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Abstract

Stimulated emission depletion (STED) microscopy is a super-resolution technique that
surpasses the diffraction limit and has contributed to the study of dynamic processes in
living cells. However, high laser intensities induce fluorophore photobleaching and
sample phototoxicity, limiting the number of fluorescence images obtainable from a living
cell. Here, we address these challenges by using ultra-low irradiation intensities and a
neural network for image restoration, enabling extensive imaging of single living cells.
The endoplasmic reticulum (ER) was chosen as the target structure due to its dynamic
nature over short and long timescales. The reduced irradiation intensity combined with
denoising permitted continuous ER dynamics observation in living cells for up to 7 hours
with a temporal resolution of seconds. This allowed for quantitative analysis of ER
structural features over short (seconds) and long (hours) timescales within the same cell,
and enabled fast 3D live-cell STED microscopy. Overall, the combination of ultra-low
irradiation with image restoration enables comprehensive analysis of organelle dynamics
over extended periods in living cells.

Keywords: super-resolution microscopy, live-cell microscopy, image restoration, denoising,
neural networks, autophagy
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Introduction
Super-resolution microscopy (SRM) has enabled visualizing cellular structures beyond the
diffraction limit and has been established as an important tool in cell biology research [1].
However, static structures in a cell only reveal part of the picture as biomolecules and
cellular structures in a cell are highly dynamic. Understanding these dynamics is therefore
crucial for attaining a comprehensive mechanistic picture. Stimulated emission depletion
(STED) microscopy is one SRM method that can be employed in living cells and can
theoretically achieve unlimited spatial resolution [2]. This resolution is achieved by employing
high excitation laser powers (~kW/cm2) and very high depletion laser powers (up to
~MW/cm2), which leads to photobleaching and phototoxicity [3]. In addition, the acquired data
could be artifact-ridden as a high laser illumination might induce cellular processes that
influence biomolecules in a cell. Various strategies have been introduced to mitigate both
photobleaching and phototoxicity. Two simple methods involve engineering highly
photostable organic fluorophores [4] or using transient, weak-affinity and exchangeable labels
or fluorophores [5–7]. In the case of photostable fluorophores, photobleaching can only be
relieved in the short-term, whereas in the case of transient labels photobleaching can be
circumvented relatively longer due to the exchange of fluorophores being sampled. In both
cases though, laser powers remain more or less the same and hence, phototoxicity is still a
hurdle in the long-term (~ several minutes). Techniques have been developed that involve
minimal sampling which is either controlled by the presence of signal [8,9] or by the initiation of
an event [10] thereby reducing the overall illumination laser intensity in a cell. However, over
the long-term of several hours, phototoxicity still remains. One method that might be
promising on this aspect is content-restoration (denoising) of images recorded with low laser
intensities (resulting in noisy images), which can be achieved with neural networks [11–14].
Although the maximum time acquisition shown in the case of STED has been limited to
several minutes [14], the technique should enable long-term imaging over several hours due
to the decrease in laser intensity incident on the sample.

An additional concern, especially in live cells, is the speed of imaging which determines the
accessible temporal dynamics that can be observed in live cells. Focussing on organelle
dynamics, the optimum imaging condition would be the one that gives the best possible
resolution without any movement artifacts. Depending on the organelle, this could mean that
STED nanoscopy yields only sub-par resolution with decreased signal. One such organelle
that is highly dynamic in an eukaryotic cell is the endoplasmic reticulum (ER). The ER is the
largest organelle in an eukaryotic cell and encompasses different functions ranging from
protein folding, translocation and secretion to lipid synthesis and Ca2+ signaling [15]. Its
structure varies from tubes, sheets, and matrices [16,17] and has been shown to restructure
itself in the order of seconds [18]. To capture the dynamics of the ER, very fast imaging would
be required, which in turn means collecting fewer photons from a sample. The integration of
a neural network that restores the image content through denoising would mean an increase
in the speed of imaging, making it possible to follow organelles like the ER with STED
nanoscopy with very minimal to no movement artifacts.

Over the last few years, there have been tremendous improvements in integrating various
imaging strategies and their outputs with neural networks for augmented microscopy, image
-restoration, -generation, -segmentation, etc [11,19–23]. Two prominent neural networks that
have been established for image restoration through denoising and feature extraction via
segmentation are UNet-RCAN [14] and ERnet [24] respectively. UNet-RCAN employs a
two-step architecture for prediction where a U-Net [25] predicts the broad contextual
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information, while a residual channel attention network (RCAN) [26] focuses on the fine details
of the image. UNet-RCAN has been shown to outperform commonly used supervised neural
networks such as pix2pix [12] and CARE [11] in the task of denoising STED images and has
been used to reconstruct noisy STED images of fixed and live-cells in both single-plane and
volumetric imaging [14]. ERnet, on the other hand, employs a vision transformer-based
architecture to classify image pixels as tubes, sheets, sheet-based tubes (SBTs) and
background widefield, confocal, and structured illumination microscopy (SIM) images of the
ER [24].

