Supplementary materials of Investigation of the $\Delta I = 1/2$ rule and test of CP symmetry through the measurement of decay asymmetry parameters in Ξ^- decays

M. Ablikim¹, M. N. Achasov^{5,b}, P. Adlarson⁷⁵, X. C. Ai⁸¹, R. Aliberti³⁶, A. Amoroso^{74A,74C}, M. R. An⁴⁰, Q. An^{71,58}, Y. Bai⁵⁷, O. Bakina³⁷, I. Balossino^{30A}, Y. Ban^{47,g}, V. Batozskaya^{1,45}, K. Begzsuren³³, N. Berger³⁶, M. Berlowski⁴⁵, M. Bertani^{29A}, D. Bettoni^{30A}, F. Bianchi^{74A,74C}, E. Bianco^{74A,74C}, A. Bortone^{74A,74C}, I. Boyko³⁷ R. A. Briere⁶, A. Brueggemann⁶⁸, H. Cai⁷⁶, X. Cai^{1,58}, A. Calcaterra^{29A}, G. F. Cao^{1,63}, N. Cao^{1,63}, S. A. Cetin^{62A} J. F. Chang^{1,58}, T. T. Chang⁷⁷, W. L. Chang^{1,63}, G. R. Che⁴⁴, G. Chelkov^{37,a}, C. Chen⁴⁴, Chao Chen⁵⁵, G. Chen¹, H. S. Chen^{1,63}, M. L. Chen^{1,58,63}, S. J. Chen⁴³, S. L. Chen⁴⁶, S. M. Chen⁶¹, T. Chen^{1,63}, X. R. Chen^{32,63}, X. T. Chen^{1,63}, Y. B. Chen^{1,58}, Y. Q. Chen³⁵, Z. J. Chen^{26,h}, W. S. Cheng^{74C}, S. K. Choi^{11A}, X. Chu⁴⁴, G. Cibinetto^{30A}, S. C. Coen⁴, F. Cossio^{74C}, J. J. Cui⁵⁰, H. L. Dai^{1,58}, J. P. Dai⁷⁹, A. Dbeyssi¹⁹, R. E. de Boer⁴, D. Dedovich³⁷, Z. Y. Deng¹, A. Denig³⁶, I. Denysenko³⁷, M. Destefanis^{74A,74C}, F. De Mori^{74A,74C}, B. Ding^{66,1}, X. X. Ding^{47,g}, Y. Ding³⁵, Y. Ding⁴¹, J. Dong^{1,58}, L. Y. Dong^{1,63}, M. Y. Dong^{1,58,63}, X. Dong⁷⁶, M. C. Du¹, S. X. Du⁸¹, Z. H. Duan⁴³, P. Egorov^{37,a}, Y. H. Fan⁴⁶, J. Fang^{1,58}, S. S. Fang^{1,63}, W. X. Fang¹, Y. Fang¹, R. Farinelli^{30A}, L. Fava^{74B,74C}, F. Feldbauer⁴, G. Felici^{29A}, C. Q. Feng^{71,58}, J. H. Feng⁵⁹, K Fischer⁶⁹, M. Fritsch⁴, C. D. Fu¹, J. L. Fu⁶³, Y. W. Fu¹, H. Gao⁶³, Y. N. Gao^{47,g}, Yang Gao^{71,58}, S. Garbolino^{74C}, I. Garzia^{30A,30B}, P. T. Ge⁷⁶, Z. W. Ge⁴³, C. Geng⁵⁹, E. M. Gersabeck⁶⁷, A Gilman⁶⁹, K. Goetzen¹⁴, L. Gong⁴¹, W. X. Gong^{1,58}, W. Gradl³⁶, S. Gramigna^{30A,30B}, M. Greco^{74A,74C}, M. H. Gu^{1,58}, Y. T. Gu¹⁶, C. Y Guan^{1,63}, Z. L. Guan²³, A. Q. Guo^{32,63}, L. B. Guo⁴², M. J. Guo⁵⁰, R. P. Guo⁴⁹, Y. P. Guo^{13, f}, A. Guskov^{37, a}, T. T. Han⁵⁰, W. Y. Han⁴⁰, X. Q. Hao²⁰, F. A. Harris⁶⁵, K. K. He⁵⁵, K. L. He^{1,63}, F. H H. Heinsius⁴, C. H. Heinz³⁶, Y. K. Heng^{1,58,63}, C. Herold⁶⁰, T. Holtmann⁴, P. C. Hong^{13, f}, G. Y. Hou^{1,63}, X. T. Hou^{1,63}, Y. R. Hou⁶³, Z. L. Hou¹, H. M. Hu^{1,63} J. F. Hu^{56,i}, T. Hu^{1,58,63}, Y. Hu¹, G. S. Huang^{71,58}, K. X. Huang⁵⁹, L. Q. Huang^{32,63}, X. T. Huang⁵⁰, Y. P. Huang¹, T. Hussain⁷³, N Hüsken^{28,36}, N. in der Wiesche⁶⁸, M. Irshad^{71,58}, J. Jackson²⁸, S. Jaeger⁴, S. Janchiv³³, J. H. Jeong^{11A}, Q. Ji¹, Q. P. Ji²⁰, X. B. Ji^{1,63}, X. L. Ji^{1,58}, Y. Y. Ji⁵⁰, X. Q. Jia⁵⁰, Z. K. Jia^{71,58}, H. J. Jiang⁷⁶, P. C. Jiang^{47,g}, S. S. Jiang⁴⁰, T. J. Jiang¹⁷, X. S. Jiang^{1,58,63}, Y. Jiang⁶³, J. B. Jiao⁵⁰, Z. Jiao²⁴, S. Jin⁴³, Y. Jin⁶⁶, M. Q. Jing^{1,63}, T. Johansson⁷⁵, X. K.