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A B S T R A C T

A useful approach to deepen our knowledge about the origin and evolution of venom systems in Reptilia has been
exploring the vast biodiversity of this clade of vertebrates in search of orally produced proteins with toxic ac-
tions, as well as their corresponding delivery systems. The occurrence of toxins in anguimorph lizards has been
demonstrated experimentally or inferred from reports of the toxic effects of the oral secretions of taxa within the
Varanidae and Helodermatidae families. In the present study, we have focused on two alligator lizards of the
Anguidae family, the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard,
A. lythrochila. In addition, the fine morphology of teeth of the latter species is described. The presence of a
conserved set of proteins, including B-type natriuretic peptides, cysteine-rich secretory proteins, group III
phospholipase A2, and kallikrein, in submandibular gland extracts was demonstrated for both Abronia species.
These proteins belong to toxin families found in oral gland secretions of venomous reptile species. This finding,
along with previous demonstration of toxin-producing taxa in both paleo- and neoanguimorpha clades, provides
further support for the existence of a handful of conserved toxin families in oral secretions across the 100+
million years of Anguimorpha cladogenesis.

1. Introduction

The Anguimorpha suborder of squamate reptiles was named by Max
Fürbringer in 1900 to include all autarchoglossans (scincomorphs,
anguimorphs, and varanoids) closer to Varanus and Anguis than to
Scincus (Fürbringer, 1900). Currently, this clade includes approx. 250
species (Uetz et al., 2017), which according to molecular data are
distributed in two divergent clades rooted in the early to
mid-Cretaceous, 127.1 (105.5–148.7) million years ago (Mya) (Douglas
et al., 2010; Reeder et al., 2015; Zheng and Wiens, 2016): Paleo-
anguimorpha comprising the families Shinisauridae (Chinese crocodile
lizard), Lanthanotidae (the Bornean earless monitor), and Varanidae
(monitor lizards), and Neoanguimorpha (families Helodermatidae (Gila
monsters and Mexican beaded lizards), Anguidae (alligator lizards, glass
lizards, American legless lizards), and Xenosauridae (knob-scaled liz-
ards) (Vidal and Hedges, 2009; Hedges and Vidal, 2009; Wiens et al.,
2012; Pyron et al., 2013; but consult Cerňanský et al. (2014) regarding

lack of morphological support for the topology of the proposed Neo-
anguimorpha clade).

Anguimorph lizards, along with iguanians and snakes, constitute the
proposed monophyletic Toxicofera clade (Greek for "those who bear
toxins") of all venomous reptiles (Vidal and Hedges, 2005; Fry et al.,
2006; Wiens et al., 2012; Fry et al., 2012). The advocates for this hy-
pothesis estimated that the last common ancestor of all toxicoferan
reptiles lived about 170 million years ago (Mya) in the mid Jurassic
period of the Mesozoic Era (Fry et al., 2006; Vidal and Hedges, 2009).
The Toxicofera clade encompasses about 4600 extant species of Squa-
mata within the suborders Serpentes, Anguimorpha, and Iguania,
including all known venomous reptiles and an undefined number of
related non-venomous species. However, both the definition of
"venomous" and the assertions that "all toxicoferan reptiles descended
from a common venomous ancestor” and that there was a “single com-
mon origin of venom at the base of the clade” (Fry et al., 2012), have
been subjected to much criticism (Weinstein et al., 2012; Kardong, 2012;
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Jackson et al., 2013a, 2013b; Hargreaves et al., 2014). Also, conflicting
topologies have been inferred for the placement of iguanians (iguanas,
anoles, chameleons, dragons, and relatives) in the squamate reptile
phylogeny (Losos et al., 2012): at the base of the tree based on
morphological data (Gauthier et al., 2012), and in the Toxicofera clade,
with snakes and anguimorphs, based onmolecular datasets (Wiens et al.,
2012). The discrepacy was resolved through integration of molecular,
morphological, and paleontological data, with the retention of Iguania
and the unexpected placements for two major fossil lineages (Mosa-
sauria and Polyglyphanodontia) within Toxicofera (Reeder et al., 2015).

