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ABSTRACT 

In the ancient microbial Wood-Ljungdahl pathway, CO2 is fixed in a multi-step process ending 
with acetyl-CoA synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA 
synthase complex (CODH/ACS). Here, we present catalytic snapshots of the CODH/ACS from 
the gas-converting acetogen Clostridium autoethanogenum, characterizing the molecular 
choreography of the overall reaction including electron transfer to the CODH for CO2 reduction, 
methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site and 
acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational 
changes to form an internal connection to the CODH active site, accommodate the CoFeSP for 
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methyl transfer and protect the reaction intermediates. Altogether, the structures allow us to draw 
a detailed reaction mechanism of this enzyme crucial for CO2 fixation in anaerobic organisms. 

 
One-Sentence Summary: Structural description of key states of CO2 fixation by the carbon 
monoxide dehydrogenase/acetyl-CoA synthase complex.   
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Main Text:  
 
Considered the most ancient and energy-efficient pathway for carbon dioxide (CO2) fixation, the 
Wood-Ljungdahl pathway (WLP), also known as the reductive acetyl-coenzyme A (acetyl-CoA) 
pathway, is responsible for 20% of annual carbon fixation (1, 2). The strictly anaerobic process, 
performed by a wide range of microbes (e.g., acetogenic bacteria and methanogenic archaea) (3), 
is currently applied in gas-mitigation, biotechnologies and biofuel production (4, 5). The pathway 
consists of two branches: the methyl branch, which transforms CO2 into a methyl group bound to 
a cobalamin derivative (simplified as B12 below), and the carbonyl branch, where CO2 is reduced 
to carbon monoxide (CO). The latter reaction is catalyzed by an Fe-[Ni-3Fe-4S] cluster (C-cluster) 
in the carbon monoxide dehydrogenase subunit of the bifunctional carbon monoxide 
dehydrogenase/acetyl-CoA synthase complex (CODH/ACS) (6-16). The branches converge on the 
Ni-Ni-[4Fe-4S] cluster (A-cluster) localized in the ACS subunit (Fig. 1) to generate acetyl-CoA 
from CO, the methyl group, and CoA (7, 8, 17). Depending on the metabolism, acetyl-CoA can be 
converted to acetate for energy conservation, or assimilated into cell carbon (18, 19). Alternatively, 
other microbes utilize the same enzyme for the reverse process of acetyl-CoA decarbonylation (10, 
20). 
 
Structural insights into the catalytic reactions of CODH and ACS have been obtained from 
standalone enzymes and bifunctional CODH/ACS complexes from Moorella thermoacetica, 
Carboxydothermus hydrogenoformans and Clostridium autoethanogenum (Mt, Ch and Ca, 
respectively) (7, 8, 11, 14-17, 21, 22). However, the overall molecular mechanism of acetyl-CoA 
synthesis is still not fully understood due to the complexity of the reaction, which requires several 
additional actors and substantial structural rearrangements of the ACS. 
In one of the accepted scenarios, the reaction initiates with the CO2 reduction at the C-cluster, 
which requires electron transfer from a ferredoxin (23). The electrons are first transferred to a 
solvent-exposed [4Fe-4S] cluster (D-cluster, alternatively a [2Fe-2S] cluster) (6, 11, 24-26) located 
on the symmetrical axis of the CODH dimer, before being transferred to the C-cluster through an 
intermediate [4Fe-4S] cluster (B-cluster). Once produced, CO is channeled to the A-cluster 
through a hydrophobic internal tunneling network and covalently binds as a carbonyl group to the 
proximal Ni (Nip) (7, 15, 21, 27). Subsequently, the methyl-Co(III)-B12, carried by the corrinoid 
iron-sulfur protein (CoFeSP), interacts with the carbonylated ACS to perform methyl transfer. The 
methyl and carbonyl groups react to generate an acetylated A-cluster (28), which promotes the 
formation of acetyl-CoA through its reaction with the thiol group of CoA. 
This reaction mechanism requires flexibility of the ACS as a prerequisite for complete turnover, 
as the ACS must undergo sequential reactions dependent on ferredoxin, gas trafficking, CoFeSP 
and CoA. The ACS is composed of three functional domains (A1, A2, and A3, from N- to C-
terminus) separated by linkers that allow interdomain flexibility. Multiple conformational 
arrangements of the ACS have been shown through X-ray crystallography and negative-stain 
electron microscopy (7, 8, 14-17, 22, 29). However, high-resolution structures of the CODH/ACS 
complex with its partners or ligands are lacking.  
 
