T 11 C1	a 11.1	1 .	• • •	a		•
	Conditione	during	ovidation	HOW	reactor	evnerimente
Table ST.	Conditions	uuiiii	Uniuation	now	reactor	CADCIIIICIII.
						· · · · · · · · · · · · · · · · · · ·

Precursor	$254\mathrm{nm}$ lamp	Carrier gas	Source temperature	Mean mass \pm standar	concentration d deviation
				Blank	Sample
	V	${\rm mlmin^{-1}}$	$^{\circ}\mathrm{C}$	μg	m^{-3}
α -Pinene	2	37.5	26	0.34 ± 0.09	83.9 ± 3.8
α -Pinene	-	37.5	26	0.34 ± 0.09	42.5 ± 1.6
β -Pinene	2	16.6	35	0.27 ± 0.08	184.4 ± 10.4
β -Pinene	-	16.6	39	0.27 ± 0.08	61.5 ± 8.9
Limonene	2	93.6	27	0.06 ± 0.07	104.3 ± 12.6
Limonene	-	93.6	27	0.06 ± 0.07	55.1 ± 3.2
3-Carene	2	16.6	28	1.3 ± 0.4	62.5 ± 4.8
3-Carene	-	12.9	29	1.3 ± 0.4	90.1 ± 10.6
trans-Caryophyllene	2	37.5	32	0.09 ± 0.05	52.5 ± 6.7
trans-Caryophyllene	-	71.6	32	0.09 ± 0.05	47.3 ± 4.8
Toluene	2	16.6	23	0.08 ± 0.03	66.2 ± 1.8
o-Xylene	2	25.4	22	0.42 ± 0.14	66.0 ± 2.2
1,2,4-Trimethylbenzene	2	37.5	40	0.21 ± 0.08	24.2 ± 1.2
Naphthalene	2	93.6	25	2.9 ± 0.7	35.9 ± 5.7

Substance	CAS number	Formula	Purity %	Retention time min	$\begin{array}{c} \text{Concentration} \\ \mu g \mathrm{mL}^{-1} \end{array}$	HESI mode
Benzoic acid α - ¹³ C	3880-99-7	$\mathrm{C_6H_5}^{13}\mathrm{CO_2H}$	99 atom	6.86	10	(-)
Phthalic acid	88-99-3	$C_8H_6O_4$	99.5	4.55	1	(-), (+)
Acridine	260-94-6	$C_{13}H_9N$	98	5.07	0.5	(+)
Pinonic acid	473-72-3	$\mathrm{C_{10}H_{16}O_3}$	N/A	6.75	2	(-), (+)
Pinic acid	473-73-4	$C_9H_{14}O_4$	N/A	5.82	2	(-), (+)
Caffeine- ¹³ C ₃	78072-66-9	$^{13}C_{3}C_{5}H_{10}N_{4}O_{2}$	99 atom	4.79	1	(+)
5-Acenaphthene carboxylic acid	55720-22-4	$\mathrm{C_{13}H_{10}O_2}$	97	10.53	10	(-), (+)
MBTCA ¹	77370-41-3	$C_8H_{12}O_6$	N/A	4.09	2	(-), (+)
2,4-Di-tert-butylphenole	96-76-4	$C_{14}H_{22}O$	98	12.88	20	(-)
Camphorsulfonic acid	35963-20-3	$\mathrm{C_{10}H_{16}O_4S}$	98	5.16	2	(-), (+)
Tri-p-cresyl phosphate	78-32-0	$\mathrm{C}_{21}\mathrm{H}_{21}\mathrm{O}_{4}\mathrm{P}$	N/A	13.19	0.5	(+)
Tris(2-ethylhexyl) phosphate	78-42-2	$\mathrm{C}_{24}\mathrm{H}_{51}\mathrm{O}_{4}\mathrm{P}$	97	15.53	0.5	(+)
Pentaerythritol tetrahexaonate	7445-47-8	$\mathrm{C}_{29}\mathrm{H}_{52}\mathrm{O}_{8}$	95	14.93	1	(+)

Table S2. Composition of the standard solution with substance name, CAS number, formula, purity, retention time, concentration in the solution, and appearance in (-) or (+) HESI ionization mode.

