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Abstract: Cone photoreceptor cells are wavelength-sensitive neurons in the retinas of vertebrate eyes
and are responsible for color vision. The spatial distribution of these nerve cells is commonly referred
to as the cone photoreceptor mosaic. By applying the principle of maximum entropy, we demonstrate
the universality of retinal cone mosaics in vertebrate eyes by examining various species, namely,
rodent, dog, monkey, human, fish, and bird. We introduce a parameter called retinal temperature,
which is conserved across the retinas of vertebrates. The virial equation of state for two-dimensional
cellular networks, known as Lemaître’s law, is also obtained as a special case of our formalism. We
investigate the behavior of several artificially generated networks and the natural one of the retina
concerning this universal, topological law.
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1. Introduction

The principle of maximum entropy provides an estimation for the underlying prob-
ability distribution of the observed data that corresponds best to the currently available
information about the system [1,2]. It has been applied to fields as diverse as physics [3,4],
biology [5], ecology [4,6], and natural language [7]. The philosophy behind the maxi-
mum entropy inference approach is to explain and predict experimental observations by
making the fewest number of assumptions (i.e., constraints) while assuming no explicit
underlying mechanisms.

One of the prime and dreadfully arduous challenges in applying the principle of
maximum entropy to a given system is to find out relevant constraints that should be
imposed on the system [8]. The authors of [9] have suggested that, in situations where the
experiments are repeatable, the expected value of the entropy of the likelihood function
is relevant information that should be considered a constraint. However, for a given
system, its value is largely unknown. Solving the corresponding Lagrange problem leads
to the so-called entropic probability distribution [10,11]. Entropic distributions have been
exploited mainly within the context of data classification and theoretical physics [12]. Yet,
the consequences of such an approach are not fully explored in biology and life sciences.
In the context of biology, due to the rigid structure of DNA, most experiments must
be repeatable.

In the present paper, we adopt the approach of [9] and apply it to a complex mul-
ticellular biological system, namely, cone photoreceptor cells in the retina; for an earlier
attempt in this direction, see [13]. Cone cells are wavelength-sensitive receptors in the
retinas of vertebrate eyes, and their different sensitivities and responses to light of different
wavelengths mediate color vision. The spatial distribution of these cells, so-called cone
mosaic [14], varies among different species, which, in each case, may reflect the evolution-
ary pressures that give rise to various adaptations to the lifestyle of a particular species
and its specific visual needs. However, in most cases, the adaptive value of a particular
cone mosaic is unknown [15]. From the perspective of gene regulatory mechanisms, the
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most fundamental questions such as: what are the mechanisms which control the mostly
random distributions of cone subtypes in the human retina, or what migration mechanisms
determine the highly regular and ordered patterns of cone subtypes in the retina of the
zebrafish, remain unanswered [16].

In the current work, we show that various forms of distributions of cone cells are
controlled by entropy, and we predict the frequency of the appearance of cones in the
retina. To this end, we employ the principle of maximum entropy without invoking any
specific biological mechanisms or driving forces. In a nutshell, we look for a configuration
of sensory cells that maximizes entropy while the expected value of the entropy of the
likelihood—which codifies information about the local environment of cells—has been
imposed as a constraint. One of the outcomes of this approach is that a configuration
with a lower entropy has a higher probability of occurrence (i.e., the frequency of the
appearance). This approach enables us to identify a conserved retinal factor, which we call
retinal temperature or coldness, in divergent species of rodent, dog, monkey, human, fish,
and bird. To our knowledge, this is the first model capable of predicting the probability
of the occurrence of cone cells in various species’ eyes by tuning a single parameter. For
earlier entropic approaches to study neuronal mosaics, see [17,18].

The virial equation of state for two-dimensional cellular networks, known as Lemaître’s
law [19,20], relates the fraction of hexagons in a given network to the width of the polygon
distribution. Here, we demonstrate how, by assuming additional information concerning
the topology of the network in the entropy maximization procedure, we can obtain this
universal law.

The idea that the organization of biological systems stems from an underlying opti-
mization problem goes back to D’Arcy Thompson, which, in his seminal work, On Growth
and Form [21], he argues for the case of energy minimization, which leads to, for example,
the prediction of cellular packing geometries in two-dimensional (2D) networks [22]. The
geometric properties, obtained based on the knowledge of the physical properties of epithe-
lial cells, can be considered as factors that control the development and function of a living
organism [21]. Reducing seemingly different phenomena to a simple governing principle
was the manifestation of the universality of form to Thompson [23]. In essence, here, we are
replacing energy minimization with entropy maximization, with the advantage of ignoring
the involved forces and physical interactions, which incidentally implies a mathematical
(entropic) restriction on the evolution of biological forms.

This paper is organized as follows. In Section 2, we review the problem of entropy
maximization as applied in this paper. We study the spatial distributions of cone cells in
the retinas of various vertebrates in Section 3 and demonstrate the predictive power of
our approach apart from its explanatory nature. In Section 4, we derive Lemaître’s law
and examine it in several artificially generated cellular networks and cone mosaics. We
summarize and conclude this paper in Section 5.