Here, we demonstrate long-term live-cell ER STED imaging using UNet-RCAN for
low-intensity denoising and ERnet for segmentation and feature extraction of the ER in the
predicted image and establish a robust pipeline for studying live-cell ER dynamics. For this,
we trained UNet-RCAN networks using ground truth and low-intensity STED images of
live-cell ER. This network, once trained, exhibits the capacity to generate super-resolved
images based on their low-intensity counterpart. We report a mean restored resolution of 89
nm in the predicted live-cell images. Whereas live-cell organelle imaging using STED has
been limited in mitochondria to 12 min with fluorophores like PKMO [27] or 12.5 hours (with a
snapshot acquisition of one frame every 3.4 minutes) with MAO-N3

[28] and in ER to ~20 min
with a ceramide lipid Cer-HMSIR [29], we extend this further by acquiring dynamics of ER in
resting cells for up to 7 hours in 2D (time resolution: 4.6 s) and up to 17 min in 3D (time
resolution: 10.2 s).

To conclude, we show that by combining neural network based denoising to low intensity
STED nanoscopy ER dynamics can be observed over the span of several hours under
super-resolution and this data can be segmented by tools like ERnet. In addition, our work
encompasses the need for incorporating deep learning-based restoration and segmentation
strategies to study long-term live-cell organelle dynamics beyond the diffraction limit.

Results

Denoising pipeline for live cell ER STED images

We introduce long-term STED microscopy in live cells using low-intensity image recording to
minimize photobleaching and phototoxicity. For content restoration through denoising of
low-intensity images, the UNet-RCAN network was chosen, as it preserves most of the
resolution of the ground truth STED images compared to other methods [14]. UNet-RCAN is a
supervised neural network, thereby requiring matching pairs of low-intensity (noisy) and
high-intensity (ground truth) images (fig. 1A). The noisy and ground truth image pairs were
acquired sequentially with the acquisition switching between lines (line-sequential
acquisition) of the noisy and ground truth image to mitigate any spatial offset between the
image pairs, which would dampen the quality of predictions. The rapid acquisition of noisy
images at exceptionally high speeds (~300-600 ms per frame) minimizes discernible spatial
shifts, while any residual offsets were drift corrected using the NanoJ’s registration method
[30]. The acquired noisy and ground truth image pairs were then cropped into smaller patches
(128 x 128, 256 x 256 or 304 x 304 pixels) and served as training data for the network (fig.
1B). This has the advantage of generating numerous training instances with only a few
measurements. Furthermore, processing the entire recorded image is not possible due to
limited RAM size on the GPU. To enhance the network's resilience to potential variations in
samples across measurement days, inputs from at least three measurement days were used
for training.
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Initial attempts to train the UNet-RCAN model using default parameters proved
unsuccessful. The model did not converge and a large loss was observed, indicating
gradient explosion and rendering the model not useful. Despite adjustments of
hyperparameters (patch size, learning rate, kernel init., etc), this issue persisted,
necessitating the introduction of additional hyperparameters which were included in the
UNet-RCAN code base. An exploration of more than a hundred parameter combinations
ensured the identification of a model that converges (SI fig. 1) and performs adequately (fig.
1C).

Model performance was probed with a test dataset, which was acquired on a separate
measurement day (fig. 1D). The generated predictions have normalized pixel intensities,
which were rescaled to match the pixel distribution of the ground truth data (fig. 1E). The
rescaling procedure exclusively leveraged information from the training data, preventing any
influence from the test dataset. Finally, quality control metrics were computed on the
rescaled predictions and ground truth data, facilitating the identification of an optimal model
within the screened parameter space (fig. 1F).

Numerous models were trained with different hyperparameter combinations, allowing for the
investigation of their importance regarding model quality with a random forest approach (SI
fig. 2). The two most important hyperparameters for model training are an appropriate
learning rate and the size of the input. A patch size of 304 x 304 pixels (the size must be
divisible by 8 due to the three down-sampling layers in the U-Net) was the optimal choice for
this dataset, while larger patch sizes were limited by memory restrictions. Given the pivotal
role of this parameter, we advocate for its optimization in conjunction with considerations of
image content size, filter size, and downsampling extent. The importance of different
parameter values within a parameter group is listed in SI table 1 and 2. This gives an overall
indication of appropriate value choices per hyperparameter. However, the best performing
models across the hyperparameter search result in slightly different combinations (SI table
3).