In this study, we aimed to capture the CODH/ACS in action by visualizing the missing 
conformations under various protein-protein interaction or ligand-binding conditions. All 
presented results are derived from proteins anaerobically isolated from the biotechnologically 
relevant syngas converter C. autoethanogenum, an acetogen that we cultivate heterotrophically on 
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fructose and H2/CO2 as reported previously (15). Previous studies have shown that CODH/ACS 
from C. autoethanogenum catalyzes the reversible CO oxidation with artificial electron acceptors 
or ferredoxin as the physiological partner, methylates the A-cluster with methyl-cobinamide (15, 
30, 31). To structurally characterize the mechanism of acetyl-CoA synthesis, a 1:2:1 mixture of 
CODH/ACS heterotetramer, CoFeSP, and ferredoxin, all identified by mass spectrometry ((15, 
30), fig. S1), was incubated with iodomethane as methyl donor and CO as carbonyl and electron 
donor. This mixture was plunge-frozen for cryo-EM analysis under anaerobic conditions at ~5% 
CO in the gas phase. After electron microscope imaging and initial data processing, we performed 
three-dimensional (3D) refinement with C2 symmetry, yielding maps of the rigid core of the 
enzyme, composed of the CODH and A1, at resolutions reaching 1.94 Å (figs. S2-3, tables S1-2). 
By further classifying the CODH/ACS into different states, we gain a detailed view of acetyl-CoA 
synthesis. 
 
Ferredoxin-dependent CO2-reduction at the C-cluster 
  
The less well-resolved density observed at the symmetry axis of CODH was further analyzed by 
focused classification and local refinement without symmetry applied, resulting in a map showing 
a ferredoxin harboring two [4Fe-4S] clusters bound asymmetrically near the D-cluster on the C2 
symmetry axis (Fig. 2A, figs. S3B, S4 and S5A). The partial occupancy of ferredoxin and its high 
b-factors reflect the expected transient interaction. Hydrogen bonding and hydrophobic contacts 
stabilize the complex (fig. S5B), forming an interaction network that could be supplemented by 
electrostatic attraction between positively charged residues (Lys35, Lys63) on the flexible loops 
of the CODH and the negatively charged area of the ferredoxin (fig. S5C). While a previous study 
questioned the role of the D-cluster as an electron entry/exit point due to its midpoint potential in 
the monofunctional CODH of Rhodospirillum rubrum (23, 32), the observed interaction and the 
inter-cluster distance of 8.7 Å in our structure supports ferredoxin docking and electron transfer at 
the D-cluster (Fig. 2A) (6, 11, 24-26, 33). Electrons are then transferred via the B-cluster to the 
catalytic C-cluster, the density of which suggests no additional ligand on the structure (fig. S6A).  
An initial model of the C-cluster exhibited a short (2.3 Å) distance between Ni and the pendant 
iron (Feu), both refined with partial occupancy (~50% and ~60-70%, respectively). This led us to 
conduct mixed quantum mechanics/molecular mechanics (QM/MM) calculations using density 
functional theory (DFT) for the quantum region. The analysis showed that compared to the 
oxidized state of the C-cluster, the Ni-Feu distance decreases in the 2-electron and 4-electron 
reduced states Cred1(-OH) and Cred2(-OH), with the minimal distance predicted as 2.44 Å in the Cred2(-