2. Entropy Maximization

In statistical mechanics, to obtain the Boltzmann distribution from the principle of
maximum entropy, one has to assume a constraint on the mean energy value as, in the
context of physics, the expected value of energy is crucial information about the system.
This approach leads to a formalism in which thermodynamic temperature emerges as a
free parameter and should be determined later from the experiment [24]. In a general
setting, the challenge is to find out the relevant constraints that should be imposed on the
system. A. Caticha and R. Preuss in [9] have assumed a set of data generated by some
experiment, where the only requirement is the experiment to be repeatable. If, for example,
the experiment is performed twice, with the corresponding outcomes of z1 and z2, in the
case that we discard the value of z2, the resulting situation should be indistinguishable
from if we had done the experiment only once. They have argued that a constraint on the
expected value of the entropy of the likelihood codifies this information. Inspired by this
idea and since biological experiments must be repeatable because of the robustness of DNA,
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we adopt this specific approach to entropy maximization and apply it to multicellular
biological systems; see also [13] and the references cited therein. Generally, an experiment
does not need to be repeatable; for instance, this may be the case at the atomic scale [25]. For
non-repeatable experiments, the Einstein fluctuation formula is applicable [9,26]. Note that,
in cellular biology, each cell is composed of a large number of atoms, and the experiments
are robust and repeatable.

We denote sensory neurons S and their local environment, which consists of other
cells Y. We assume the following information about the system:

∑
s∈S

p(s) = 1, (1)

H(Y | S) = ∑
s∈S

p(s)H(Y | S = s) = H, (2)

where S denotes the support set of S. Equation (1) is a normalization condition of
the probability mass function (in this paper, the frequency of the appearance) of neu-
rons, Equation (2) assumes the knowledge of the numerical value H of H(Y | S), and
H(Y | S = s) = −∑y∈Y f (Y = y | S = s) ln f (Y = y | S = s), where Y denotes
the support set of Y, which is defined in terms of the probabilities f (Y | S = s). By
the method of Lagrange multipliers, we maximize the Shannon entropy of neurons,
H(S) = −∑s∈S p(s) ln p(s), while taking (1) and (2) into account. The corresponding
Lagrangian reads

L = H(S)− λ

[
∑
s∈S

p(s)− 1

]
− β

[
∑
s∈S

p(s)H(Y | S = s)− H

]
, (3)

where λ and β are Lagrange multipliers. By solving ∂L/∂p(s) = 0, we obtain the so-called
entropic probability [9–11]:

p(s) = ps =
e−βH(Y|S=s)

Z
, (4)

where Z = ∑w∈S exp[−βH(Y | S = w)]. Assuming β > 0, Equation (4) implies that neu-
rons with lower entropy H(Y | S = s) have a higher probability or frequency of appearance,
which is confirmed in the case of cone photoreceptors in Section 3. The probability distribu-
tion in (4) is the most likely and the least-biased one, where the only assumed knowledge
about the system is the repeatability nature of the experiments. Other available information
about the system can be incorporated as additional constraints in (3); an example of such a
scenario is given in Section 4.

A couple of remarks are in order. The application of the principle of maximum entropy
strongly depends on how we specify the system configuration, which by itself depends
on the nature of the problem at hand. Different ways of describing the configuration of
the same system may lead to different outcomes; for a detailed discussion of this issue,
see [27]. The second remark deals with (2). Although we have assumed the knowledge of
H, we do not know its value in most cases, but rather, it is a quantity whose value should
be known; thus, we have formulated our problem as if we had this information. For a
detailed discussion of this matter, see [9]. By calculating the free parameter, β, from the
experimental data, one can infer the value of H. In analogy with statistical mechanics
where thermodynamic temperature emerges as the inverse of the Lagrange multiplier
in the derivation of the Boltzmann distribution, we interpret β as the biological coldness
(the reciprocal of temperature) of neurons. As in thermodynamics, where energy is an
extensive quantity, here entropy is also extensive. Note that thermodynamic temperature is
a statistical property of matter in bulk, and thus β can be viewed as an emergent quantity
at a tissue level.
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3. Spatial Distributions of Cone Photoreceptors in the Retinas of Vertebrates

In this section, we apply the principle of maximum entropy, culminated in Equation (4),
to retinal cone mosaics of various vertebrates. Besides predicting the frequency of the
appearance of cones across the retina, we demonstrate that the application of the maximum
entropy inference leads to the introduction of a new parameter, which we call retinal
coldness, that is conserved in divergent species of rodent, dog, monkey, human, fish, and
bird. In Section 3.1, we elaborate on the details of our calculations in the case of human
cones; other species are summarized in Section 3.2.

3.1. Spatial Distributions of Human Cone Photoreceptors

Human color vision is mediated by three types of cones, which are sensitive to (blue)
short-, (green) medium-, and (red) long-wavelength light. The spatial distributions of these
cells in a living human eye are shown in Figure 1. The image in the top-left corner is the
first image of the spatial arrangement of living human cones, reported in [28].

Figure 1. Spatial distributions of cone photoreceptors in a living human nasal retina, at one degree of
eccentricity. The image, in the top-left corner with the scale bar = 5 µm, is adapted with permission
from [28]. Copyright 1999, Springer Nature. Figures in the bottom row, from left to right, illustrate
short-, medium-, and long-wavelength-sensitive cones separately.