The occurrence of toxins in anguimorph lizards has been demon-
strated experimentally or inferred from reports of the toxic effects of the
oral secretions of a few taxa within the monogeneric families Varanidae
(Hardwicke and Gray, 1827) and Helodermatidae (Gray, 1837; Dobson
et al., 2024 and references therein). Throughout this manuscript we use
the term "toxin" for proteins that exert toxic activities, regardless of
whether those activities are carried out in an ecological context or not.
Within genus Varanus, species from which proteins with characterised
toxic activities have been documented include the iconic Komodo
dragon, V. komodoensis, (Fry et al., 2009) and the monitor lizards
V. griseus, V. bengalensis, V. kordensis, V. albigularis, V. varius, and
V. salvadorii (Koludarov et al., 2017). Venomous species within the
North American genus Heloderma include the Gila monsters (H. suspectus
ssp) and theMexican beaded lizards (H. horridus ssp.) (Mebs, 1968; Mebs
1969a; Mebs 1969b; Hendon and Tu, 1981; Nikai et al., 1992; Utaisin-
charoen et al., 1993; Huang and Chiang, 1994; Tu, 2000; Fry et al.,
2010a; Reiserer et al., 2013). In a recent study (Dobson et al., 2024)
demonstrated anticoagulant toxicity due to destructive cleavage of
fibrinogen and procoagulant bioactivity on human and bird plasma for
Varanus and Heloderma venoms, respectively. This study also examined
the effects upon the cardiovascular system, including the liberation of
kinins from kininogen, which contributes to hypotension induction.
Helodermatid bites can produce serious symptoms such as angioedema,
hypotension, cardiac ischemia, and bronchoconstriction (Amri and
Chippaux, 2021), and similar effect of angioedema and hypotension
have been recorded in bites from V. griseus and V. komodoensis (Ducey
et al., 2016; Zima, 2019). Proteomic analyses of the mandibular glands
of the Borneo earless monitor, Lanthanotus borneesis, confirmed studies
of Koludarov et al. (2017) and Fry et al. (2006, 2009, 2010a, b) showing
that kallikrein enzymes represent major components in oral gland se-
cretions of anguimorphan lizards. More recently, Dobson et al. (2024)
provided the first evidence for kinin-generating activity in L. borneensis
oral secretion. Conversely, proteomic analysis of mandibular extract of
the Chinese crocodile lizard, Shinisaurus crocodilurus (Calvete et al.,
2023), provided no evidence of venom-derived peptides or proteins,
strongly supporting the non-venomous character of this anguid lizard.

The Borneo earless monitor and the Chinese crocodile lizard are the
single species of their respective subfamilies (Lanthanotidae and Shini-
sauridae) and, together with Varanidae, represent the sister clade of the
Neoanguimorpha clade (Douglas et al., 2010; Wiens et al., 2012; Pyron
et al., 2013; Zheng and Wiens, 2016). Transcriptome analysis of the
mandibular gland of the Mexican alligator lizard, Abronia graminea, has
revealed transcripts encoding putative bioactive peptides and proteins
similar to those found in the oral gland secretion of the true venomous
lizards Heloderma spp., including helokinestatin, natriuretic, celestin
and cholecystokinin peptides inducing hypotension, the neurotoxic
helofensin, lectins, nerve growth and vascular endothelial growth fac-
tors, as well as the enzymes kallikrein, group III phospholipase A2 and
hyaluronidase (Koludarov et al., 2012).

Alligator lizards of genus Abronia belong to the family Anguidae
within the neoanguimorpha clade. With 87 extant species of lizards
native to the Northern Hemisphere, the family Anguidae represents a
group of three subfamilies found across the Northern Hemisphere,
Anguinae (20 species of glass lizards), Anniellinae (5 species of Amer-
ican legless lizards), and Gerrhonotinae (62 species of alligator lizards),
native to North and Central America (Uetz et al., 2017). The large fossil

record for the Anguidae suggests that this clade probably evolved in
North America during the Cretaceous before dispersing to Europe in the
Paleogene, roughly 50 million years ago (Wiens and Slingluff, 2001).
The 39 species of alligator lizards of genus Abronia listed in the Reptile
Database (http://www.reptile-database.org; Uetz et al., 2017) are
native to Mexico and Central America, across Guatemala, northern El
Salvador, Honduras, Nicaragua, Costa Rica, and into northwestern
Panama (Clause et al., 2016; Gutiérrez-Rodríguez et al., 2021; Gar-
cía-Vázquez et al., 2022). They are diurnal and usually live among
bromeliads and other epiphytic plants high in the trees in upper to
mid-elevation woodlands, particularly evergreen cloud forests and
seasonally dry pine and pine-oak forests, where they are highly endan-
gered due to habitat destruction, i.e. by deforestation and wildfire
(Köhler, 2003). The first published wild dietary data for any arboreal
species of Abronia, an analysis of faecal material from two individuals of
A. zongolica, indicated that this species feeds on insects (Orthoptera,
Coleoptera, Lepidoptera, and Hemiptera) along with other unidentified
small invertebrates. (García-Vázquez et al., 2022).