¹3-methyl-1,2,3-butanetricarboxylic acid

Table S3. Workflow of the non-target software Compound Discoverer 3.2. The *Search mzVault* node was only used for the representative selection of the field campaign extracts. If the node is not used, *Data Source #2* in the *Assign Compound Annotations* node has to be set to *not specified*.

Processing node	Parameter	Settings
Select Spectra		
	1. Spectrum Properties	
	Filter:	Lower PT Limit: 0
		Unper RT Limit: 0
		First Scan: 0
		Last Scan: 0
		Ignore Specified Scans: (not specified)
		Lowest Charge State: 0
		Highest Charge State: 0
		Min. Precursor Mass: 50 Da
		Max. Precursor Mass: 5000 Da
		Total Intensity Threshold: 0
		Minimum Peak Count: 1
	2. Scan Event Filters:	
		Mass Analyzer: Is FTMS
		MS Order: Any
		Activation Type: Is HCD
		Min. Collision Energy: 0
		Max. Collision Energy: 1000
		Scan Type: Any
		Polarity Mode: Is -
	3. Peak Filters:	
		S/N Threshold (FT-only): 5
	4. Replacements for	
	Unrecognized Properties:	
		Unrecognized Charge Replacements: 1
		Unrecognized Mass Analyzer Replacements: FTMS
		Unrecognized MS Order Replacements: MS2
		Unrecognized Polarity Penlacements:
		Unrecognized MS Resolution@200 Replacements: 60000
		Unrecognized MSn Resolution@200 Replacements: 30000
	5 General Settings:	Onecognized Mon Resolution@200 Replacements. 50000
	5. General Settings.	Precursor Selection: Use MS1 Precursor
		Use Isotope Pattern in Precursor Reevaluation: True
		Provide Profile Spectra: Automatic
		Store Chromatograms: False
Align Retention Times		
-	1. General Settings:	
		Alignment Model: Linear
		Alignment Fallback: Use Linear Model
		Maximum Shift [min]: 0.1
		continued on next page

Processing node	Parameter	Settings
		Shift Reference File: True
		Mass Tolerance: 1 ppm
		Remove Outlier: True
Detect Compounds		Remove outlier. Hue
Dettett Compounds	1. General Settings:	
		Mass Tolerance [ppm]: 1 ppm
		Intensity Tolerance [%]: 30
		S/N Threshold: 5
		Min Peak Intensity: 500000
		Ions: $[2M_H]_1$: $[M_CO_2H]_1$: $[M_H]_1$: $[M_H]_1$: $[M_H]_1$
		Base Ions: [M-H]-1
		Min Element Counts: H
		Max Element Counts: Coo H100 Br (Cl (N (Ooo S)
	2 Peak Detection:	$Max.$ Element counts. $090 \text{ m}_{190} \text{ D}_{14} _{14} _{14} _{20} _{54}$
	2. I car Detection.	Filter Peaks: True
		Max Deak Width [min]: 0.1
		Remove Singlets: True
		Min. # Scans per Deak: 10
		Min. # Sectores: 1
	3 Isotone Grouping:	Mill. # Isotopes. 1
	5. Isotope Grouping.	Min Spectral Distance Score: 0
		Pamova Dotantially Falsa Dositiva Isotopas: True
Group Compounds		Remove rotentiarly raise rostrive isotopes. The
Group Compounds	1 Compound	
	Consolidation:	
	Consolidation.	Mass Tolerance: 1 nnm
		PT Tolerance [min]: 0.2
	2 Fragment Data Selection:	KI Tolefance [mm]. 0.2
	2. Pragment Data Selection.	Drafarrad Jones [M H] 1
Fill Gans		
Thi Gaps	1 General Settings	
	1. General Settings.	Mass Tolerance: 1 nnm
		Nass Tolerance. 1 ppm
		Use Deal Deak Detection: True
Mark Background		ose Real Fear Detection. Hut
Compounds		
Compounds	1 General Settings:	
	1. General Settings.	Max Sample/Blank: 5
		Max. Sample/Diank. 5
		Hide Background: True
Predict Compositions		The Dackground. The
Treater Compositions	1 Prediction Settings:	
	1. I realetion Settings.	Mass Tolerance: 1 nnm
		Min Element Counts: H
		Max Element Counts: Coo Heco Bry Cl. N. Oct St
		Min. DDRE: 0
		$\mathbf{M}_{2\mathbf{x}} \mathbf{R} \mathbf{D} \mathbf{R} \mathbf{F} \cdot 4 0$
		continued on next page