In the following, we show how Equation (4) can be used to predict the frequency of
the appearance of blue, green, and red cones in a retinal field of a human eye given in
Figure 1. From (4), we have:

ps =
e−βH(Y|S=s)

∑w∈S e−βH(Y|S=w)
=

e−βH(Y|S=s)

e−βH(Y|S=b) + e−βH(Y|S=g) + e−βH(Y|S=r)

=
e−βHs

e−βHb + e−βHg + e−βHr
,

(5)
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where ps is the probability of the occurrence or the frequency of the appearance of cone
subtypes: blue (b), green (g), and red (r). We consider the local environment of blue cones
that consists of other blues and exclude green and red cones; the local environment of
green cones comprises only greens and the same for the local environment of red cones.
This is justified as it is suggested that most cone cells form independent mosaics, and
there are no spatial interactions between two mosaics [29]. Moreover, cone mosaics are
explicitly shown to be spatially independent in the case of avian cones [30]. To calculate
Hb, Hg, and Hr, we need to consider some kind of probability distribution or density
function. Our choice is to construct the nearest-neighbor-distance (NND) distribution for
each cone subtype and calculate its corresponding entropy. The rationale behind choosing
this specific distribution is as follows. (I) The choice of probability distribution should
reflect the frequency with which each cone subtype appears in the retina, which is related to
the mean distance between cones of the same type. The scattering of the NND distribution,
which is quantified by its entropy, decreases with decreasing the average value of the
NND distribution [31] and implies a higher frequency of appearance of cones, based on (5).
(II) In general, the methods based on the concept of the nearest-neighbor distance have
been extensively used to quantify cone mosaics, see for example [14], which turns out to
be a simple but powerful concept to analyze spatial patterns. As an illustration, we have
shown searching for the nearest neighbors in the case of blue cones in Figure 2.

Figure 2. The (left panel) shows the blue cone photoreceptors in a living human retina. Searching
for the nearest neighbors is depicted in the (right panel).

The NND distribution for each cone subtype is presented in Figure 3. The nearest-
neighbor distances follow a peaked distribution in each case. Note that, to obtain the
optimal bin widths of the histograms, we have used a data-based procedure proposed
by M. P. Wand [32], to its first-order approximation, which is called one-stage rule (the
zeroth-order approximation, i.e., the zero-stage rule, of the method reproduces Scott’s rule
of binning [33]).
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Figure 3. Nearest-neighbor-distance distributions of cone photoreceptors in a living human retina.
The colors of the histograms correspond to their respective cone subtypes. Values of mean and
standard deviation in micrometers for each distribution read µb = 3.572, σb = 1.020, µg = 1.188,
σg = 0.300, µr = 1.172, and σr = 0.257.
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To calculate entropies of distributions in Figure 3, we use the notion of differential
entropy, which is defined as hs = −

∫
dx fs(x) ln fs(x), where fs(x) is a probability density

function, with the property that
∫

dx fs(x) = 1. We use the notation H to designate
the Shannon entropy and h for the case of differential entropy. Note that, as fs(x) has
units, it cannot be used as the argument of logarithm; however, by the transformation
x → x/xreference, where xreference = 1 µm, we make the distance and subsequently fs(x)
dimensionless. For each histogram in Figure 3, the density function can be constructed,
and the differential entropy can be calculated accordingly; we obtain:

hb = 1.365, hg = −0.350, hr = −0.378. (6)

From the image in the top-left corner of Figure 1, we can determine frequencies of
appearance of blue, green, and red cones, which are the ratios of these cells in the retinal
field. We set the value of β in (5) to reproduce the observed values of frequencies. To
obtain β, we employ the Kullback–Leibler divergence, DKL = ∑s qs ln(qs/ps), where qs
corresponds to the observed cone subtype frequency of appearance and ps corresponds to
the prediction of the theory in (5). The left panel of Figure 4 illustrates the Kullback–Leibler
divergence as a function of β, with the global minimum of 0.001 at β = 1.284. The observed
cone ratios are compared to the predictions of the theory for β = 1.284 in the right panel of
Figure 4. Incidentally, these calculations demonstrate that neurons with a lower entropy
have a higher probability of occurrence.

2 4 6
β

0.2

0.4

0.6

0.8

1.0

DKL

Figure 4. Kullback–Leibler divergence is depicted as a function of β in the (left panel), where it has
the global minimum of 0.001 at β = 1.284. The (right panel) shows a comparison between the in vivo
observed frequencies of appearance of cone photoreceptors in a human retina and the predictions of
the theory (5) for β = 1.284. The color of each bar corresponds to its respective cone subtype.