In the present study, we report proteomic analyses of the

Fig. 1. Panel A) The red-lipped arboreal alligator lizard Abronia lythrochila.
(Photo: Gunther Köhler); Panel B) The Mexican alligator lizard Abronia grami-
nea (Photo: Anja Röselmaier). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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submandibular gland extracts recovered from frozen specimens of a
Mexican alligator lizard, Abronia graminea (Fig. 1A), endemic to the
Sierra Madre of the Oaxaca highlands, and from two red-lipped arboreal
alligator lizards, Abronia lythrochila (Fig. 1B), endemic to the state of
Chiapas in Mexico, to assess their putative toxin-producing activity.

2. Material and methods

2.1. Mandibular glands

The right and left mandibular glands were excised from a captive
bred specimen of Abronia graminea (20 cm total body length) and two
specimens of A. lythrochila (21 and 28 cm total body length), which had
been kept frozen at - 20 ◦C for several months after their natural death.
The glands were placed in separate 5 mL Eppendorf ProteinLoBind tubes
and homogenized in physiological saline at 4 ◦C by ultrasonication.
After centrifugation at 3.000 rpm at 4 ◦C for 15 min, the supernatants
were immediately lyophilized and submitted to proteomic analysis.

2.2. Scanning electron microscopy (SEM)

The lower jaw of A. lythrochila was mounted on an aluminium
holder, sputtered with gold, and analysed with a Hitachi S-4500 scan-
ning electron microscope at an acceleration voltage of 5 kV (cold-field
emission electron source).

2.3. Proteomic analyses

The mandibular gland extracts from both Abronia species were
analysed using two proteomic strategies: a ‘shotgun’ MS/MS approach
(Lomonte and Fernández, 2022) at the Proteomics Unit of Instituto
Clodomiro Picado, and an RP-HPLC/SDS-PAGE decomplexation
bottom-up LC-MS/MS workflow (Calvete, 2014) at the proteomics fa-
cility of Instituto de Biomedicina de Valencia. Protein concentration was
quantifed spectrophotometrically using a NanoDrop™ One instrument
(Thermo Scientific) and selecting a standard extinction coefficient of 1
absorbance unit at 280 nm for a 1 mg/mL protein solution measured in a
1 cm-.pathlength quarz cuvette.

For the shotgun analysis, 15 μg of total proteins extracted from the
pooled left and right gland extract were diluted in 25 mM ammonium
bicarbonate and subjected to reduction with 10 mM dithiothreitol (30
min at 56 ◦C), alkylation with 50 mM iodoacetamide (20 min in the
dark), and digestion with sequencing grade trypsin (0.25 μg/sample,
37 ◦C, overnight). After stopping the reaction with 0.4 μL of formic acid,
the tryptic peptide digests were centrifuged and separated by RP-HPLC
on a nano-Easy 1200 chromatograph (Thermo) in-line with a Q-Exactive
Plus®mass spectrometer (Thermo). Ten μL samples (~0.7 μg of peptide
mixture) were loaded onto a C18 trap column (75 μm × 2 cm, 3 μm
particle; Thermo), washed with 0.1% formic acid (solution A), and
separated at 200 nL/min on a C18 Easyspray PepMap® column (75 μm×

15 cm, 3 μm particle; Thermo). A gradient toward solution B (80%
acetonitrile, 0.1% formic acid) was developed for a total of 45 min
(1–5% B in 1 min, 5–26% B in 30 min, 26–79% B in 6 min, 79–99% B in
2 min, and 99% B for 6 min). MS spectra were acquired in positive mode
at 1.9 kV, with a capillary temperature of 200 ◦C, using 1 μscan in the
range 400–1600m/z, maximum injection time of 50msec, AGC target of
1 × 106, and resolution of 70,000. The top 10 ions with 2–5 positive
charges were fragmented with AGC target of 3 × 106, minimum AGC 2
× 103, maximum injection time 110 msec, dynamic exclusion time 5 s,
and resolution 17,500. MS/MS spectra were processed against protein
sequences contained in the UniProt database (Release, 2023_5) for
Lepidosauria (625556 entries) using Peaks X® (Bioinformatics Solu-
tions). Parent and fragment mass error tolerances were set at 15.0 ppm
and 0.5 Da, respectively. Cysteine carbamidomethylation was set as
fixed modification, while methionine oxidation and deamidation of
asparagine or glutamine were set as variable modifications. A maximum

of 2 missed cleavages by trypsin in semispecific mode were allowed.
Filtration parameters for match acceptance were set to FDR<0.1%,
detection of ≥1 unique peptide, and − 10logP protein score ≥30.