OH) (figs. S7-8; table S3). In a topological analysis of the electron density, the emergence of a bond 
critical point between Ni and Feu further indicates the formation of a metal-metal bond in the 
reduced states (fig. S8D-F). A shortened Ni-Feu distance was also shown in the cyanide-bound 
CODH crystal structure (34). By contrast, in the oxidized state, Ni and Feu are part of a ring formed 
by Ni-[Cys523]S-Fe-S. These results suggest that two electrons are stored in the metal-metal (Ni-
Feu) bond of the C-cluster, as previously proposed (35). However, we caution that the low 
occupancy of the metals and putative mixture of oxidation states of the C-cluster in our sample 
may require further structural and spectroscopic characterization. Therefore, we model the cluster 
with an averaged Ni-Feu distance of 2.50 Å, a still relatively short distance compared to the 
previous structures of the enzyme and homologues (fig. S6B-C).  
 
Conformational spectrum of ACS allows A-cluster carbonylation 
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Poorly resolved density was present at the expected positions of domains A2 and A3. Using 
focused classification and refinement of symmetry-expanded datasets (fig. S9), we were able to 
separate two classes (named Class 1 and 2 in the processing workflow, refined to resolutions of 
2.83 Å and 3.29 Å, respectively) with clear density for A2 and A3 but without additional density 
attributed to CoFeSP (figs. S3C-D, S9-10 and tables S2, S4). The rearrangement of the domains 
can be modeled as multi-body motion (29) with very low root mean square deviation (RMSD) of 
each domain across different conformational states and organisms (table S5). Multiple terms have 
been used to describe the ACS conformation in previous works, such as ‘open’, ‘closed’ and 
‘extended’. Here, we introduce a reference framework for a simple comparison of these states in 
terms of distances between conserved sites in the three domains. In addition to the global 
opening/closing of the ACS due to a highly flexible loop connecting A1 to A2 (previously shown 
to be highly sensitive to limited proteolysis (15)), the A2-A3 part can potentially perform an 
opening-closing movement as well, allowing or occluding access to the Nip independently of the 
A1 position. To best characterize this dual flexibility, we propose the distances Nip-F209 and 
F491-W405 (CaACS numbering) as proxies of interdomain 1-3 and interdomain 2-3 spacing, 
respectively (L1-3 and L2-3, where ‘L’ stands for ‘length’).  
The CaACS class 1 resembles the closed conformation of MtCODH/ACS and ChCODH/ACS (7, 
8, 14, 16), featuring a short L1-3 and a long L2-3 (Fig. 2B, figs. S11A and S12, table S6). In the 
closed state, the A2-A3 space is opened and the A-cluster apposes A1 surface. A predicted CO 
channel emanating from the C-cluster opens into a solvent-occluded space around the A-cluster 
(27). In this state, an additional density observed on Nip is modeled as a CO bound to the tetrahedral 
Ni (fig. S13A-B). Well-conserved hydrophobic residues Val125, Phe209, and Phe491 are 
positioned similarly to their counterparts in the CO-bound state of MtCODH/ACS (14) (fig. S13B-
C). These residues were proposed to stabilize the tetrahedral geometry of the carbonylated Nip, 
facilitate CO diffusion through internal cavities to the A-cluster, and hinder the A-cluster from 
adopting a methylation-compatible geometry (14).  
By contrast, the class 2 corresponds to the semi-extended state previously described in the 
crystallographic structure of CaCODH/ACS (PDB 6YTT, chain D) (15) (Fig. 2B, fig. S11B). In 
this state, the A3 is disengaged from the A1 and the Nip is occluded by the closing of A2-A3 (fig. 
S12A). The resolution is too limited to describe a bound ligand on the A-cluster (carbonyl or 
methyl). Class 2 likely reflects a conformation en route towards CoFeSP docking, protecting the 
Nip to avoid side reactions while gradually opening the interdomain A1-A3 space (table S6). 
 