3.2. Spatial Distributions of Vertebrate Cone Photoreceptors: From Rodent to Bird

We apply the procedure explained in Section 3.1 to various vertebrates, namely, rodent,
dog, monkey, human, fish, and bird. Rodent and dog are dichromats; monkey, like human,
is trichromat; and fish and bird are tetrachromats, which, in the case of bird, there is also a
significant number of double cones. Our results are summarized in Figures 5–10. Although
cone mosaics of these diverse species are significantly different from each other, the values
of β in all species are in the same order, where 1 < β < 2. In Section 3.3, by using statistical
analyses and the fact that the NND distributions of cone subtypes in vertebrate retinas are
peaked—and thus can be approximated by Gaussians—we estimate the value of β in a
general case.
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Figure 5. The image in the top-left corner (scale bar = 50 µm) illustrates the spatial distribution of cone
photoreceptors in the dorsal mid-peripheral retina of a diurnal rodent called the agouti. It is adapted
with permission from [34]. Copyright 2009, Cambridge University Press. In this image, the short-
wavelength-sensitive-cone opsin is represented as green and the long-wavelength-sensitive-cone
opsin as violet; next to it, in the digitized image, we have reversed the colors. Nearest-neighbor-
distance distributions in the third row have the entropies of hv = 3.310 and hg = 1.787; next to them,
we have shown a comparison between the experimental observation of cone ratios in the agouti
retina and the predictions of the theory (5) evaluated at the global minimum of the Kullback–Leibler
divergence, that is, β = 1.310. The colors of the histograms and the bar chart correspond to their
respective cone subtypes.
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Figure 6. The image in the top-left corner, adapted from [35], shows the spatial distribution of
cone photoreceptors in the inferior peripheral retina of a dog; the short-wavelength-sensitive-cone
opsin is represented as green and the long-/medium-wavelength-sensitive-cone opsin as red. The
entropies of the NND distributions in the third row read hg = 3.933 and hr = 2.440. The colors of the
histograms correspond to their respective cone subtypes. Next to the NND distributions, we have
shown a comparison between the experimental observation of cones’ frequencies of appearance and
the predictions of the theory for β = 1.127.
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Figure 7. The image in the top-left corner, which shows the spatial distribution of cone photoreceptors
in the nasal retina of a monkey (macaque), is provided by A. Roorda, adapted with permission
from [36]. Copyright 2001, Elsevier. Short-, medium-, and long-wavelength-sensitive cones are
depicted as blue, green, and red points, respectively. The entropies of the NND distributions of cone
subtypes, shown in the third row, read hb = 1.019, hg = 0.018, and hr = −0.476. The predictions of
the theory, illustrated in the fourth row, are evaluated at β = 1.174. The colors of the histograms and
the bar chart correspond to their respective cone subtypes.
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Figure 8. The image in the top-left corner, provided by A. Roorda, illustrates the spatial distribution
of cone photoreceptors in the temporal retina of a human. The image is adapted with permission
from [36]. Copyright 2001, Elsevier. Blue, green, and red points represent the short-, medium-,
and long-wavelength-sensitive cones, respectively. The entropies of the NND distributions of cone
subtypes in the third row are hb = 2.977, hg = 1.691, and hr = 0.651. The colors of the histograms
correspond to their respective cone subtypes. The theoretical predictions are shown in the last row,
where β = 1.291.
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Figure 9. The image in the top-left corner shows the spatial distribution of cone photoreceptors
in the retina of the zebrafish. The image is adapted with permission from [37]. Copyright 2010,
John Wiley and Sons. Blue-, UV-, red-, and green-sensitive cones are depicted as points with their
respective colors. The entropies of the NND distributions of cone subtypes in the third and fourth
rows are hb = 1.471, hUV = 1.440, hr = 1.350, and hg = 1.128. The theoretical predictions are
evaluated at β = 1.894. The colors of the histograms and the bar chart correspond to their respective
cone subtypes.
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Figure 10. The digitized image of the spatial distribution of cone photoreceptors in the dorsal nasal
retina of the chicken, shown in the top-left corner, is constructed from the data reported in [30].
Violet-, blue-, red-, and green-sensitive cones are represented as points with their respective colors;
double cones are shown as white. The entropies of the NND distributions of cone subtypes in the
third and fourth rows read hv = 2.291, hb = 2.081, hr = 1.826, hg = 1.739, and hd = 1.364. The colors
of the histograms correspond to their respective cone subtypes. The predictions of the theory are
evaluated at β = 1.527.

3.3. Bounds on Retinal Coldness

We are in a position to address the issue raised at the end of Section 2: although we
lack the knowledge of the numerical value H of H(Y | S), we have considered it as crucial
information about the system and have represented it in terms of the Lagrange multiplier β
(i.e., retinal coldness). In this subsection, we study the bounds on the value of H, which
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lead to the estimation of β. To this end, we use the fact that, for a given cone subtype, the
distribution of the nearest-neighbor distances is peaked—see figures in Section 3.2—and
thus, it can be approximated by a Gaussian.

We consider the nearest-neighbor distances as random variables, Xs, where Xs∼N
(
µs, σ2

s
)

and s denotes cone subtypes. Note that, in the case of a normal distribution, where the
differential entropy is hs = (1/2) ln

(
2πeσ2

s
)
, Equation (4) becomes:

ps =
σ
−β
s
Z

, (7)

where Z = ∑j σ
−β
j . To estimate the bounds on the value of entropy, first, we define the

random variable W as W = ∑s πsXs, where πs is the weight of the contribution of each
cone subtype (i.e., the frequency of the appearance) and ∑s πs = 1. Since W has a normal
distribution, its entropy is related to its variance, σ2, as (1/2) ln σ2 + const. Thus, we can
obtain the lower and upper bounds of the entropy by minimizing and maximizing the
variance, respectively. In the following, we study these two extreme cases.

Variance of W reads σ2 = ∑s π2
s σ2

s . By the method of Lagrange multipliers, we
minimize σ2, subjected to the constraint ∑s πs = 1. It turns out that [38], for πs ∝ σ−2

s ,
σ2 is minimized, which implies the minimization of the entropy of W. By comparing
this πs with (7), we establish the upper bound of β as 2. To obtain the lower bound of
β, we maximize the entropy of W, which implies the maximization of σ2, subjected to
∑s πs = 1. This happens by letting πs corresponding to the largest σs be 1 and all the other
πss vanish. This scenario is not desirable, as the contributions of various colors vanish. To
obtain an acceptable maximum value for the entropy of W, we consider the uncertainties
associated with random variables πsXs to be equal, that is, we equalize variances of πsXs by
considering πs ∝ σ−1

s , which results in σ2 = C2 ∑s = C2N. C is a proportionality constant,
i.e., πs = Cσ−1

s , and N is the number of cone subtypes. By comparing this πs with (7), we
establish the lower bound of β as 1.

Among the species studied in Section 3.2, fish and bird have more ordered retinal cone
mosaics, where, in the former, it is highly regular, and in the latter is semi-random [16].
These two species’ corresponding βs are closer to 2 than the other species. Thus, more
ordered patterns correspond to a lower retinal temperature or a higher coldness, as expected
in thermodynamics. More irregular mosaics—like in rodent, dog, monkey, or human—have
higher retinal temperatures. Overall, for vertebrate retinas, under the assumption that the
NND distributions are peaked, we always have: 1 < β < 2.