Figure 1: STED denoising workflow. A Ground truth and the corresponding noisy images are aligned in the xy
plane, B from which small patches of high- and low-intensity pairs are generated. C A model is generated by
training a UNet-RCAN network, wherein the patches from low-intensity images function as input and the
high-intensity patches serve as the training target and ground truth. An exploration of various hyperparameters is
undertaken to identify a suitable model. D The trained model is employed for prediction. E The resulting outputs
are rescaled to align with the pixel distribution of the ground truth. F Quality control metrics are then computed on
a designated test dataset to probe the model performance.
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Evaluation of predictions through a comprehensive assessment of image quality

Since the focus of our study was on ER dynamics, we used U2-OS cells stably expressing
calreticulin-KDEL as an ER marker conjugated to a HaloTag [31] which was labeled with
covalent HaloTag ligand bound to the fluorophore SiR as a fluorescent system. The live cells
were in their normal resting state, which meant that there was minimal perturbation on the
ER morphology. The final trained model on the resting cells is termed the resting model. Fig.
2A, B shows ground truth and noisy STED images respectively, of a part of the ER (12 x 12
µm²) in a representative cell. The resulting prediction using the resting model recovers the
structural details in the ground truth image (Fig. 2C).

A rolling Fourier ring correlation (rFRC) map [32] of the predicted image displays how the
resolution varies in different regions of the image giving a mean resolution of 89 nm and a
minimum resolution of 42 nm (Fig. 2D). In context, the corresponding ground truth image has
a mean resolution of 82 nm. All predicted images were further scrutinized using different
quality control (QC) metrics ranging from structural similarity index (SSIM) [33], mean absolute
error (MAE), peak signal-to-noise ratio (PSNR), Pearson correlation to learned perceptual
image patch similarity (LPIPS) [34] (Fig. 2E-I). MAE focuses on the pixel-wise absolute
difference between two images. PSNR evaluates the quality of a reconstructed signal, by
comparing it to the original, uncompressed signal. The Pearson correlation evaluates the
relationship of pixel intensities. Contrary to these metrics, SSIM and LPIPS consider spatial
pixel dependencies. SSIM evaluates the similarity of the images in the aspects of structure,
contrast, and luminescence. In LPIPS, feature representations extracted from pre-trained
neural networks are compared between prediction and ground truth images. This
combination of different metrics, along with the spatial resolution, is a robust toolbox for
comprehensive image quality assessment. All QC metrics show that the predictions recover
the structural details of the ground truth image. In addition, the predictions also recover the
resolution although not fully compared to the ground truth images (Fig. 2J). Intensity profiles
across the image also show that the predictions retain the underlying details of a ground
truth image (Fig. 2K).

Effects of morphological changes on model robustness

Subsequently, we wanted to explore how the quality of the network prediction is affected if
the morphology of the ER undergoes structural changes. For this purpose, cells were treated
with Torin1 and Bafilomycin to induce ER-phagy [35]. Noisy ground truth image pairs were
acquired from autophagy-induced cells for training a unique model for autophagy induced
cells. Autophagy induction is a time dependent process where the ER of a cell changes
continuously [36,37] since induction, therefore we went with a prediction model where the
training data was partly from autophagy induced cells and partly from resting cells to account
for diverse morphologies. This model was termed mixed model. The mixed model performed
well with the test data from autophagy induced cells (SI Fig. 3) and the resting model with
the resting cell test data (Fig. 2). This performance extended in terms of structure recovery
(SI Fig. 3A-C), resolution (SI Fig. 3D), intensity fluctuations (SI Fig 3E) and QC metrics (SI
Fig. 4).

To test the robustness of both the resting and the mixed model we predicted test input data
from resting cells with the mixed model and autophagy-induced cells with the resting model
and evaluated their performance with QC metrics and resolution. In terms of QC metrics, the
mixed model and resting model performed equally well for data of autophagy-induced cells
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(SI Fig. 4). The model solely trained on resting cells performed slightly better on the resting
cell test dataset (SI Fig. 5). Overall, the structural features were restored in all predictions (SI
Fig. 6). Interestingly, movement artifacts that partly appear in the ground truth test data due
to the fast organelle dynamics are averaged out in the predicted images. This shows that the
data from both conditions was within the generalization capability of the resting model

Figure 2: STED denoising of ER in live cells. A Ground truth STED image of the ER of a U2-OS cell. B Noisy
STED image of the ER of a U2-OS cell acquired parallelly as a line acquisition during A. C Predicted image of B.
using the UNet-RCAN network. D rFRC resolution map corresponding to the predicted image, the color code
represents the mean resolution in nm. The predicted image quality was probed using different control metrics
such as E SSIM; F MAE; G Pearson correlation; H PSNR and I LPIPS. J Mean resolution of ground truth and
predicted image calculated using rFRC. K Intensity line profiles (along the yellow dotted lines in A) of ground
truth (dark gray), noisy (gray) and predicted image (blue), the intensities were normalized together as a single
group. Scale bar: 1 µm, N = 15.