Processing node	Parameter	Settings
		Min. H/C: 0.1
		Max. H/C: 3.5
		Max. # Candidates: 10
		Max. # Internal Candidates: 200
	2. Pattern Matching:	
	C C	Intensity Tolerance [%]: 30
		Intensity Threshold [%]: 0.1
		S/N Threshold: 5
		Min. Spectral Fit [%]: 30
		Min. Pattern Cov. [%]: 90
		Use Dynamic Recalibration: True
	3. Fragments Matching:	
		Use Fragments Matching: True
		Mass Tolerance: 1 ppm
		S/N Threshold: 5
Search mzVault		
	1. Search Settings:	X7 1/ X '1 1 1 1 1 1 / 1 1 1 1 1 1 1 1 1 1 1 1
		mz Vault Library: add libraries created with mz Vault
		Max. $\#$ Results: 10
		Match Factor Infeshold: 50
		Search Algorithm: HighChem HighKes
		Match Analyzer Type: True
		ET Fragment Mass Tolerance: 0.4 Da
		F1 Fragment Mass Tolerance: 10 ppm
		Use Retention Time: True
		A nully laterative Thread and Thread
		Apply Intensity Infestion Methods True
		Match Ionization Method: True
		Match Ion Activation Energy Match with Talaganas
		Match Ion Activation Energy. Match with Tolerance
		Compound Classes: All
		Compound Classes: An Demovie Precursor Long True
		PT Tolerance [min]: 0.2
Assign Compound		KI Tolerance [mm]. 0.2
Annotations		
Amotations	1 General Settings:	
	1. General Settings.	Mass Tolerance: 1 nnm
	2 Data Sources:	Mass Tolefance. I ppin
	2. Data Sources.	Data Source #1: Predicted Compositions
		Data Source #7: mzVault Search
	3 Scoring Rules:	
	5. Seeiing Rules.	Use mzLogic: True
		Use Spectral Distance: True
		SFit Threshold: 20
		SFit Range: 20
Calculate Mass Defect		······································
		continued on next page