4. Lemaître’s Law

Lemaître’s law is the virial equation of state for two-dimensional cellular networks,
which relates two measures of disorder (i.e., thermodynamic variables), namely, the fraction
of hexagons to the width of the polygon distribution [11,19,20,39–41]. Although at first
proposed for two-dimensional foams, it has been shown that a wide range of planar
cellular networks in nature obey Lemaître’s law, ranging from biology such as avian
cones [30], epithelial cells [42], and mammalian corneal endothelium [43], to physics such as
amorphous graphene [41], the Ising model [44], Bénard–Marangoni convection [45], silicon
nanofoams [46], and silica bilayers [47]. It can be obtained by maximizing the entropy,
H = −∑n≥3 pn ln pn, where pn is the probability, or the frequency of the appearance, of an
n-sided polygon, while considering the following information:

∑
n≥3

pn = 1, ∑
n≥3

npn = 6, ∑
n≥3

rn pn = const. (8)

The first relation is the normalization condition, and the second one is a consequence
of Euler’s relation concerning the topology of the structure, which assumes only three
lines meet at a vertex. Networks with higher vertices can be transformed into trivalent
vertices by appropriate transformations [48]. The function rn in the last relation depends
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on the geometry or the underlying dynamics of cells (polygons). Lemaître and colleagues
assumed rn = 1/n as an empirical observation made by measuring the areas of cells in a
two-dimensional mosaic produced by hard discs moving on an air table [19,20]. At first
glance, the choice of rn = 1/n seems not applicable in a general setting. Indeed, it was
already mentioned in [20] that this particular form of rn cannot be valid for all cellular
mosaics, as, for instance, it is incompatible with the well-known Lewis’ law [49], which
assumes that the average area of polygons is linear in n. However, the authors of [20]
speculated that the remarkable universality of Lemaître’s law suggests that the particular
choice of rn = 1/n has probably a deeper meaning than expected.

Without considering any ad hoc constraint, we derive Lemaître’s law as a special case
of our formalism explained in Section 2. To this end, first, we generalize the Lagrangian
introduced in Equation (3) as [13],

L = H(S)− λ

[
∑
s∈S

p(s)− 1

]
− β

[
∑
s∈S

p(s)H(Y | S = s)− H

]

− µ

[
∑
s∈S

p(s)N(Y | S = s)− N

]
,

(9)

where we have assumed the following additional information: N(Y | S) = ∑s∈S p(s)N(Y |
S = s) = N, in which N(Y | S) is the average number of cells in local environment and µ is
a Lagrange multiplier. By solving ∂L/∂p(s) = 0, we obtain:

p(s) =
e−βH(Y|S=s)−µN(Y|S=s)

Z
, (10)

where Z = ∑w∈S exp[−βH(Y | S = w)− µN(Y | S = w)]. We simplify the notations in (10)
and write:

pn =
e−βHn−µn

Z
, (11)

where we have replaced s by n. pn is the probability of having an n-sided polygon, or its
frequency of appearance, and Z = ∑n≥3 exp[−βHn − µn]. To calculate Hn, we consider a
general standardized discrete distribution, which its density can be expanded as [50],

gn(x) =
1√
2π

e−
x2
2

{
1 +

g1√
n
+

g2

n
+ · · ·

}
, (12)

with g1 = α1H3

(
x/
√

2
)

and g2 = α2H4

(
x/
√

2
)
+ α3H6

(
x/
√

2
)

, where α1, α2, α3 are
constants andHk(·) is the kth Hermite polynomial. Note that, as n→ ∞, gn(x) approaches
the standard normal distribution. Now that we have gn(x) at our disposal, we can calculate
its differential entropy, hn = −

∫ ∞
−∞ dx gn(x) ln gn(x). Since H3(x) = 8x3 − 12x is an odd

function of x, its integral vanishes, and thus, the first nonzero correction term is of the order
1/n. We obtain:

hn =
1
2

ln(2πe) +O
(

1
n

)
, (13)

where the first term is the entropy of the standard normal distribution. By plugging (13)
into (11), we arrive at

pn =
e−β/n−µn

Z
, (14)

where Z = ∑n≥3 exp[−β/n− µn] and we have absorbed the constants included in O(1/n)
in β. Equation (14) sheds light on the origin of rn = 1/n, which Lemaître and colleagues
had obtained for a specific two-dimensional mosaic [19,20]. Since the calculations leading
to (14) only assume a general discrete distribution, the universality of Lemaître’s law
becomes evident.
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The variance, µ2, of the distribution pn in (14) reads

µ2 =
〈
(n− 〈n〉)2

〉
= ∑

n≥3
pn(n− 6)2, (15)

where we have used Euler’s relation, 〈n〉 = 6. The second moment of pn, µ2, demonstrates
a deviation from the hexagonal configuration and can be interpreted as a measure of
topological disorder. By exploiting (14) and (15), Lemaître’s law, as a relation between two
measures of disorder, µ2 and p6, has been obtained as [11,19,20,41,46],

µ2 p2
6 = 1/2π, 0.34 < p6 < 0.66, (16)

µ2 + p6 = 1, 0.66 < p6 ≤ 1. (17)

We present a simple and intuitive derivation of (16) and (17), which is inspired and
developed in discussion with C. Beenakker and I. Pinelis [51]. For (16) to hold, p6 should be
large and thus pn in (14) should peak at n = 6. This allows us to approximate pn near n = 6
by a normal distribution, Pn, centered at n = 6 while ignoring the discreteness of n. We can
let n vary from −∞ to ∞ since only those ns close to the peak have notable contributions,
provided that p6 is not too small. Thus, we have: Pn = 1/