Strategies to discern structural information from hallucinations

To ensure the quality of predictions, it is crucial that the low-intensity input still contains some
signal that has not completely bleached away. In the absence of signal, hallucinations occur
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(SI fig. 7A and B). To distinguish hallucinated predictions from those stemming from
structure, the similarity of adjacent frames in a movie can be probed. Moving organelles
exhibit a degree of similarity between adjacent frames, resulting in higher structural similarity
when compared to adjacent predictions derived from empty field of views (FOVs) (SI fig.
7C). By tracking the similarity over time the authenticity of predictions can be validated.
Areas of uncertain predictions might not only arise temporally, but also spatially; for instance,
when a minute signal was collected from out of focus planes, which is not sufficient for a
robust prediction (SI fig. 7D-E). By thresholding the pixel intensities of the low-intensity
image, the pixels can be roughly grouped into background, uncertain, and signal pixels. This
grouping gears the attention to areas with potential artifacts.

Denoising and segmentation to probe fast and long-term ER dynamics

ER as an organelle exhibits fast dynamics visualized as rearrangement in structure and has
been shown to happen in the order of seconds [18]. In addition, the morphology of the ER is
also profoundly responsive to conditions that induce stress and is in the order of hours to
days. Taken together, it is important to observe ER dynamics with a time resolution of
seconds over the span of hours. Therefore, as a first step into this direction, we extended
our UNet-RCAN implementation from super-resolved planar images of the ER to study the
long-term temporal progression of ER dynamics in resting cells with a time resolution of
seconds.

We acquired low-intensity STED images of the ER in normal resting cells for over 7 hours
with a temporal resolution of 4.6 s and denoised it using the UNet-RCAN model trained on
resting cells (Fig 3A, Video S1). We acquired this data for three different samples seeded
over three different days to account for heterogeneity. ER rearrangements are variable in
each cell even in their normal resting state (Fig 3A, SI fig. 8x, Video S1-3).

We next aimed to quantify ER rearrangements over the full measurement time in more
detail. As a start, we employed a neural network based segmentation tool, termed ERnet [24],
on STED nanoscopy datasets. ERnet takes planar images as input and segments them into
tubes, sheets, and sheet based tubes (SBTs). The segmented SBTs resembled part of
sheets rather than tubular structures, probably due to the lack of real SBTs in the imaged
area and the ERnet model being trained to detect SBTs. In our case, the small spots were
merged with the segmented areas of sheets (SI fig. 9). We note that we used an ERnet
model trained on ER datasets acquired through SIM microscopy. Despite the differences in
imaging modalities, the model demonstrated robust performance with our denoised STED
data. ERnet segmentation shows that structural rearrangements are variable among cells in
resting state. However, in all cases the amount of sheets and tubes fluctuates around a
fraction of 0.5 (Fig 3B, SI fig. 10Ai, ii). In addition, we also see that the number of tubular
junctions shows a majority at 3 (Fig 3C, SI fig. 10Bi, ii) as shown before [24] and this feature
stays constant over time (Fig 3C inlay, SI fig. 10Ci, ii).

In addition to ERnet based segmentation, we analyzed structural rearrangements through
various additional metrics such as instances of structures, the fraction of foreground pixels
and SSIM score between adjacent frames. In the case of instances, the sheer number of
sheets, tubes and gaps in between tubes and sheets were calculated for each frame in the
whole time series datasets. Fig 3D shows that the number of instances of tubes, sheets and
the gaps (background enclosed by ER structure) between them stays more or less constant
throughout the imaging time. In the other two cells recorded we see more fluctuations in the
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case of gaps between tubes and sheets (SI fig. 10Di, ii). The fraction of foreground pixels
shows a trend similar to what we observe in the ERnet segmentation and is variable for the
three different cells (Fig 3E, SI fig. 10Ei, ii). Here we define foreground pixels as any
non-zero pixel in a binarized image of every frame. The SSIM scores reflect the frequency of
changes happening in-between frames. Fig 3F shows a slight increase in SSIM through the
progression of the image acquisition. Data from other cells show heterogeneity with one
staying constant throughout (SI fig. 10Fi) and one showing a slight decrease (SI fig. 10Fii)
but overall SSIM values do not fluctuate drastically, reflecting that the frequency of structural
rearrangement in resting cells is more or less constant.