CoFeSP interaction promotes the ACS hyper-extended state 
 
Focused classification of the flexible ACS unveiled a third class corresponding to the CODH/ACS-
CoFeSP complex (Fig. 2B, figs. S9-10, S14 and tables S2, S4). Compared to the extended state 
obtained by crystallography (PDB 6YTT, chain A) (15), ACS complexed with CoFeSP maintains 
a long L1-3 and additionally opens L2-3 via a 59° rotation of A3, leading to a hyper-extended state 
(figs. S12C and S15; table S6). Consequently, this is the sole state obtained in our study in which 
the A-cluster is fully accessible for methyl transfer. 
The hyper-extension is maintained by three anchoring points: docking of the CoFeSP small subunit 
to both A1 and A3 and the interaction between the [4Fe-4S] cluster domain of the CoFeSP large 
subunit (1-57) and the A3 (figs. S16-17). The [4Fe-4S] cluster domain, and to a lesser extent the 
B12-binding domain (CoFeSP large subunit, 326-446), show the most structural differences when 
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compared to structural homologues in complex with the activator protein or the methyltransferase 
(MeTr) (fig. S18) (36, 37). The distance between the [4Fe-4S] cluster and the A-cluster (32.3 Å, 
fig. S17) precludes electron transfer, agreeing with previous studies indicating no direct 
involvement of the CoFeSP [4Fe-4S] cluster in ACS methylation (38, 39). Our findings rather 
support the function of this domain in stabilizing the hyper-extended ACS and its interaction with 
CoFeSP, similar to its role during interactions with the activator protein or the MeTr (fig. S18) (36, 
37). Residues involved in the interaction between ACS and CoFeSP are mostly conserved among 
bacteria and archaea (figs. S16-17), suggesting a similar mode of action across microbial kingdoms.  
 
Methyl transfer reaction through B12 domain motion 
 
The hyper-extended state of the ACS enables the bulky CoFeSP to access the A-cluster (‘class 3’; 
Fig. 2B and Fig. 3), but additional motion of the CoFeSP is required to bring the B12 close enough 
for methyl transfer (37, 40). Via 3D variability analysis (3DVA) of the class 3, we resolve a 
rotational motion of the B12-binding domain (Fig. 3B). Supervised classification using three 
intermediate reconstructions from 3DVA led to three subsets (3A, 3B and 3C), with 3A and 3B 
refined to 2.71 Å and 2.65 Å, respectively (table S2). The subset 3C appeared as a mixture of two 
states, with the corrinoid group density stretching further towards Nip (fig. S19). By building 
preliminary models for each configuration and using their corresponding molmaps for supervised 
classification of class 3C, we obtained two substates, 3Cα and 3Cβ, refined to 2.78 Å and 2.88 Å, 
respectively (table S2). These maps represent snapshots of the rotational motion, during which the 
B12 approaches Nip (Fig. 3, movie S1), reminiscent of the motion described in the MtCoFeSP 
complexed with its MeTr (37). In the 3A/3B/3Cβ sequential movement, the B12 ring progressively 
breaks all hydrogen bonds with the CoFeSP and establishes new ones with the ACS (Fig. 3C). 
These conserved hydrogen-bonding residues stabilize the B12 as it moves towards the A-cluster, 
with the shortest Co-Nip distance of 6.7 Å observed in 3Cβ (Fig. 3B-D), nearly sufficient for direct 
methyl transfer. We suppose that a transient state exists with a further shortened distance suitable 
for methyl transfer, as in the CoFeSP-MeTr, but this state appears too rare to be captured via 
classification or 3DVA. No obvious density for a methyl or carbonyl group could be detected at 
either the corrinoid or the Nip site. We assessed the possibility of ligand loss due to radiation 
damage at the site by reconstructing only early frames, corresponding to as little as 3.7 MGy (41), 
but did not observe notable differences in the density (fig. S20A). 
For the states containing no external ligand at Nip, our refined models consistently exhibited 
relatively short distances between the Nip and S1 sulfide of the [4Fe-4S] cluster (fig. S20B). To 
test the chemical feasibility of this configuration, we carried out a QM/MM analysis (fig. S7), 
using the best-resolved structure, i.e., class 3B. Our calculations suggested that, in the absence of 
a fourth ligand bound to Ni+, a strong attractive interaction with the [4Fe-4S] cluster brings Nip 
into bonding distance (S21A; table S7). The topological analysis of the electron density reveals a 
bond critical point and a corresponding bond path connecting one of the sulfides in the cubane and 
the Nip cation (fig. S21B). A ring critical point is found between one of the Fe-S edges of the 
cluster and the Cys488-Nip bond, forming a 4-membered ring resembling one of the faces of the 
cubane. Previous experimental and theoretical studies proposed significant rearrangements 
between tetrahedral and square planar geometries during catalysis (42). Based on our calculations, 
it is feasible that a low-valent Nip is coordinated by a sulfide of the [4Fe-4S] cluster, generating 
the extended cubane structure observed in the experiment. Upon ligand binding, a four-coordinated 
Ni complex can form, recovering the usual geometry proposed for other reaction intermediates. 
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Therefore, the Nip geometry modeled in our cryo-EM structures is consistent with the apparent 
absence of density for ligands, even though a low occupancy (~45-59%) of the Nip site, the 
relatively low resolution and the putatively mixed state may hamper the accurate determination of 
the Nip geometry and the detection of ligands. 
 