¹, S. Kabana³⁴, N. Kalantar-Nayestanaki⁶⁴, X. L. Kang¹⁰, X. S. Kang⁴¹, M. Kavatsyuk⁶⁴, B. C. Ke⁸¹, A. Khoukaz⁶⁸, R. Kiuchi¹, R. Kliemt¹⁴, O. B. Kolcu^{62A}, B. Kopf⁴, M. Kuessner⁴, A. Kupsc^{45,75}, W. Kühn³⁸, J. J. Lane⁶⁷, P. Larin¹⁹, A. Lavania²⁷, L. Lavezzi^{74A,74C}, T. T. Lei^{71,58}, Z. H. Lei^{71,58}, H. Leithoff³⁶, M. Lellmann³⁶, T. Lenz³⁶, C. Li⁴⁴, C. Li⁴⁸, C. H. Li⁴⁰, Cheng Li^{71,58}, D. M. Li⁸¹, F. Li^{1,58}, G. Li¹, H. Li^{71,58}, H. B. Li^{1,63}, H. J. Li²⁰, H. N. Li^{56,i}, Hui Li⁴⁴, J. R. Li⁶¹, J. S. Li⁵⁹, J. W. Li⁵⁰, K. L. Li²⁰, Ke Li¹, L. J Li^{1,63}, L. K. Li¹, Lei Li³, M. H. Li⁴⁴, P. R. Li^{39,j,k}, Q. X. Li⁵⁰, S. X. Li¹³, T. Li⁵⁰, W. D. Li^{1,63}, W. G. Li¹, X. H. Li^{71,58}, X. L. Li⁵⁰, Xiaoyu Li^{1,63}, Y. G. Li^{47,g}, Z. J. Li⁵⁹, Z. X. Li¹⁶, C. Liang⁴³, H. Liang^{1,63}, H. Liang³⁵, H. Liang^{71,58}, Y. F. Liang⁵⁴, Y. T. Liang^{32,63}, G. R. Liao¹⁵, L. Z. Liao⁵⁰, Y. P. Liao^{1,63}, J. Libby²⁷, A. Limphirat⁶⁰, D. X. Lin^{32,63}, T. Lin¹, B. J. Liu¹, B. X. Liu⁷⁶, C. Liu³⁵, C. X. Liu¹, F. H. Liu⁵³, Fang Liu¹, Feng Liu⁷, G. M. Liu^{56,i}, H. Liu^{39,j,k}, H. B. Liu¹⁶, H. M. Liu^{1,63}, Huanhuan Liu¹, Huihui Liu²², J. B. Liu^{71,58}, J. L. Liu⁷², J. Y. Liu^{1,63}, K. Liu¹, K. Y. Liu⁴¹, Ke Liu²³, L. Liu^{71,58}, L. C. Liu⁴⁴, Lu Liu⁴⁴, M. H. Liu^{13,f}, P. L. Liu¹, Q. Liu⁶³, S. B. Liu^{71,58}, T. Liu^{13,f}, W. K. Liu⁴⁴, W. M. Liu^{71,58}, X. Liu^{39,j,k}, Y. Liu^{39,j,k}, Y. Liu⁸¹, Y. B. Liu⁴⁴, Z. A. Liu^{1,58,63}, Z. Q. Liu⁵⁰, X. C. Lou^{1,58,63}, F. X. Lu⁵⁹, H. J. Lu²⁴, J. G. Lu^{1,58}, X. L. Lu¹, Y. Lu⁸, Y. P. Lu^{1,58} Z. H. Lu^{1,63}, C. L. Luo⁴², M. X. Luo⁸⁰, T. Luo^{13, f}, X. L. Luo^{1,58}, X. R. Lyu⁶³, Y. F. Lyu⁴⁴, F. C. Ma⁴¹, H. L. Ma¹, J. L. Ma^{1,63}, L. L. Ma⁵⁰, M. M. Ma^{1,63}, Q. M. Ma¹, R. Q. Ma^{1,63}, R. T. Ma⁶³, X. Y. Ma^{1,58}, Y. Ma^{47,g}, Y. M. Ma³², F. E. Maas¹⁹, M. Maggiora^{74A,74C}, S. Malde⁶⁹, Q. A. Malik⁷³, A. Mangoni^{29B}, Y. J. Mao^{47,g}, Z. P. Mao¹, S. Marcello^{74A,74C}, Z. X. Meng⁶⁶, J. G. Messchendorp^{14,64}, G. Mezzadri^{30A}, H. Miao^{1,63}, T. J. Min⁴³, R. E. Mitchell²⁸, X. H. Mo^{1,58,63}, N. Yu. Muchnoi^{5,b}, J. Muskalla³⁶, Y. Nefedov³⁷, F. Nerling^{19,d}, I. B. Nikolaev^{5,b} Z. Ning^{1,58}, S. Nisar^{12,l}, Q. L. Niu^{39,j,k}, W. D. Niu⁵⁵, Y. Niu⁵⁰, S. L. Olsen⁶³, Q. Ouyang^{1,58,63}, S. Pacetti^{29B,29C}. X. Pan⁵⁵, Y. Pan⁵⁷, A. Pathak³⁵, P. Patteri^{29A}, Y. P. Pei^{71,58}, M. Pelizaeus⁴, H. P. Peng^{71,58}, Y. Y. Peng^{39,j,k}, K. Peters^{14,d}, J. L. Ping⁴², R. G. Ping^{1,63}, S. Plura³⁶, V. Prasad³⁴, F. Z. Qi¹, H. Qi^{71,58}, H. R. Qi⁶¹, M. Qi⁴³, T. Y. Qi^{13,f}, S. Qian^{1,58}, W. B. Qian⁶³, C. F. Qiao⁶³, J. J. Qin⁷², L. Q. Qin¹⁵, X. P. Qin^{13,f}, X. S. Qin⁵⁰, Z. H. Qin^{1,58}, J. F. Qiu¹, S. Q. Qu⁶¹, C. F. Redmer³⁶, K. J. Ren⁴⁰, A. Rivetti^{74C}, M. Rolo^{74C}, G. Rong^{1,63}, Ch. Rosner¹⁹, S. N. Ruan⁴⁴, N. Salone⁴⁵, A. Sarantsev^{37,c}, Y. Schelhaas³⁶, K. Schoenning⁷⁵, M. Scodeggio^{30A,30B}, K. Y. Shan^{13,f}, W. Shan²⁵, X. Y. Shan^{71,58}, J. F. Shangguan⁵⁵, L. G. Shao^{1,63}, M. Shao^{71,58}, C. P. Shen^{13,f}, H. F. Shen^{1,63}, W. H. Shen⁶³, X. Y. Shen^{1,63}, B. A. Shi⁶³, H. C. Shi^{71,58}, J. L. Shi¹³, J. Y. Shi¹, Q. Q. Shi⁵⁵,