Figure 3: Long term denoising and segmentation of fast ER dynamics. A Predictions of low intensity STED
images of ER (calreticulin-KDEL) at different time points, acquired on resting cells and predicted using the resting
model. B Fraction of tubes (cyan) and sheets (yellow) calculated using ERnet segmentation on A. C Amount of
different tubular junctions calculated using ERnet segmentation averaged over all frames. C, Inlay Fraction of
one- (green), two- (blue) and three- (pink) way tubular junctions over the whole measurement time of A. D
Instances of sheets (yellow), tubes (cyan) and gaps (light gray) calculated from A. E Fraction of foreground pixels
in each frame in A. F SSIM scores for adjacent frames calculated for all frames in A. N = 3. Scale bar: 1 µm.

Extending denoising to visualize long-term ER dynamics in 3D

The ER is a highly convoluted structure extending in 3D [16]. Although 2D planar imaging over
time gives insights into ER dynamics it does not completely reflect the underlying ground
truth. Possible artifacts may arise from 2D projection of the dense 3D ER structure.
Therefore, we extended the UNet-RCAN model trained on 2D planar images (resting model)
to denoise volumetric images from living cells over time.
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We first tested the robustness of the resting model on singular volumetric datasets. The 3D
stacks were limited to a thickness of 700 nm and only noisy images were acquired to keep
spatial offset between frames to a minimum. In addition, a top-hat point spread function
(PSF) pattern was used for the depletion laser to gain axial resolution. SI Fig 11 shows a
predicted 3D stack of an exemplary cell visualized as xy, yz and xz planes (Video S4). Since
only noisy images were acquired in the 3D stack, we measured additional single plane noisy
and ground truth images (SI Fig 12) with the same settings including a top-hat depletion
laser PSF as a control. We performed QC metrics on the control dataset (SI Fig 13) to show
that the resting model does indeed denoise images acquired with a top-hat depletion laser
PSF achieving a mean resolution of 89 nm (SI Fig 13F).

We then used the resting model to predict time series data of 3D stacks acquired over 17
min with a temporal resolution of 10.2 s. Fig 4A shows orthogonal slices of an exemplary
predicted data from 3D stacks over different points of time in the acquisition. The 3D surface
rendering of the time series data clearly shows that considerable dynamics would be missed,
e.g. through projection, if it were not recorded in 3D mode (Fig 4B, Video S5). Fig 4C
highlights this point by visualizing certain structural rearrangements over time for one of the
frames of the whole 3D stack. Similar data was acquired for different resting cells over
different days (Video S6,7). Hence we show that the resting model could be used on
z-stacks and extended to 3D time series over 17 min at super-resolution.
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Figure 4: Denoising 3D stacks over time to visualize fast 3D ER dynamics. A Orthogonal projections of
predictions from z-stacks of the ER acquired on live-cells at different time points. B Surface rendering of one of
the z-stacks shown in A. C Representative images from the inlay and the same z-plane shown in A at the
different time points throughout the acquisition. N = 4. Scale bars: 1 µm.

To conclude, we implemented an UNet-RCAN network to denoise STED images (planar-
and volumetric imaging) of ER (calreticulin-KDEL) in living cells and by reducing the laser
intensity incident on the cells extend STED nanoscopy on live-cells to over 7 hours.

Discussion
Visualizing organelle dynamics in live-cells with sub-diffraction resolution and for extended
time spans so far required either specialized microscopy equipment (lattice light sheet or
grazing incidence SIM) [18,38] or intermittent sampling due to the prevalence of photobleaching
and phototoxicity [28]. An alternative approach is to restore image content using a neural
network [11,13]. Previous work demonstrated that neural network assisted denoising can
restore STED images and mitigate photobleaching and photodamage by reducing the pixel
dwell time and hence light exposure. In addition, they showed that their UNet-RCAN network
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outperformed pre-available networks [14]. The aim of our work was to expand live-cell imaging
to the time scale of hours and at the same time with high temporal resolution to visualize ER
dynamics. By implementing an UNet-RCAN network, we were able to measure live-cells with
~70 times lesser light dose per pixel while maintaining a sub-100 nm resolution. We show
that a model solely trained with resting cells is robustly predicting both data acquired from
autophagy-induced cells and normal resting cells respectively (SI Fig 4 and SI Fig 5). This
shows that models generalize morphological changes to some extent, and acquiring training
data from resting cells could be sufficient when working with multiple conditions. By
leveraging the ~70 times reduction in light dose and a faster acquisition speed of 600 ms per
frame, we were able to measure low-intensity STED images of ER (calreticulin-KDEL) in
living cells for over 7 hours with minimal movement artifacts.