The acetyl-CoA complex, a snapshot of the bound reaction product 
 
Carbonyl and methyl groups bound at Nip combine to form an acetyl (28), which is subsequently 
transferred to the thiol group of CoA. Despite our efforts, we could not unambiguously detect 
additional cryo-EM map density in CODH/ACS treated with CoA or acetyl-CoA. However, by 
co-crystallizing CaCODH/ACS with acetyl-CoA, we obtained a 2.93 Å X-ray structure of the 
product-bound complex (CODH/ACSAC, table S8). The global conformations resemble those of 
the as-isolated CaCODH/ACS (15) (fig. S22). However, the previously semi-extended ACS now 
exhibits additional density spanning the A2 surface and reaching A3, modeled as acetyl-CoA, 
while the extended ACS of the asymmetric unit lacks such density, reflecting the strict 
conformational requirement for ligand binding (Fig. 4, fig. S23). 
The acetyl-CoA primarily interacts with A2 residues, with the adenine group stabilized by Trp405 
via π-stacking, and the diphosphate facing a positively charged patch rich in lysines and arginines 
(Fig. 4, fig. S24A). The relatively high b-factors of the adenosine diphosphate moiety (fig. S24B) 
indicate only partial stabilization of the acetyl-CoA in the A2-A3 cleft that is restrained by the 
crystalline packing. 
Compared to the ligand-free semi-extended ACS resolved by cryo-EM, acetyl-CoA-bound ACS 
undergoes a 15° rotation of A3 (fig. S25A). This further stabilizes acetyl-CoA binding via 
additional contacts with the A3 (Fig. 4), resolves potential clashes between A3 and acetyl-CoA 
(fig. S23B), and brings the A-cluster into closer proximity of the acetyl-CoA (fig. S25A). In this 
state, the acetyl-bearing sulfur atom is 4.13 Å away from the Nip, with the acetyl group stabilized 
by the hydrogen-bonding with the main chain of Gly399 for the carbonyl moiety, and interaction 
with the His386 for the methyl moiety (Fig. 4). The flexible Phe491 swings away from the Nip 
(fig. S25B) to avoid steric hindrance to the CoA attack. The conserved Arg383 and His386, located 
near the A-cluster in the structure (Fig. 4), are likely crucial for acetyl transfer. Superposition with 
an acetylated A-cluster structure from a previous DFT study (43) indicates that Arg383 would be 
in the direct vicinity of the Nip-bound acetyl group, putatively stabilizing it via H-bonding (fig. 
S25C). His386 is well positioned in our structure to facilitate deprotonation of the thiol group (Fig. 
4B), consistent with previous analysis (17). The majority of the residues involved in acetyl-CoA 
stabilization in the CODH/ACSAC were already suggested in MtACS (17), and most of these 
interacting residues are conserved among bacteria and archaea (Fig. 4), which suggests a strong 
evolutionary pressure to avoid possible clashes during the overall catalysis.  
 