R. S. Shi^{1,63}, X. Shi^{1,58}, J. J. Song²⁰, T. Z. Song⁵⁹, W. M. Song^{35,1}, Y. J. Song¹³, Y. X. Song^{47,g}, S. Sosio^{74A,74C}, S. Spataro^{74A,74C}, F. Stieler³⁶, Y. J. Su⁶³, G. B. Sun⁷⁶, G. X. Sun¹, H. Sun⁶³, H. K. Sun¹, J. F. Sun²⁰, K. Sun⁶¹. L. Sun⁷⁶, S. S. Sun^{1,63}, T. Sun^{1,63}, W. Y. Sun³⁵, Y. Sun¹⁰, Y. J. Sun^{71,58}, Y. Z. Sun¹, Z. T. Sun⁵⁰, Y. X. Tan^{71,58}, C. J. Tang⁵⁴, G. Y. Tang¹, J. Tang⁵⁹, Y. A. Tang⁷⁶, L. Y Tao⁷², Q. T. Tao^{26,h}, M. Tat⁶⁹, J. X. Teng^{71,58}, V. Thoren⁷⁵, W. H. Tian⁵⁹, W. H. Tian⁵², Y. Tian^{32,63}, Z. F. Tian⁷⁶, I. Uman^{62B}, S. J. Wang⁵⁰, B. Wang¹, B. L. Wang⁶³, Bo Wang^{71,58}, C. W. Wang⁴³, D. Y. Wang^{47,g}, F. Wang⁷², H. J. Wang^{39,j,k}, H. P. Wang^{1,63}, J. P. Wang⁵⁰, K. Wang^{1,58}, L. L. Wang¹, M. Wang⁵⁰, Meng Wang^{1,63}, S. Wang^{13,f}, S. Wang^{39,j,k}, T. Wang^{13,f}, T. J. Wang⁴⁴, W. Wang⁷², W. Wang⁵⁹, W. P. Wang^{71,58}, X. Wang^{47,g}, X. F. Wang^{39,j,k}, X. J. Wang⁴⁰, X. L. Wang^{13,f}, Y. Wang⁶¹, Y. D. Wang⁴⁶, Y. F. Wang^{1,58,63}, Y. H. Wang⁴⁸, Y. N. Wang⁴⁶, Y. Q. Wang¹, Yaqian Wang^{18,1}, Yi Wang⁶¹, Z. Wang^{1,58}, Z. L. Wang⁷², Z. Y. Wang^{1,63}, Ziyi Wang⁶³, D. Wei⁷⁰, D. H. Wei¹⁵, F. Weidner⁶⁸, S. P. Wen¹, C. W. Wenzel⁴, U. Wiedner⁴, G. Wilkinson⁶⁹, M. Wolke⁷⁵, L. Wollenberg⁴, C. Wu⁴⁰, J. F. Wu^{1,63}, L. H. Wu¹, L. J. Wu^{1,63}, X. Wu^{13,f}, X. H. Wu³⁵, Y. Wu⁷¹, Y. H. Wu⁵⁵, Y. J. Wu³², Z. Wu^{1,58}, L. Xia^{71,58}, X. M. Xian⁴⁰, T. Xiang^{47,g}, D. Xiao^{39,j,k}, G. Y. Xiao⁴³, S. Y. Xiao¹, Y. L. Xiao^{13,f}, Z. J. Xiao⁴², C. Xie⁴³, X. H. Xie^{47,g}, Y. Xie⁵⁰, Y. G. Xie^{1,58}, Y. H. Xie⁷, Z. P. Xie^{71,58}, T. Y. Xing^{1,63}, C. F. Xu^{1,63}, C. J. Xu⁵⁹, G. F. Xu¹, H. Y. Xu⁶⁶, Q. J. Xu¹⁷, Q. N. Xu³¹, W. Xu^{1,63}, W. L. Xu⁶⁶, X. P. Xu⁵⁵, Y. C. Xu⁷⁸, Z. P. Xu⁴³, Z. S. Xu⁶³, F. Yan^{13,f}, L. Yan^{13,f}, W. B. Yan^{71,58}, W. C. Yan⁸¹, X. Q. Yan¹, H. J. Yang^{51,e}, H. L. Yang³⁵, H. X. Yang¹, Tao