D 69ms

Search... Q status v
Name Progress Status File Size Duration
10 v

Process Graph

o

0Documents
Tokenizer
GerVADER

Settings

Minio None. No No Yes No

Figure A.14. A process that completed successfully.

48

A.3. WEB INTERFACE APPENDIX A. APPENDIX

A oputrsampte_tassampte 04 s17.x¢ X close

The document has encountered an error

java.io.IOException There has been a conflict because a file with the name
sample_04_817.xmi t
files use write mode Overwrite instead of Add.

Status. size Source Target

Falled 93 Bytes Dropbox Dropbox

Annotations
Minimum count
A Collapse 1 Search Q
Class comnt Class count Class count
Token 135 DocumentMetadata 1 paragraph 2
Class Count Class Count
Sentence 1 Reproducileanotation 2

Timeline

Tsenzer (1)

Figure A.15. A document that encountered an error.

3 /inputisample_txt/sample_07_11477.txt & Download X Close

Status size Source Target

Completed 11 KBytes Dropbox Dropbox
Annotations
Minimum count

A Collapse 1 Search Q
cuss o cuss o cuss Gy
1538 [p— ' Paragan s
cuss count cuss count
saremnca \ RepatucieAnnaaton 2

[}

Timeline

" _

Figure A.16. A document that completed successfully. The download button on the top
right allows a direct download of the processed file from the target location.
The annotations that have been added to a document are displayed in text
format and in a treemap. The chart reacts to filters.

49

A.3. WEB INTERFACE APPENDIX A. APPENDIX

GET /pipelines/id v

GET /pipelines A

Retrieve multiple pipelines. Accepts limit, skip, sort, order and search guery

parameters.

Parameters

guery limik Query SKip

The maximum number of pipelines to return. The pipelines to skip befare a limit is applied.

Query sort nuery order

The field to sort by. Can be name, description, created_at, modified_at, status The order to sort by. 1 is ascending and -1 is descending.

and times_used.

uery statistics Query COMponents

Wether to include statistic for the pipeline. Default is False. Wether to include components. Default s true.

Example Request

t response " /pipelines?limit= ed&order=-1",

Responses

All responses are returned as a JSON String.

[200 - Pipelines 400 - Missing parameter] | 404 - Not found]

POST /pipelines v

Figure A.17. Example for the documentation of endpoints in the web interface.

50