√
2πµ2 exp

[
−(n− 6)2/2µ2

]
,

which results in µ2P2
6 = 1/2π. For (17) to hold, the probabilities pns for n /∈ {5, 6, 7} should

be negligible compared to pns for n ∈ {5, 6, 7}; as a result, the discreteness of n cannot be
neglected in this case, since only three ns contribute. The constraint 〈n〉 = 6 implies that pn
should sharply peak at n = 6, leading to µ2 → 0 as p6 → 1, and thus: µ2 + p6 → 1. Note
that, although in (9), we have assumed information about seemingly unrelated quantities
H(Y | S) and N(Y | S) represented in terms of their corresponding Lagrange multipliers
β and µ, the peakedness of pn and thus h(n) ≡ −β/n− µn at n = 6 gives us a relation
between β and µ. Since h′(6) = β/62 − µ = 0, we have: β = 36µ.

To obtain regions of validity of µ2 p2
6 = 1/2π and µ2 + p6 = 1, numerical analyses are

performed and the results are shown in Figure 11. The left panel illustrates µ2 as a function
of p6, where the red points are obtained from (14), subjected to the constraint 〈n〉 = 6,
and the dashed blue and yellow curves correspond to µ2 p2

6 = 1/2π and µ2 + p6 = 1,
respectively. Simulations suggest that the known lower bound of (16) can be relaxed to
0.27, that is,

µ2 p2
6 = 1/2π, 0.27 ≤ p6 < 0.66. (18)

In the right panel of Figure 11, we have shown β as a function of µ, where the dashed
brown curve represents β = 36µ and the green points depict the values of (µ, β) obtained
from (14), subjected to the constraint 〈n〉 = 6.

0.4 0.6 0.8 1.0 p60.0

0.5

1.0

1.5

2.0

2.5

μ2

0 10 20 30 40 μ0

500

1000

1500

β

Figure 11. In the (left panel), the dashed blue and yellow curves correspond to µ2 p2
6 = 1/2π and

µ2 + p6 = 1, respectively. The red points are obtained from (14), subjected to the constraint 〈n〉 = 6.
This plot suggests that the known lower bound of (16) can be relaxed to 0.27. The (right panel)
presents a comparison between the analytical result of β = 36µ, shown as a dashed brown curve, and
the values of (µ, β), shown as green points, obtained from (14).
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As p6 decreases, going from 0.27 to 0.25, the peak of pn shifts from n = 6 to n = 5 and
remains so up to p6 = 0.16, see the left panel of Figure 12. Again, we can approximate pn
by a Gaussian, which this time peaks at n = 5. In the right panel of Figure 12, we have
shown the values of (p5, µ2), obtained from (14) and subjected to the constraint 〈n〉 = 6, in
red points, and the Gaussian as a dashed blue curve.

p6
0.27

0.25

0.23

0.21

0.19

0.17

0.16

3 4 5 6 7 8 9 10 11 12 n0.00

0.05

0.10

0.15

0.20

0.25

pn

0.2 0.4 0.6 0.8 1.0 p50

2

4

6

8

10

12

μ2

Figure 12. The (left panel) shows the mode shift of pn in (14) from n = 6 to n = 5 as p6 decreases
from 0.27 to 0.25. In the (right panel), the red points depict (p5, µ2) obtained from pn and subjected
to the constraint 〈n〉 = 6, and the Gaussian is shown as a dashed blue curve.

By decreasing p6 further, the peak shifts from n = 5 to n = 4, and eventually, pn
becomes monotonically decreasing, see the left panel of Figure 13. For small values of p6,
going from 0.09 to 0.07, pn becomes a U-shaped distribution, as is shown in the right panel
of Figure 13.

p6
0.16

0.14

0.12

0.10

0.09

3 4 5 6 7 8 9 10 11 12 n
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0.15
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0.25

pn

p6
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0.07

0.05

0.03

0.02

3 4 5 6 7 8 9 10 11 12 n
0.1
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0.3

0.4

0.5

pn

Figure 13. (Left panel) shows that as p6 decreases, the peak of pn shifts from n = 5 to n = 4, and
eventually, pn becomes a monotonically decreasing distribution. The (right panel) depicts a change
in the shape of pn from a monotonically decreasing to a U-shaped distribution for small values of p6.
In both panels, it is assumed that 〈n〉 = 6.

Most two-dimensional cellular networks in nature have an abundance of hexagons,
and they likely obey (17) and (18). Low values of p6 may correspond to amorphous or
artificially generated networks. In the following, we examine several cases of mosaics that
are artificially generated: random fragmentation, Feynman diagrams, the Poisson network,
and semi-regular Archimedean tiling. We demonstrate that all these networks still obey
pn in (14) with the constraint 〈n〉 = 6.