Yang¹, Y. Yang^{13, f}, Y. F. Yang⁴⁴, Y. X. Yang^{1,63}, Yifan Yang^{1,63}, Z. W. Yang^{39, j, k}, Z. P. Yao⁵⁰, M. Ye^{1,58}, M. H. Ye⁹, J. H. Yin¹, Z. Y. You⁵⁹, B. X. Yu^{1,58,63}, C. X. Yu⁴⁴, G. Yu^{1,63}, J. S. Yu^{26,h}, T. Yu⁷², X. D. Yu^{47,g}, C. Z. Yuan^{1,63}, L. Yuan², S. C. Yuan¹, X. Q. Yuan¹, Y. Yuan^{1,63}, Z. Y. Yuan⁵⁹, C. X. Yue⁴⁰, A. A. Zafar⁷³, F. R. Zeng⁵⁰, X. Zeng^{13, f}, Y. Zeng^{26, h}, Y. J. Zeng^{1,63}, X. Y. Zhai³⁵, Y. C. Zhai⁵⁰, Y. H. Zhan⁵⁹, A. Q. Zhang^{1,63}, B. L. Zhang^{1,63}, B. X. Zhang¹, D. H. Zhang⁴⁴, G. Y. Zhang²⁰, H. Zhang⁷¹, H. C. Zhang^{1,58,63}, H. H. Zhang⁵⁹, H. H. Zhang³⁵, H. Q. Zhang^{1,58,63}, H. Y. Zhang^{1,58}, J. Zhang⁸¹, J. J. Zhang⁵², J. L. Zhang²¹, J. Q. Zhang⁴², J. W. Zhang^{1,58,63}, J. X. Zhang^{39,j,k}, J. Y. Zhang¹, J. Z. Zhang^{1,63}, Jianyu Zhang⁶³, Jiawei Zhang^{1,63}, L. M. Zhang⁶¹, L. Q. Zhang⁵⁹, Lei Zhang⁴³, P. Zhang^{1,63}, Q. Y. Zhang^{40,81}, Shuihan Zhang^{1,63}, Shulei Zhang^{26,h}, X. D. Zhang⁴⁶, X. M. Zhang¹, X. Y. Zhang⁵⁰, Xuyan Zhang⁵⁵, Y. Zhang⁶⁹, Y. Zhang⁷², Y. T. Zhang⁸¹, Y. H. Zhang^{1,58}, Yan Zhang^{71,58}, Yao Zhang¹, Z. H. Zhang¹, Z. L. Zhang³⁵, Z. Y. Zhang⁴⁴, Z. Y. Zhang⁷⁶, G. Zhao¹, J. Zhao⁴⁰, J. Y. Zhao^{1,63}, J. Z. Zhao^{1,58}, Lei Zhao^{71,58}, Ling Zhao¹, M. G. Zhao⁴⁴, S. J. Zhao⁸¹, Y. B. Zhao^{1,58}, Y. X. Zhao^{32,63}, Z. G. Zhao^{71,58}, A. Zhemchugov^{37,a}, B. Zheng⁷², J. P. Zheng^{1,58}, W. J. Zheng^{1,63}, Y. H. Zheng⁶³, B. Zhong⁴², X. Zhong⁵⁹, H. Zhou⁵⁰, L. P. Zhou^{1,63}, X. Zhou⁷⁶, X. K. Zhou⁷, X. R. Zhou^{71,58}, X. Y. Zhou⁴⁰, Y. Z. Zhou^{13,f}, J. Zhu⁴⁴, K. Zhu¹, K. J. Zhu^{1,58,63}, L. Zhu³⁵, L. X. Zhu⁶³, S. H. Zhu⁷⁰, S. Q. Zhu⁴³, T. J. Zhu^{13,f}, W. J. Zhu^{13,f}, Y. C. Zhu^{71,58}, Z. A. Zhu^{1,63}, J. H. Zou¹, J. Zu^{71,58}