We then predicted super-resolution STED images from these low-intensity images giving
rise to time series data with sub-100 nm spatial resolution. The predicted images had a ~4 s
time resolution for a time span of ~7 hours giving full structural information on the
rearrangement of the ER. We accessed this by using ERnet based segmentation which is a
neural network based semantic segmentation tool that has been shown to classify ER
structures into tubes, sheets and SBTs especially from data acquired through SIM
microscopy [24]. In addition, through ERnet segmentation, Lu et al., have shown that three
way tubular junctions are dominant in healthy ER and they observed that in 20% of the
healthy cells that they analyzed exhibited ER with higher order tubular junctions [24]. Both of
these conditions are similar to what we observe in our time series data, where the three way
tubular junctions dominate and higher order junctions are also evident (Fig 3C, SI fig 10B).
We also show that structural rearrangements could be analyzed through other metrics such
as the foreground pixels and the SSIM index. Whereas the foreground pixel information is
similar to that extracted from the ERnet, though not as detailed, the SSIM index gives
information on the frequency of rearrangements occurring between frames. We see that for
two of the three cells measured, the SSIM index stays constant throughout the measurement
indicating that the structural rearrangements happening are not fluctuating from the mean. In
the case of the outlier, we can see from Video S3 that the cell itself moves and the amount of
ER in the FOV is decreased which could lead to the decrease in the SSIM index. In addition,
we also used the resting model for predicting volumetric data acquired from living cells. It
can be seen from the control test data (SI fig. 13F) that the mean resolution achieved is 89
nm. We extended this further by applying it to volumetric time series data for up to 17 min.
We can see that certain structural rearrangements could not be comprehended if it were not
for volumetric imaging (Fig 4C, Video 5-7). Volumetric imaging might prove useful especially
when studying inter-organelle dynamics. Taken together, the resting model we trained with
the UNet-RCAN network is robust enough to predict not only 2D planar images but also 3D
volumetric images and 2D planar images from stress induced cells.

We chose the ER as the target organelle due to its dynamics being largely unknown. The
morphology of the ER is profoundly responsive to conditions that induce stress within a cell.
In this context, the ER plays an important role in stress-induced autophagy, a cellular
process, which involves the degradation and recycling of cellular components, defined as
ER-phagy. Only fixed cell studies have been performed on ER-phagy samples under
super-resolution to the best of our knowledge [35,39]. Our pipeline that we developed here
would serve in the future to visualize fast and long term ER dynamics under different
stress-induced conditions with different cell line backgrounds. Our work mainly focused on
the ER which was recorded in a single fluorescence channel. We envision extending this
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approach to multiple spectral channels or add additional measurement parameters to study
inter-organelle dynamics or intra-organelle dynamics by selecting multiple targets of interest.
Future work might include the extension of describing other cellular structures along the ER,
drawing a more holistic understanding of organelle dynamics and interactions. We also note
that content restoration and denoising are areas of active research in the field of neural
network assisted bioimage analysis, and we anticipate that alternative approaches can be
integrated into this workflow [20,40].

In summary, our work demonstrates a neural network based workflow accessing the fast ER
dynamics with long time observation at high resolution in planar and volumetric image
acquisitions. This robust framework could be further applied to different scenarios, where
fast organelle dynamics with sub-100 nm resolution are of interest.

Methods

Cell culture

Live-cell samples were prepared from U2-OS cells stably expressing
Calreticulin-KDEL-HaloTag7. The cell line was cultured in DMEM/F12 media supplemented
with 10% fetal bovine serum (Corning, USA), 1% (v/v) penicillin-streptomycin (Thermo Fisher
Scientific, Germany ) and 5% (v/v) Glutamax (Thermo Fisher Scientific, Germany). The cells
were incubated at 37 °C and 5% CO2 and were passaged every 2-3 days or when they
reached 80% confluency.