In [52], specific artificial, two-dimensional cellular structures are generated by a
fragmentation process. One way to construct these networks is by a random selection of a
cell among all cells, and then this cell is to be fragmented into two cells by adding an edge
randomly. The side number distribution of cells in this system is obtained by a mean-field
model as [52],

PFragmentation, c(n) = PFragmentation, c(n− 1)
αn2 + (2− 9α)n + 14α− 2

α(n− 3)(n− 6 + 4/α)
, (19)
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where α = 0.356 and PFragmentation, c(6) = 0.125. Equation (19) can be solved as

PFragmentation, c(n) = 108063
|Γ(n− 0.691 + 2.35i)|2

Γ(n + 6.236)Γ(n− 2)
. (20)

In the top-left corner of Figure 14, we have shown PFragmentation, c(n) as a blue curve and
pn in (14) as a dashed orange curve.

pn

4 8 12 16 20 n

0.05

0.10

0.15

0.20

PFragmentation,c

pn

5 8 12 16 20 n

0.05

0.10

0.15

PFragmentation,e

pn

4 8 12 16 20 n

0.05

0.10

0.15

0.20

PFeynman

pn

4 8 12 16 20 n
0.05

0.10

0.15

0.20

0.25

0.30

PPoisson

Figure 14. Four artificially generated networks, by random fragmentation (top-left and top-right
panels), Feynman diagrams (bottom-left panel), and the Poisson network (bottom-right panel), are
compared to the probability distribution pn in (14) with the constraint 〈n〉 = 6. The blue curves in
PFragmentation, c(n), PFragmentation, e(n), PFeynman(n), and PPoisson(n) correspond to (20), (21), (22), and
(23), respectively.

Another way to construct such networks is by a random selection of an edge among
all cell edges followed by selecting one of the cells which shares this edge, and then this cell
is to be fragmented into two cells as in the previous case [52]. The probability distribution
of the number of cell sides reads [52],

PFragmentation, e(n) =
(n− 3)(5n + 1)PFragmentation, e(n− 1)− 2(n− 2)2PFragmentation, e(n− 2)

(n− 3)(3n + 6)
, (21)

with PFragmentation, e(4) = 0.196 and PFragmentation, e(6) = 0.134. In the top-right corner of
Figure 14, a comparison between PFragmentation, e(n) and pn is shown.

The ensemble of planar Feynman diagrams with a cubic interaction (i.e., planar φ3

diagrams with a fixed number of vertices) is equivalent to the ensemble of polygons with
trivalent vertices [53,54]. The probability distribution of the number of cell edges is obtained
as [53,54],

PFeynman(n) = 16
(n− 2)Γ(2n− 1)

Γ(n)Γ(n + 1)

(
3

16

)n
. (22)

See the bottom-left corner of Figure 14 for a comparison between PFeynman(n) and pn.
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The two-dimensional Poisson network studied in [55] can be obtained from a tessella-
tion of a surface based on Poisson point distribution. The distribution of the number of cell
sides reads [55],

PPoisson(n) =
1
3

(
2
3

)n−4
. (23)

A comparison between PPoisson(n) and pn is shown in the bottom-right corner of Figure 14.
The Archimedean tilings, obtained by Kepler, are the analogs of the Archimedean

solids. Eight of them are semi-regular and consist of regular polygons at each vertex [56].
In the left panel of Figure 15, we have shown one of these semi-regular tilings, known as
truncated hexagonal tiling, consisting of two dodecagons and one triangle at each vertex.
The right panel of Figure 15 shows pn in (14) as p6 → 0 and 〈n〉 = 6. This plot corresponds
to a pattern that comprises an abundance of triangles with dodecagons amongst them and
is in agreement with truncated hexagonal tiling.

3 4 5 6 7 8 9 10 11 12 n
0.1

0.2

0.3

0.4

0.5

0.6

pn

Figure 15. The (left panel) shows truncated hexagonal tiling, with ≈66% triangles and ≈34%
dodecagons. The (right panel) shows pn in (14) as p6 → 0 and 〈n〉 = 6.

4.1. Human Cone Mosaics

In this subsection, we examine Lemaître’s law in the case of the human retina, which
can be viewed as a natural, two-dimensional cellular network. To partition the retinal
field of Figure 1 into polygons, we construct the corresponding Voronoi tessellation. Each
Voronoi polygon is generated by a cone cell in a way that all points in a given polygon are
closer to its creating cone cell than to any other [57]. In the top row of Figure 16, we have
shown Voronoi tessellations of the spatial arrangements of blue, green, and red cones in a
living human retina. At the bottom, the Voronoi tessellation of the whole pattern of cones
is presented. The fractions of n-sided bounded polygons are reported in the figure caption.

If we assume a high value of p6 indicates the regularity of the corresponding cone
mosaic, Figure 16 demonstrates that the spatial arrangement of blue cones is more random
than those of green and red cones, where for blue cones we have: pb

6 = 0.143 while
pg

6 = 0.360 and pr
6 = 0.378 for greens and reds, respectively. This finding is in agreement

with [28]. Note that, as is shown at the bottom of Figure 16, in contrast to the cone subtypes,
the whole spatial arrangement of human cones is highly ordered, with p6 = 0.718.

We have shown Lemaître’s law as applied to human cone mosaics in Figure 17. In the
left panel—the case of blue cone mosaic—the experimental value of (pb

5, µ2) is depicted as
a blue point, and the dashed dark-gray curve corresponds to µ2 p2

5 = 1/2π and the dashed
light-gray curve to µ2 + p5 = 1. The cases of greens, reds, and the entire pattern of cones
(in black) are shown in the right panel.