(BESIII Collaboration)

¹ Institute of High Energy Physics, Beijing 100049, People's Republic of China

² Beihang University, Beijing 100191, People's Republic of China

³ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China

⁴ Bochum Ruhr-University, D-44780 Bochum, Germany

⁵ Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia

⁶ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

⁷ Central China Normal University, Wuhan 430079, People's Republic of China

⁸ Central South University, Changsha 410083, People's Republic of China

⁹ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China

¹⁰ China University of Geosciences, Wuhan 430074, People's Republic of China

¹¹ Chung-Ang University, Seoul, 06974, Republic of Korea

¹² COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan

¹³ Fudan University, Shanghai 200433, People's Republic of China

¹⁴ GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

¹⁵ Guangxi Normal University, Guilin 541004, People's Republic of China

¹⁶ Guangxi University, Nanning 530004, People's Republic of China

¹⁷ Hangzhou Normal University, Hangzhou 310036, People's Republic of China

¹⁸ Hebei University, Baoding 071002, People's Republic of China

¹⁹ Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany

²⁰ Henan Normal University, Xinxiang 453007, People's Republic of China

²¹ Henan University, Kaifeng 475004, People's Republic of China

²² Henan University of Science and Technology, Luoyang 471003, People's Republic of China

²³ Henan University of Technology, Zhengzhou 450001, People's Republic of China

²⁴ Huangshan College, Huangshan 245000, People's Republic of China

²⁵ Hunan Normal University, Changsha 410081, People's Republic of China

²⁶ Hunan University, Changsha 410082, People's Republic of China

²⁷ Indian Institute of Technology Madras, Chennai 600036, India

²⁸ Indiana University, Bloomington, Indiana 47405, USA

²⁹ INFN Laboratori Nazionali di Frascati, (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy;

(B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy

³⁰ INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122,

Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy

³¹ Inner Mongolia University, Hohhot 010021, People's Republic of China

³² Institute of Modern Physics, Lanzhou 730000, People's Republic of China

³³ Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia

³⁴ Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile

³⁵ Jilin University, Changchun 130012, People's Republic of China

Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

³⁷ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

³⁸ Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

³⁹ Lanzhou University, Lanzhou 730000, People's Republic of China

⁴⁰ Liaoning Normal University, Dalian 116029, People's Republic of China

⁴¹ Liaoning University, Shenyang 110036, People's Republic of China

⁴² Nanjing Normal University, Nanjing 210023, People's Republic of China

⁴³ Nanjing University, Nanjing 210093, People's Republic of China

⁴⁴ Nankai University, Tianjin 300071, People's Republic of China

⁴⁵ National Centre for Nuclear Research, Warsaw 02-093, Poland

⁴⁶ North China Electric Power University, Beijing 102206, People's Republic of China

⁴⁷ Peking University, Beijing 100871, People's Republic of China

⁴⁸ Qufu Normal University, Qufu 273165, People's Republic of China

⁴⁹ Shandong Normal University, Jinan 250014, People's Republic of China

⁵⁰ Shandong University, Jinan 250100, People's Republic of China

⁵¹ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

⁵² Shanxi Normal University, Linfen 041004, People's Republic of China

⁵³ Shanxi University, Taiyuan 030006, People's Republic of China

⁵⁴ Sichuan University, Chengdu 610064, People's Republic of China

⁵⁵ Soochow University, Suzhou 215006, People's Republic of China

⁵⁶ South China Normal University, Guangzhou 510006, People's Republic of China

⁵⁷ Southeast University, Nanjing 211100, People's Republic of China

⁵⁸ State Key Laboratory of Particle Detection and Electronics,

Beijing 100049, Hefei 230026, People's Republic of China

⁵⁹ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

⁶⁰ Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand

⁶¹ Tsinghua University, Beijing 100084, People's Republic of China

⁶² Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul,

Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey

⁶³ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

⁶⁴ University of Groningen, NL-9747 AA Groningen, The Netherlands

⁶⁵ University of Hawaii, Honolulu, Hawaii 96822, USA

⁶⁶ University of Jinan, Jinan 250022, People's Republic of China

⁶⁷ University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

⁶⁸ University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany

⁶⁹ University of Oxford, Keble Road, Oxford OX13RH, United Kingdom

⁷⁰ University of Science and Technology Liaoning, Anshan 114051, People's Republic of China

⁷¹ University of Science and Technology of China, Hefei 230026, People's Republic of China

⁷² University of South China, Hengyang 421001, People's Republic of China
 ⁷³ University of the Punjab, Lahore-54590, Pakistan

⁷⁴ University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University

of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy

⁷⁵ Uppsala University, Box 516, SE-75120 Uppsala, Sweden

⁷⁶ Wuhan University, Wuhan 430072, People's Republic of China

⁷⁷ Xinyang Normal University, Xinyang 464000, People's Republic of China

⁷⁸ Yantai University, Yantai 264005, People's Republic of China

⁷⁹ Yunnan University, Kunming 650500, People's Republic of China

⁸⁰ Zhejiang University, Hangzhou 310027, People's Republic of China

⁸¹ Zhengzhou University, Zhengzhou 450001, People's Republic of China

^a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

^b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia

^c Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

 d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany

^e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry

of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute

of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China

^f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute

of Modern Physics, Fudan University, Shanghai 200443, People's Republic of China

^g Also at State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing 100871, People's Republic of China

^h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China

 i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of

Quantum Matter, South China Normal University, Guangzhou 510006, China

^j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People's Republic of China

^k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People's Republic of China

¹ Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan (Dated: January 4, 2024)

PROJECTION OF THE ANGULAR AMPLITUDE: MOMENTS OF POLARIZATION AND SPIN-CORRELATION

The complete angular amplitude of the decay $J/\psi \to \Xi^- \bar{\Xi}^+ \to \Lambda(p\pi^-)\pi^- \bar{\Lambda}(\bar{n}\pi^0)\pi^+ + c.c.$ is written as [1]

$$\mathcal{W}(\xi;\omega) = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sum_{\mu'\nu'=0}^{3} a_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\Xi} a_{\mu'0}^{\Lambda} a_{\nu'0}^{\bar{\Lambda}}, \tag{1}$$

where ξ is one row matrix containing nine helicity angles and ω is one row matrix containing eight parameters defined as

$$\begin{aligned} \xi &= (\theta_{\Xi}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{\bar{\Lambda}}, \phi_{p}, \phi_{p}, \theta_{\bar{n}}, \phi_{\bar{n}}), \\ \omega &= (\alpha_{J/\psi}, \Delta \Phi_{J/\psi}, \alpha_{\Xi}, \phi_{\Xi}, \bar{\alpha}_{\Xi}, \bar{\phi}_{\Xi}, \alpha_{\Lambda-}, \bar{\alpha}_{\Lambda 0}). \end{aligned}$$
(2)