Processing node	Parameter	Settings
	1. Mass Defect:	
		Fractional Mass: False
		Standard Mass Defect: False
		Relative Mass Defect: False
		Kendrick Mass Defect: True
		Nominal Mass Rounding: Round
	2 Kendrick Formula:	Nominar Mass Rounding. Round
	2. Renarice Formula.	Formula 1. C U
Marga Fasturas		
Weige Features	1 Deals Consolidation	
	1. Peak Consolidation:	Mara Talanan 1 mm
		Mass Tolerance: 1 ppm
		KI Iolerance [min]: 0.1
Find Expected Compounds		
	1. General Settings:	
		Mass Tolerance: 1 ppm
		Intensity Tolerance [%]: 30
		Intensity Threshold [%]: 0.1
		S/N Threshold: 5
		Min. # Isotopes: 2
		Min. Peak Intensity: 10000
		Average Peak Width [min]: 0
Group Expected		
Compounds		
1	1. Compound	
	Consolidation:	
		RT Tolerance [min]: 0.1
	2. Fragment Data Selection:	
	2.1.148	Preferred Ions: [M-H]-1
Generate Expected		
Compounds		
compounds	1 Compound Selection:	
	1. compound Selection.	Compounds: Benzoic acid ¹³ C (C ₂ H- ¹³ CO ₂ H)
	2 Dealkylation:	Compounds. Delizore actu $\bigcirc (\bigcirc_{6}^{11}_{6}) \bigcirc \bigcirc_{2}^{11})$
	2. Dearkyration.	Apply Dealkylation: False
		Apply Dearylation: False
		Apply Dearyiation: Faise May # Storey 1
		$M_{in} = M_{in} = [D_{in}]_{in} 200$
		Min. Mass [Da]: 200
	3. Transformations:	
		Phase I: (not specified)
		Phase II: (not specified)
		Others: (not specified)
		Max. # Phase II: 1
		Max. # All Steps: 3
	4. Ionization:	

Figure S1. Results of the OH exposure approximation experiment: (a) the adjusted voltage of the 254 nm lamps as well as the measured irradiance and SO_2 concentration. (b) OH exposure, calculated with Equation (S1), vs. irradiance .

Lambe et al. (2011) define the OH exposure as

$$OH_{\exp} = -\frac{1}{k_{\rm OH,SO_2}} \cdot \ln\left(\frac{SO_{2,f}}{SO_{2,i}}\right),\tag{S1}$$

10 with the initial SO₂ concentration (SO_{2,i}), the final SO₂ concentration (SO_{2,f}) and the rate constant between SO₂ and OH $(k_{OH,SO_2} = 9 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1})$.

Figure S2. Chromatograms of diaterpenylic acid, terpenylic acid, MBTCA, and pinic acid from α -pinene oxidation experiments. Diaterpenylic-, terpenylic-, and pinic acid show lower absolute intensities under OH conditions. The absolute signal intensity of MBTCA increases under OH conditions.

Figure S3. Ambient air chromatogram of m/z 185.0819 and the assigned isomers based on the PAM-OFR experiments. With exception of the isomer C appearing at 8.79 minutes, the other five isomers A, B, D, E, and F can be used as specific tracer isomers for the respective precursor.

Figure S4. (a) Mass traces of m/z 171.0662 and (b) m/z 343.1397. The high concentrated monomer at 6.67 minutes can generate ionsource dimers. Real atmospheric generated dimers appear at higher retention times above 10 minutes.

Figure S5. Assigned and unassigned CHO compounds from the representative selection of the field campaign samples. (a) Retention time vs. molecular weight. (b) Kroll diagram. (c) Van Krevelen diagram.

Figure S6. Meteorological data (a) wind speed and (b) temperature, (c) the $PM_{2.5}$ concentration as well as the trace gas concentrations of (d) SO_2 , (e) CO, and (f) NO_x during the field campaign in August 2018 near Vienna (time is UTC). The color code indicates the wind direction, the background color the night and day cycle of the sampling interval. Between 16 August 5:00 and 17 August 17:00 (hatched background) no filter were collected.

Figure S7. Wind direction and speed distribution for sample subsclusters (a) to (i). The mean wind directions are calculated with Equation (S2). Subclusters (b) and (f) do not show a predominant wind direction for which reason, no line is drawn.