 
Discussion 
 
By providing new structural insights into the electron transfer, methyl transfer, and acetyl-CoA 
formation steps, our work advances decades of studies on the catalytic cycle of the CODH/ACS. 
The study illustrates the elegant and intricate reaction mechanism of this key anaerobic CO2 
fixation machinery, which exhibits a wide range of ACS conformations relying on interdomain 
flexibility, as proposed by previous studies (23, 29). To simplify the nomenclature and comparison 
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of these conformations, we introduce new metrics based on the interdomain distances L1-3 and L2-

3, enabling the clustering of conformational states in a 2D landscape (Fig. 5A, table S6). The 
landscape generated from structurally characterized ACS allows us to construct a conformation-
based model of the overall reaction of the CODH/ACS (Fig. 5B). In a sequential carbonylation-
methylation scenario, the reaction would initiate in a closed state. Ferredoxin docking on the D-
cluster and the subsequent electron transfer drive the CO formation, which can diffuse from the C-
cluster to the A-cluster (14) for Nip carbonylation. The methylation step would require a hyper-
extended configuration to accommodate the methyl donor CoFeSP, involving a movement of more 
than 37 Å of the A-cluster (fig. S26). During the movement (increasing L1-3), the A-cluster-
carrying A3 must be undocked from the A1, which could leave the reactive carbonyl-Nip site 
exposed. This appears to be mitigated by closing of L2-3 in the semi-extended and extended states 
(Fig. 5A, fig. S12A-B), which shelters the A-cluster. Upon binding of CoFeSP, the hyper-extended 
state is stabilized, characterized by its long distance L2-3 and exposed A-cluster (Figs. 2B and 5A, 
fig. 12C and table S6). The B12 domain of CoFeSP ‘waltzes’ toward this open space, positioning 
the B12 close enough for the methyl transfer. After reaction of the carbonyl and methyl groups to 
a Nip-bound acetyl group, the ACS would release the CoFeSP. Although CoA primarily interacts 
with A2, it must be brought near the A-cluster on A3 to further stabilize the binding and initiate 
acetyl transfer. Thus, acetyl-CoA formation appears to require a return to shorter L2-3, where A3 
is rotated relative to the semi-extended state to finely tune the cleft between A2 and A3 for the 
nucleophilic attack of the thiol group of CoA (fig. S25A). After acetyl-CoA release, the ACS 
returns to the closed conformation for another catalytic cycle. 
The proposed scenario does not exclude a reverse sequential order, i.e., a sequential methylation-
carbonylation process. A specific reaction order is perhaps not required, since the ACS exhibits a 
wide conformational spectrum in solution (Fig. 2B). We note that among all characterized CaACS 
structures obtained by cryo-EM from the same sample, a carbonyl ligand is observed only in the 
closed state, although this could also be due to experimental limitations.  
The overall architecture of CaCODH/ACS differs from the model MtCODH/ACS or 
ChCODH/ACS (15). However, aligning all reported CaACS conformation to the rigid A1 (N-
terminal domain) of MtACS shows no clashes with the rigid core of MtCODH. This suggests that 
the conformational states and reaction mechanism described here could be generalized to 
complexes including MtCODH/ACS and ChCODH/ACS, in which the N-terminal domain of ACS 
forms different contacts with the CODH dimer (fig. S27).  
To complete the reaction landscape of ACS, several intermediate structures are still needed, 
including methyl-bound, CO- and methyl-bound, acetyl-bound and CoA-bound ACS. These 
snapshots could elucidate the mechanisms underlying the triggering or regulation of the 
conformational transitions, which is crucial for this reversible and central enzyme in the global 
carbon cycle.  
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Fig. 1. The Wood-Ljungdahl pathway. One molecule of CO2 is reduced in the multi-step methyl 
branch (pink arrows), while another is reduced at the C-cluster of CODH in the carbonyl branch 