Here $C_{\mu,nu}(\theta_{\Xi}, \alpha_{J/\psi}, \Delta \Phi_{J/\psi})$ is a 4 × 4 spin density matrix, written as

$$C_{\mu\nu} = \left(1 + \alpha_{J/\psi} \cos^2 \theta_{\Xi}\right) \begin{pmatrix} 1 & 0 & P_y & 0\\ 0 & C_{xx} & 0 & C_{xz}\\ -P_y & 0 & C_{yy} & 0\\ 0 & -C_{xz} & 0 & C_{zz} \end{pmatrix},$$
(3)

where P_y represents the contribution of the θ_{Ξ} -dependent Ξ^- and $\bar{\Xi}^+$ polarizations and C_{xx} , C_{yy} , C_{zz} , C_{xz} are the spin-correlation coefficients defined as follow,

$$P_{y} = \sqrt{1 - \alpha_{J/\psi}^{2}} \frac{\cos \theta_{\Xi} \sin \theta_{\Xi}}{1 + \alpha_{J/\psi} \cos^{2} \theta_{\Xi}} \sin(\Delta \Phi_{J/\psi}),$$

$$C_{xx} = \frac{\sin^{2} \theta_{\Xi}}{1 + \alpha_{J/\psi} \cos^{2} \theta_{\Xi}},$$

$$C_{yy} = \frac{\alpha_{J/\psi} \sin^{2} \theta_{\Xi}}{1 + \alpha_{J/\psi} \cos^{2} \theta_{\Xi}},$$

$$C_{zz} = -\frac{\alpha + \sin^{2} \theta_{\Xi}}{1 + \alpha_{J/\psi} \cos^{2} \theta_{\Xi}}.$$
(4)

The polarization and spin correlations of the process $e^+e^- \to J/\psi \to \Xi^-\bar{\Xi}^+$ are shown in Fig. 1.

SYSTEMATIC UNCERTAINTIES

The main sources of systematic uncertainties include the reconstruction and selection of the signal candidates, the background estimation and the fit procedure, which are summarized in Table II.

The efficiency of π^0 reconstruction is investigated by using a control sample $J/\psi \to \Sigma^+(p\pi^0)\pi^-\bar{\Lambda}(\bar{p}\pi^+)+c.c.$, which is of the similar final state and the hyperon's decay length. The efficiency from π^{\pm} reconstruction is investigated by using a control sample $J/\psi \to \Xi^-\bar{\Xi}^+ \to \Lambda(p\pi^-)\pi^-\bar{\Lambda}(\bar{p}\pi^+)\pi^+$. The efficiency differences between data and MC simulation are obtained. Based on these, we obtain the ratio of the efficiencies between data and MC simulation, $w_{ij} = \frac{\varepsilon_{ij}^{\text{data}}}{\varepsilon_{ij}^{\text{MC}}}$, where *i* represents the *i*-th bin of the polar angle $\cos \theta$ and *j* represents the *j*-th bin of the momentum of π^0 momentum or the transverse momentum of π^{\pm} . The ratios are used to re-weight the signal MC samples of the process $e^+e^- \to J/\psi \to \Xi^-\bar{\Xi}^+$ in the log-likelihood fit. The systematic uncertainties are estimated by smearing the ratios with a Gaussian distribution and repeating the fit procedure by 100 trials. A Gaussian function is used to model the 100 trials for each parameter and its width is taken as the systematic uncertainty.

The systematic uncertainties related to the selection criteria, *e.g.* the decay points and the invariant masses of Λ and Ξ^- , the polar angle of Ξ^- , the invariant mass of (anti)neutron and the χ^2 of kinematic fit are studied by varying individual requirements around the nominal ones and repeating the fit. For each test, *i*, the selection criteria are varied in the range *R* by steps *s*. The changes of the fitted parameters compared to the nominal results, $\Delta_i = |\omega - \omega_i|$ and the uncorrelated uncertainties, $\sigma_{uc,i} = \sqrt{|\sigma_{\omega}^2 - \sigma_{\omega,i}^2|}$ are calculated, where σ_{ω} and $\sigma_{\omega,i}$ are the uncertainties of

FIG. 1. The polarization P_y and spin correlations, $C_{x\bar{x}}, C_{y\bar{y}}$ and $C_{z\bar{z}}$ of the reaction $e^+e^- \to J/\psi \to \Xi^-\bar{\Xi}^+$. The data points with error bars are determined independently in each $\cos\theta_{\Xi}$ bin. The red solid curves are the expected angular dependence obtained with the parameters $\alpha_{J/\psi}, \Delta\Phi_{J/\psi}$ from the global maximum log-likelihood fit.

TABLE I. The nominal cut, varied range, step and standard deviation of the selection criteria in the studies of systematic uncertainties.