Sample preparation for live-cell microscopy

U2-OS cells stably transfected with calreticulin-KDEL-HaloTag7 were seeded onto 8-well
chambered coverglass (Sarstedt, Germany) at an amount of 1 x 104 cells per well. The cells
were incubated overnight at 37 °C and 5% CO2 and were induced the next day with 250-500
µg/mL of doxycycline (Sigma Aldrich, Germany) in culture media. Two days post-induction,
the cells were incubated for 15-20 min with 300 nM of HaloTag ligand conjugated to the
fluorophore SiR diluted in culture media. The cells were then washed thrice with culture
media with 5 min incubation at 37 °C with 5% CO2 between every wash. The cells were
incubated in culture media at 37 °C with 5% CO2 till they were taken out for imaging. For
imaging, the culture media was then exchanged for live-cell media (reduced culture media
with HEPES, Thermo Fisher Scientific, Germany) and the cells were imaged within the next
two hours unless explicitly mentioned.

Autophagy induction

For autophagy induction, the media of the seeded cells were exchanged with live-cell media
containing final concentrations of 250 nM Torin1 (Bio-techne, USA) and 250 nM BafA1
(Cayman Chemical Corporation, USA). The cells were imaged immediately to observe the
progression of autophagy over time.

STED microscopy

An Abberior expert line microscope (Abberior Instruments, Germany) was used for
performing confocal and STED imaging. The setup had a Olympus IX83 body (Olympus
Deutschland GmbH, Germany) where the imaging was done using a UPLXAPO 60x NA 1.42
oil immersion objective (Olympus Deutschland GmbH, Germany). Sample images were
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acquired by exciting with a 640 nm excitation laser (both confocal and STED imaging) and
depleting (in the case of STED images) with a 775 nm laser which either had a donut PSF
(for planar and long-term imaging) or a top-hat PSF (for volumetric imaging and planar
control) and with a delay of 750 ps and fluorescence photons between 750 ps and 8.75 ns
were detected between every laser pulse. Fluorescence was collected in the spectral range
of 650 nm to 760 nm using an avalanche photo diode (APD). The power levels of the lasers
used and the parameters used for imaging are summarized in Table 1. Note that the power
levels for the lasers were measured at the back focal plane. Training data was imaged in a
7.5x10 µm² and 12x12 µm² field of view (FOV); test data was imaged in a FOV of 12x12
µm²; 2D time series data was imaged in either 12x12 µm² or 15x15 µm² FOVs and 3D time
series was imaged in a FOV of 10x10 µm².

Table 1: Imaging parameters used for confocal and STED imaging

Imaging
modality
and
condition

Excitation
laser
power
(µW)

Depletion
laser
power
(mW)

Depletion
laser PSF
pattern

Line
accumulation
/integration

Pixel
dwell
time (µs)

Pinhole
diameter
(airy unit
(AU))

Pixel size/
Voxel size (nm)

Ground
truth,
single
plane

56.3 166 Donut 6 0.5 0.81 20

Low
intensity,
single
plane;
timeseries

4.8 166 Donut 1 0.5 0.81 20

Low
intensity,
z-stack

4.8 166 top-hat 1 0.5 0.81 20

Ground
truth,
single
plane

56.3 166 top-hat 6 0.5 0.81 20

Low
intensity,
single-pla
ne

4.8 166 top-hat 1 0.5 0.81 20

Low
intensity,
z-stack,
timeseries

4.8 166 top-hat 1 0.5 0.81 35

Image processing

High-intensity and low-intensity images were registered with NanoJ-Core’s registration
method [30]. For the resting condition, training images were acquired from 3 measurement
days. For the mixed model, 26% of images were added from the treated condition. The
same amount of data was used for training to allow comparison between the resting and

13

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.30.605742doi: bioRxiv preprint 

https://paperpile.com/c/5DDHFy/U0jHz
https://doi.org/10.1101/2024.07.30.605742
http://creativecommons.org/licenses/by-nc/4.0/


mixed model performance. Images were cropped into patches of 128 x 128 pixels, 200 x 200
pixels, 256 x 256 pixels, and 304 x 304 pixels to determine which patch size is optimal. A
training and validation split of 90%-10% was made. Per condition, 15 test images of size
600x600 px² were acquired at a different measurement day.

Network training

UNet-RCAN networks [14] were trained on a NVIDIA RTX 3090 24 GB GPU. As the default
values led to exploding gradients, we added some additional hyperparameter options to the
published codebase, and the parameter space was explored to find a robustly working
model. This included different loss functions (leaky ReLU, tanh), kernel initialization
strategies (glorot uniform, lecun uniform, orthogonal), gradient clipping (0.1, 0.01, 0.001),
and l2 regularization (0, 0.01, 0.001). Different learning rates were additionally tested during
the search (0.001, 0.0001, 0.00001 for the resting and 0.001, 0.0001, 0.0005, 0.00005,
0.00001, 0.000001 for the mixed condition), along with different patch sizes (128 x 128
pixels, 200 x 200 pixels, 256 x 256 pixels, and 304 x 304 pixels). The batch size was chosen
as the maximum possible number per patch size before an out-of-memory error occurred on
the GPU (patch size: batch size, 128: 36, 200: 16, 256: 10, 304: 6).