From a list of wind directions (θ_i), given in radians, Yamartino (1984) defined the mean wind direction as

$$\theta_a = \arctan\left(\frac{s_a}{c_a}\right) \tag{S2}$$

with

$$15 \quad s_a = n^{-1} \sum_i \sin\theta_i \tag{S3}$$

and

$$c_a = n^{-1} \sum_i \cos\theta_i.$$
(S4)

In (-)HESI nearly all fragments and adducts can be explained by the four ions presented in Sect. 2.6. With the NTA those ions are identified by the software and assigned to the respective molecule. In (+)HESI this is by far not so simple. Ions

20 can be detected as known adducts like [M – H₂O + H]⁺, [M + H]⁺, [M + NH₄]⁺, [M + Na]⁺, and [M + K]⁺ but can also form several unknown fragments and adducts. The NTA of the standard solution measurement, in which 11 compounds can be detected in (+)HESI (Table S2), results in 53 identified compounds shown in Fig. S8. The color of the scatters indicates whether the compound was spiked into the solution (red), fragmented or formed adducts during measurement (orange), could not be identified (yellow), or is a pseudo real fragment of a spiked substance (light blue). The horizontal lines should simplify the assignment of fragments and adducts of same retention time.

Spiked compounds show mostly more then two adducts with the exception of nitrogen containing compounds caffeine (at 4.8 min) and acridine (at 5.1 min) with only one and 5-acenaphthene carboxylic acid (at 10.5 min) with two adducts. In contrast fragments and adducts formed during measurement always have a maximum number of two adducts. Consider only compounds with more then two adducts detected from the software can reduce false identification noticeably. The loss of real compounds, however, cannot be ruled out.

- The signals between m/z 413 and 469, at a retention time of 13.7 minutes, probably refer to a fragment of pentaerythritol tetrahexaonate (528 Da at 14.9 min) formed before sampling due to the fact that five adducts were detected from the software and the retention time is lower then from pentaerythritol tetrahexaonate. The resulting chemical formula corresponds to the loss of a C₆H₁₀O side chain. The five unidentified signals between m/z 232 and 264 at a retention time of 6.8 minutes could
- 35 be caused by interference with benzoic acid, measured at this time in (–)HESI. The two unidentified signals at 12.4 minutes with m/z 267 and 289 could may be the hydrogen and sodium adduct of a fragment of tris(2-ethylhexyl) phosphate formed in solution. Due to the high uncertainty it is labeled as unidentified. In principal the chemical formula $C_{12}H_{27}O_4P$ could match with the losses of an entire side chain (C_8H_{16}) and a fragment (C_4H_8) of another side chain.
- Populate a database in (+)HESI is a further challenge. While in (-)HESI the ion with the highest signal intensity is mostly 40 $[M-H]^-$, in (+)HESI no preferred ion can be named. Consequently from all or most measured ions a MS² spectra should be recorded and added to each library entry by hand. The necessity of this work can be illustrated with the MS² spectra of the ions $[M+H]^+$ and $[M+Na]^+$ from tri-*p*-cresyl phosphate. Despite the same molecule the spectra from both ions differ completely. The MS² spectra of the sodium adduct consists mainly of one signal. In contrast the hydrogen adduct produces a plausible variety of different fragments regarding the structure of tri-*p*-cresyl phosphate (Fig. S9). All of these difficulties
- 45 highlight the need for further work on the (+)HESI.

30

Figure S8. Retention time vs. m/z of all identified ions, which were not marked as background, from the measurement of the standard solution in (+)HESI. Known adducts include $[M - H_2O + H]^+$, $[M + H]^+$, $[M + NH_4]^+$, $[M + Na]^+$, and $[M + K]^+$.

Figure S9. MS^2 spectra of the tri-*p*-cresyl phosphate addcuts $[M + H]^+$ and $[M + Na]^+$.

References

50

- Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N. L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P., and Onasch, T. B.: Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements, Atmos. Meas. Tech., 4, 445–461, https://doi.org/10.5194/amt-4-445-2011, 2011.
- Yamartino, R. J.: A Comparison of Several "Single-Pass" Estimators of the Standard Deviation of Wind Direction, J. App. Meteorol. Clim., 23, 1362–1366, https://doi.org/10.1175/1520-0450(1984)023<1362:ACOSPE>2.0.CO;2, 1984.