Source	Nominal cut	Range R	Step s	Standard deviation
Λ decay length (cm)	0	[-1, 3.5]	0.5	1.2
$ M_{p\pi} - m_{\Lambda} \; (\mathrm{MeV}/c^2)$	11	[1, 19]	2	2.0
Ξ decay length (cm)	0	[-1, 3.5]	0.5	0.5
$ M_{p\pi\pi} - m_{\Xi} (\mathrm{MeV}/c^2)$	11	[1, 19]	2	3.0
$ \cos \theta_{\Xi} $	0.84	[0.74, 0.92]	0.02	0.1
$ M_n - m_n \; (\mathrm{MeV}/c^2)$	15	[5, 23]	2	5.0
$\chi^2_{ m KMFIT}$	200	[0, 200]	20	-

the nominal and varied results, respectively [2]. The nominal cut, varied range, and step for each selection criterion are listed in Table I.

No strong trending behavior is observed for these tests, and a linear function fit is applied to the obtained distribution for each case. For the decay lengths of Λ and Ξ , the values of the linear fit at one standard deviation, 1.17 cm and 0.53 cm, which are larger than the nominal position 0 cm, are taken as the systematic uncertainties. If most of the systematic tests ω_i (more than 7) are larger or smaller than the nominal ones ω , asymmetric systematic uncertainties are assigned, otherwise the symmetric systematic uncertainties are assigned. The difference between the nominal value and the value from the linear fit are taken as one side of the systematic uncertainty. The other side of the systematic uncertainty is 0. For the invariant masses of Ξ , Λ , and neutron and the polar angle of Ξ , the values of the linear fit at one standard deviation of the kinematic variables both larger and smaller than the nominal position are calculated. For each parameter, if two fit values are both larger or smaller than the nominal value, the largest deviation is taken as one side of systematic uncertainty; the other side of the systematic uncertainty is 0. If two fit values have opposite signs, they are taken as the asymmetric systematic uncertainties. For the χ^2 of kinematic fit, the differences between the nominal values and the values of the linear fit at 100 are taken as the systematic uncertainties.

The uncertainties associated with the combinatorial backgrounds are estimated by smearing the parameters ω of model within one standard deviation and varying it number within $\pm 1\sigma$ in the log-likelihood fit. The uncertainty of the number of combinatorial background is obtained from the fit of the missing mass distribution. The uncertainties associated with the resonant backgrounds are estimated by varying the number of each background within $\pm 1\sigma$ in the fit, individually. The largest changes of the fitted parameters are assigned as the systematic uncertainties. The number of resonant background is determined as

$$N_{\rm bkg} = N_{J/\psi} \times \Pi_i \mathcal{B}_i \times \varepsilon, \tag{5}$$

where $N_{J/\psi}$ is the total number of J/ψ events, \mathcal{B}_i is the branching fraction of the *i*th decay mode, and ε is the detection efficiency. The detection efficiency is determined by using the exclusive MC sample. The uncertainty of the number of resonant background is determined via the error propagation formula,

$$\sigma_{N_{\rm bkg}} = N_{\rm bkg} \times \sqrt{\left(\frac{\sigma_{N_{J/\psi}}}{N_{J/\psi}}\right)^2 + \sum_i \left(\frac{\sigma_{\mathcal{B}_i}}{\mathcal{B}_i}\right)^2 + \left(\frac{\sigma_{\varepsilon}}{\varepsilon}\right)^2}.$$
(6)

The definition of 2D sideband region is shown in Fig. 2. The sideband region is defined as $0.016 < |M_{p\pi\pi} - M_{\Xi}^{PDG}| < 0.038 \text{ GeV}/c^2$ and $0.016 < |M_{n\pi^0\pi} - M_{\Xi}^{PDG}| < 0.038 \text{ GeV}/c^2$. The background yield in the signal region is estimated by the normalized sideband events $N_{\text{bkg,sideband}} = 0.25N_A$, where N_A is the number of events in the sideband region. The factor 0.25 is the area of the signal region to the sideband region. The uncertainties associated with non-resonant background are estimated by comparing the changes of the fitted parameters with and without subtracting this background.

To validate the fit procedure, 1000 pseudo-data-sets, in which each of them has the same statistics as data, are generated with the production and decay asymmetry parameters derived from in the nominal measurement. For each pseudo-data-set, the fit procedure is performed. The pull of the fit result of parameters is defined as

$$P(\omega) = \frac{\omega^{\text{pseudo}} - \omega^{\text{input}}}{\sigma^{\text{pseudo}}},\tag{7}$$

where ω^{input} stands for the input value of the parameters, ω^{pseudo} and σ^{pseudo} are the fit result and its uncertainty of the parameters for each pseudo-data-set. The pull distributions are fitted with Gaussian functions. The sum of the center value of difference and its uncertainty is taken as the systematic uncertainties associated with the fit procedure,

$$\sigma_{\rm io} = (|\mu_{\rm pull} + \sigma_{\mu}|) \times \sigma_{\rm stat.},\tag{8}$$

where μ_{pull} and σ_{μ} are the mean value and its statistical uncertainty of the pull distribution, respectively. The $\sigma_{\text{stat.}}$ is the statistical uncertainty.

^[1] M. Ablikim et al. (BESIII collaboration), Nature 606, 64 (2022), arXiv:2105.11155 [hep-ex].

^[2] O. Behnke, K. Kröninger, T. Schörner-Sadenius, and G. Schott, eds., Data analysis in high energy physics: A practical guide to statistical methods (Wiley-VCH, Weinheim, Germany, 2013).