(light blue arrows). The methyl and carbonyl moieties react, and the acetyl group is transferred as 
a thioester of coenzyme A, at the A-cluster of ACS (green arrows). For simplicity, only the 
bacterial WLP is depicted. The reverse decarbonylation process and the archaeal equivalent 
pathway are not shown. The latter depends on analogous reactions, with tetrahydromethanopterin 
replacing H4F and a formate condensation reaction being independent of ATP hydrolysis as major 
differences (3). 
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Fig. 2. Conformational gallery of the CODH/ACS. (A) Ferredoxin (forest green) docks at the 
C2 symmetry axis of CODH (gold/wheat). The symmetry axis is indicated with a vertical line. 
Inset: the binding conformation should allow efficient electron transfer between the [4Fe-4S] 
cluster of ferredoxin and the D-cluster of CODH; distances are shown as dashed lines. (B) The 
collection of flexible ACS conformations, with structures from the current study highlighted and 
aligned according to the A1 domain with the open state obtained from MtCODH/ACS (underlined, 
PDB 1OAO, chain D) and the extended state (CaCODH/ACS, PDB 6YTT, chain A) of ACS. The 
domains of ACS are shown in shades of blue, from darker at the N-terminus to lighter at the C-
terminus. The Nip-F209 and F491-W405 distances for the closed and semi-extended states are 
indicated by dashed lines, with the measured values provided alongside the structures. ACS adopts 
a hyper-extended state to allow binding of the methyl-donor protein CoFeSP (pink). In the hyper-
extended state, the Nip-F209 and F491-W405 distances are 39.8-40.5 Å and 36.8-39.4 Å, 
respectively, whereas in the acetyl-CoA-bound ACS, these distances are 26.7 Å and 14.9 Å, 
respectively (table S6). All metallocofactors are in stick representation and colored according to 
the element. 
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Fig. 3. In the hyper-extended, CoFeSP-bound state, rotation of the CoFeSP B12 domain 
brings the B12 toward the Nip. (A) The cryo-EM map, with the ACS in complex with a CoFeSP 
colored according to the established color scheme established in Fig. 2, while the rest of the 
complex is in gray. (B) The B12 domain undergoes a 47° rotation (rotation axis as a light-yellow 
stick) from class 3A to class 3Cβ, positioning the Co atom of B12 6.7 Å away from the Nip. The 
B12 domain and B12 are colored according to the rotational states, and the rest of the complex is 
in gray. (C) Detailed views of the three rotational states, with key hydrogen bonds indicated by 
dashed lines. (D) Sequence conservation analysis shows that most of the B12-stabilizing residues 
are well conserved in bacteria and archaea. In both (C) and (D), residues involved in hydrogen-
bonding via their main chain atoms are underlined. 
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Fig. 4. CODH/ACS in the acetyl-CoA bound state. (A-B) Close-up views of acetyl-CoA 
binding, highlighting the key residues involved in the interaction. (C) Conservation of the residues 
in bacteria and archaea. Residues involved in hydrogen-bonding via their main chain atoms are 
underlined. 
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Fig. 5. A conformation-based model of acetyl-CoA synthesis. (A) The conformational 2D 
spectrum of all known structures of CODH/ACS. One proposed reaction route, starting with 
carbonylation, is marked by arrows and numbered according to the model in (B). The function of 
each conformation is summarized in the table. (B) A proposed mechanism of acetyl-CoA synthesis 
in the sequential carbonylation-methylation scenario. Schematic representation of key 
CODH/ACS conformations with their functional roles, as well as the corresponding configurations 
of the A-cluster, are presented in the boxes. The reaction route is labeled with solid arrows, while 
critical domain motions during the reaction are marked by curved arrows and further illustrated in 
figs. S15, S18, S25A and S26. In the ligand-free resting state, the feasible Nip-S coordination is 
indicated by a gray stick.  
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