As another illustration, the behavior of cones in a different subject is shown in Figure 18.
The image in the left panel, adapted from [58], shows human cone mosaics at six different
retinal locations: two, four, six, eight, ten, and twelve degrees of retinal eccentricities,
temporal to the fovea. The right panel shows the agreement between human cone mosaics
and Lemaître’s law.
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Figure 16. In the top row, we have shown Voronoi tessellations of the three cone photoreceptor
subtypes, (blue) short-, (green) medium-, and (red) long-wavelength-sensitive cones, in a living
human retina in Figure 1. The fraction of n-sided bounded polygons, pcolor

n , in each case reads
pb

4 = 0.286, pb
5 = 0.286, pb

6 = 0.143, pb
7 = 0.214, and pb

8 = 0.071; pg
3 = 0.010, pg

4 = 0.089, pg
5 = 0.300,

pg
6 = 0.360, pg

7 = 0.153, pg
8 = 0.069, and pg

9 = 0.020; pr
4 = 0.077, pr

5 = 0.300, pr
6 = 0.378, pr

7 = 0.184,
pr

8 = 0.030, and pr
9 = 0.030. The Voronoi tessellation of the whole retinal field is illustrated at the

bottom, with the fractions of n-sided polygons as p4 = 0.012, p5 = 0.171, p6 = 0.718, p7 = 0.086, and
p8 = 0.012.
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Figure 17. Blue, green, red, and black points depict the experimental values of (pb,g,r
n , µ2), n = 5, 6,

for human cone mosaics (the black point represents the whole pattern of cones). Lemaître’s law is
shown as dashed gray curves.
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Figure 18. The (left panel), adapted from [58], shows the spatial distributions of cone photoreceptors
in the retina of a living human eye at a range of retinal eccentricities. In the (right panel), we have
depicted the cones’ behavior—the whole pattern in each case—concerning Lemaître’s law.
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4.2. Vertebrate Cone Mosaics: From Rodent to Bird

Here, we apply the approach of Section 4.1 to rodent, dog, monkey, human, fish, and
bird. The results are summarized in Figures 19–24. In each case, the experimental value
of (pcolor

n , µ2) is depicted in the color of its respective cone subtype, and the black point
represents the whole pattern of cones in a given retinal field.
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Figure 19. Voronoi tessellations of the spatial arrangements of the rodent cone subtypes and its whole
retinal field (Figure 5) and the corresponding cones’ behavior concerning Lemaître’s law. Violet and
green colors represent the short- and long-wavelength-sensitive cones, respectively. The points in the
plots correspond to the experimental values of (pv,g

5,6 , µ2). The black point corresponds to the whole
retinal mosaic. Lemaître’s law is shown as dashed gray curves.
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Figure 20. Voronoi tessellations of the spatial arrangements of the dog cone subtypes and its whole
retinal field (Figure 6) and the corresponding cones’ behavior concerning Lemaître’s law (dashed
gray curves). Green and red colors represent the short- and long-/medium-wavelength-sensitive
cones, respectively. The points in the plot correspond to the experimental values of (pg,r

6 , µ2), and the
black point represents the whole retinal mosaic.
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Figure 21. Voronoi tessellations of the spatial arrangements of the monkey cone subtypes and
its whole retinal field (Figure 7) and the corresponding cones’ behavior concerning Lemaître’s law
(dashed gray curves). Blue, green, and red colors represent the short-, medium-, and long-wavelength-
sensitive cones, respectively. Experimental values of (pb,g,r

5,6 , µ2) are shown as points in the plots. The
black point represents the whole retinal field.
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Figure 22. Voronoi tessellations of the spatial arrangements of the human cone subtypes and their
whole retinal field (Figure 8) and the corresponding cones’ behavior concerning Lemaître’s law.
Short-, medium-, and long-wavelength-sensitive cones are represented by blue, green, and red colors,
respectively. Lemaître’s law is shown as dashed gray curves in the plot and experimental values of
(pb,g,r

6 , µ2) as points with their respective colors. The black point represents the whole retinal field.
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Figure 23. Voronoi tessellations of the spatial arrangements of the zebrafish cone subtypes and
its whole retinal field (Figure 9) and the corresponding cones’ behavior concerning Lemaître’s law
(dashed gray curves). Blue-, UV-, red-, and green-sensitive cones are shown with their respective
colors. Experimental values of (pb,UV,r,g

6 , µ2) are depicted as points in the plot. The black point
corresponds to the whole retinal field.
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Figure 24. Voronoi tessellations of the spatial arrangements of the chicken cone subtypes and its
whole retinal field (Figure 10) and the corresponding cones’ behavior concerning Lemaître’s law.
Violet, blue, red, and green colors represent their respective wavelength-sensitive cones. White
color corresponds to double cones. Lemaître’s law is shown as dashed gray curves in the plot
and experimental values of (pv,b,r,g,d

6 , µ2) as points with their respective colors. The black point
corresponds to the whole retinal field.
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5. Concluding Remarks

In this work, we have applied the principle of maximum entropy to explain various
forms of retinal cone mosaics in vertebrate eyes and established a parameter called retinal
temperature or coldness, which is conserved throughout different species as diverse as
rodent, dog, monkey, human, fish, and bird, regardless of the details of the underlying
mechanisms, or physical and biological forces. This approach has enabled us to predict
the frequency of the appearance of cone cells only by tuning a single parameter. The only
constraint of the Lagrange problem stems from the repeatable nature of the experiments
in biology.

Lemaître’s law, which relates the fraction of hexagons to the width of the polygon
distribution in numerous two-dimensional cellular networks in nature and is usually
obtained by assuming an ad hoc constraint, here is derived as a special case of our formalism.
We have shown that various networks, whether artificially generated or natural, obey this
universal law.

Since we have considered a completely general constraint in the entropy maximization
procedure, the approach of the current paper can be exploited to explain other patterns
or processes in nature. In the case of failure, it implies that either additional information,
which stems from the knowledge of the underlying mechanisms, needs to be considered, or
that the assumed information is incorrect. Indeed, this is one of the pitfalls of the maximum
entropy approach as it is not falsifiable, and there are no criteria for its validity within
itself [8,59].

Although in many cases, as in this paper, we can explain and predict the phenomena
without knowing the details of the underlying dynamics, the principle of maximum entropy
can still lead us to a better understanding of the involved mechanisms by validating the
assumed information about the system.
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