		$lpha_{J/\psi}$	$\Delta \Phi_{J/\psi}$	$\alpha_{\Xi^{-}}$	$\phi_{\Xi^{-}}$	$\alpha_{\bar{\Xi}}$	ϕ_{Ξ^-}	$lpha_0$	α_+	α_{-}	\bar{lpha}_0
Ξ charged decay	Λ Decay Length	$+0.0087 \\ -0.0000$	$^{+0.0000}_{-0.0156}$	$^{+0.0020}_{-0.0000}$	$^{+0.0007}_{-0.0007}$	$^{+0.0000}_{-0.0012}$	$^{+0.0000}_{-0.0091}$	$^{+0.0064}_{-0.0000}$	$^{+0.0008}_{-0.0008}$	$^{+0.0019}_{-0.0019}$	$^{+0.0001}_{-0.0001}$
	$ M_{p\pi} - m_{\Lambda} $	$^{+0.0009}_{-0.0000}$	$^{+0.0009}_{-0.0012}$	$^{+0.0000}_{-0.0003}$	$^{+0.0005}_{-0.0002}$	$^{+0.0002}_{-0.0001}$	$^{+0.0002}_{-0.0008}$	$^{+0.0000}_{-0.0004}$	$^{+0.0016}_{-0.0000}$	$^{+0.0000}_{-0.0012}$	$^{+0.0000}_{-0.0012}$
	Ξ Decay Length	$^{+0.0054}_{-0.0000}$	$^{+0.0075}_{-0.0000}$	$^{+0.0000}_{-0.0023}$	$^{+0.0000}_{-0.0065}$	$^{+0.0000}_{-0.0022}$	$^{+0.0000}_{-0.0088}$	$^{+0.0012}_{-0.0012}$	$^{+0.0026}_{-0.0000}$	$^{+0.0024}_{-0.0024}$	$^{+0.0000}_{-0.0039}$
	$ M_{p\pi\pi} - m_{\Xi} $	$^{+0.0039}_{-0.0000}$	$^{+0.0070}_{-0.0000}$	$^{+0.0006}_{-0.0009}$	$^{+0.0000}_{-0.0027}$	$^{+0.0000}_{-0.0020}$	$^{+0.0009}_{-0.0012}$	$^{+0.0000}_{-0.0016}$	$^{+0.0000}_{-0.0010}$	$^{+0.0000}_{-0.0020}$	$^{+0.0000}_{-0.0014}$
Ξ neutral decay	$\chi^2_{ m kmf}$	$+0.0004 \\ -0.0000$	$+0.0030 \\ -0.0000$	$^{+0.0000}_{-0.0012}$	$+0.0000 \\ -0.0000$	$^{+0.0000}_{-0.0002}$	$^{+0.0011}_{-0.0000}$	$+0.0000 \\ -0.0029$	$+0.0000 \\ -0.0027$	$^{+0.0001}_{-0.0001}$	$+0.0000 \\ -0.0023$
	$ \cos \theta_{\Xi} $	$+0.0017 \\ -0.0000$	$^{+0.0019}_{-0.0000}$	$^{+0.0000}_{-0.0002}$	$^{+0.0002}_{-0.0001}$	$+0.0003 \\ -0.0000$	$^{+0.0001}_{-0.0002}$	$+0.0000 \\ -0.0007$	$^{+0.0006}_{-0.0000}$	$^{+0.0000}_{-0.0016}$	$^{+0.0000}_{-0.0017}$
	$ M_n - m_n $	$^{+0.0002}_{-0.0001}$	$+0.0026 \\ -0.0074$	$^{+0.0000}_{-0.0011}$	$^{+0.0023}_{-0.0024}$	$^{+0.0014}_{-0.0013}$	$^{+0.0000}_{-0.0014}$	$^{+0.0002}_{-0.0028}$	$^{+0.0012}_{-0.0026}$	$^{+0.0019}_{-0.0006}$	$^{+0.0016}_{-0.0022}$
	$\varepsilon_{\pi\pm}$	0.0046	0.0070	0.0004	0.0012	0.0004	0.0010	0.0014	0.0015	0.0016	0.0013
	ε_{π^0}	0.0045	0.0158	0.0016	0.0013	0.0015	0.0014	0.0028	0.0023	0.0027	0.0029
Fitting procedure	I/O	0.0004	0.0011	0.0001	0.0008	0.0002	0.0006	0.0009	0.0003	0.0004	0.0003
Background	Combinatorial	0.0010	0.0033	0.00035	0.0010	0.0004	0.0012	0.0021	0.0014	0.0007	0.0015
	Resonant	0.0001	0.0002	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001
	Non-resonant	0.0016	0.0040	0.0012	0.0022	0.0011	0.0001	0.0047	0.0016	0.0015	0.0045
	Total	$+0.0129 \\ -0.0066$	$+0.0210 \\ -0.0250$	$+0.0029 \\ -0.0036$	$^{+0.0042}_{-0.0081}$	$^{+0.0025}_{-0.0040}$	$+0.0028 \\ -0.0130$	$+0.0089 \\ -0.0077$	$+0.0049 \\ -0.0053$	$+0.0050 \\ -0.0055$	$+0.0060 \\ -0.0080$

TABLE II. The systematic uncertainties on the production and decay asymmetry parameters.

FIG. 2. The definition of the sideband in $M(p\pi^{-}\pi^{-})$ versus $M(\bar{n}\gamma\gamma\pi^{+})$ distribution. The red rectangle shows the signal region and the blue rectangles show the sideband regions.