A parameter space search was executed to identify possible parameter combinations for
models that perform well on the test dataset. To diminish the search time, 1000 data
instances were included and training was interrupted after 10 epochs or if the loss exceeded
a value of 1000 during training. 147 models were evaluated for the resting condition and 393
models for the mixed condition. Quality control metrics were calculated on a test dataset
after every model run to determine the model performance. The metrics SSIM [33], MAE, and
the resolution (determined with decorrelation analysis [41] in NanoPyx v0.2.2 [42]) were each
linearly transformed between 0-1 (0 means worst and 1 means best for all scores) across all
model runs per condition. A “total score” was computed by summing the transformed scores
and dividing them by three to assess performance across multiple metrics. The top 5
models, based on the highest total score, were trained until convergence on the full dataset
with 1764 instances.

For the final calculation of quality control metrics, the pixel intensities of the predicted test
images must be rescaled, as the model outputs normalized intensities. A scale and offset
were calculated based on the pixel values of predicted training instances and their ground
truth images; the test dataset is deliberately excluded from this process. A linear scaling
operation was applied to the pixel values of the predicted images. Values above the 99th
quantile and below the 1st quantile were clipped. The scale and offset values were
determined per model and applied to the test data before calculating quality control metrics.
The final model was selected based on the highest total score, with parameters detailed in
SI table 3.

Quality control metrics

The MAE was calculated using the mean absolute difference of pixel values. SSIM [33] and
PSNR were computed using the scikit-image library v0.19.3 [43]. Pearson correlation was
determined with SciPy v1.9.3 [44]. The learned perceptual image patch similarIty (LPIPS) [34]

was ascertained with a VGG model. Resolution during model training was determined with
decorrelation analysis [41] in NanoPyx v0.2.2 [42]. Resolution for the test data was determined
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using rolling Fourier ring correlation v0.2.5 [32] with a 1/7-threshold and a background
intensity of 20.

To discern predictions stemming from FOVs with signal and FOVs containing only noise, the
SSIM was calculated between adjacent predicted frames of the resting movie and a movie
recorded of only dark noise of the detector (in an empty image plane without sample). To
spatially group pixels into the categories background, uncertain, and signal, a sliding window
of size 10x10 px² was used to sum the pixel intensities within this window per pixel. Borders
of the image were padded with reflected pixels to maintain the input size. A pixel was labeled
as background, if the sum was equal or below 5, as uncertain if in between 6 and 25, and as
signal if above 25. The window size and thresholds must be adapted per use case.

Feature importance

The RandomForestRegressor from scikit-learn v1.0.2 [45] was used to determine
hyperparameter importance based on the 147 model runs for the resting and 393 model runs
for the mixed condition. It ranks the hyperparameters based on their importance in achieving
a high “total score”. Furthermore, suitabilities are assigned to the different parameter options
within a parameter group.

Structural analysis of the ER

Rolling ball background subtraction with a radius of 15 px was applied to the images in Fiji [46]

prior to ERnet processing. This prevents high background regions from being falsely
classified as ER sheets. The pretrained 20220306_ER_4class_swinir_nch1.pth ERnet v2.0
model was used in Google Colab [24] to describe the ER properties in a living cell in the
predicted long-time movies for the resting and mixed conditions. The segmentation outputs
the structures tubules, sheets, and sheet-based tubules (SBTs). As the latter was not visible
in the movies and ERNet just segmented some minor spots as SBTs, these spots were
merged into the sheet segmentation.

Post processing volumetric data

The predictions from volumetric datasets (Video S4-7) were checked for hallucination
artifacts as shown in SI fig. 7E and peripheral frames were cropped to avoid them. The
cropped 3D stacks were rendered as surfaces using the “3D Viewer” in Fiji with “Display as”
set to surface, “Resampling factor” set to 2 and “Threshold” set to 50.

Statistical analysis

All datasets were probed for normality by applying Shapiro-Wilk tests (α = 0.05) and
Mann-Whitney-U tests were used to compare the metrics of ground truth and predicted
images. Levels of significance were defined as: p > 0.05 no significant difference (n.s.), p <
0.05 significant difference (*), p < 0.01 very significant difference (**), p < 0.001 highly
significant difference (***). All tests were performed in Origin Pro 2018b.

Data availability

Data (raw and predicted datasets) reported in the manuscript are available on Zenodo
(10.5281/zenodo.13120793).
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