For the bottom-up strategy, the proteins extracted from the left and
right mandibular glands of Abronia graminea and A. lythrochila were
separated by SDS-PAGE in 10% polyacrylamide gels run under reducing
conditions. Protein bands were excised from Coomassie Brilliant Blue-
stained gels and subjected to automated in-gel reduction and alkyl-
ation (as described above for the ’shotgun’ MS/MS approach) on a Ge-
nomics Solution ProGest™ Protein Digestion Workstation. Tryptic
digests were submitted to MS/MS analysis on a nano-Acquity Ultra-
Performance LC® (UPLC®) equipped with a BEH130 C18 (100 μm× 100
mm, 1.7 μmparticle size) column in-line with aWaters SYNAPT G2 High
Definition mass spectrometer. Doubly and triply charged ions were
selected for CID-MS/MS. Fragmentation spectra were submitted to
MASCOT Server (version 2.6) at http://www.matrixscience.com and
matched against the [bony vertebrates] taxonomy restricted dataset of
the NCBI non-redundant database (release 258 of October 15, 2023).
Search parameters were: enzyme: trypsin (two-missed cleavage
allowed); MS/MS mass tolerance for monoisotopic ions: ±0.6 Da; car-
bamidomethyl cysteine and oxidation of methionine were selected as
fixed and variable modifications, respectively. Assignments with sig-
nificance protein score threshold of p < 0.05 (Mascot Score >43) were
taken into consideration, and all the associated peptide ions hits were
manually validated.

3. Results and discussion

3.1. Scanning electron microscopy of Abronia lythrochila teeth

Scanning electron micrographic analysis of the mandibular pleuro-
dont teeth of the lower jaw of the red-lipped arboreal alligator lizard, A.
lythrochila (Fig. 2) showed a conical, soft rounded and posteriorly curved
apices morphology without any sign of groove, external opening or
striations. This morphology bears notable resemblance with that
described in the lower jaw of another anguid species, the legless lizard
Pseudopus apodus, (Figs.5B and 11E in Klembara et al., 2014), but
strongly departs from the grooved lower jaw teeth of Heloderma species
(Shufeldt, 1891). Teeth with deep root-to-tip grooves have been found in
the fossil record of both branches of the Anguimorpha clade, in Estesia
mongoliensis (Monstersauria: Paleoanguimorpha) (Yi and Norell, 2013)
and in Varanus priscus (Megalania: Neoanguimorpha) (Fry et al., 2009).

The fossil record indicates an Asian origin for Varanidae and a North
American origin for Helodermatidae originated from an Asian
monstersaur-like form (Cabezuelo Hernández et al., 2022, and refer-
ences cited). In extant anguimorph taxa the teeth with deep root-to-tip
groove morphology have been conserved only in genus Heloderma.
Gila monsters and beaded lizards largely prey on eggs, a diet known to
lead to reduction of venom apparatus in other reptiles (Heatwole, 1999;
Li et al., 2005). The reason for Heloderma retaining the capability to
produce and inject venom may lie in a functional specialization to use
venom for defence promoted by natural selection in response to their
relatively poor capability to escape attack by predators (Beck, 2005).
This does not apply to monitor lizards, which possess powerful jaws with
serrated teeth that allow them to inflict massive injuries aiding in killing
large or fast prey with minimal risk of injury for the predator. Endemic
to five small islands in Eastern Indonesia, the Komodo dragon (Varanus
komodoensis) is the world’s largest lizard, with adults body mass
reaching up to 90 kg and a length of 3m (Jessop et al., 2006). Anatomical
investigation of the V. komodoensis oral exocrine gland system revealed
separate ducts leading from each compartment of a compound
mandibular gland opening between successive serrated pleurodont teeth
(Fry et al., 2009). Such dentition may aid deploying their oral secretions
into the wound, through a scissoring action at the advancing junction
between upper and lower teeth and by lateral gripping and compression
in a slot (Abler, 1992). However, there are relatively few field
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observations of V. komodoensis predating in the wild. Komodo dragons
dispatch large ungulate prey (Timor deer, feral pigs, water buffalo) by
biting and tearing flesh. If a prey escapes, the dragon occasionally track
prey until it succumbs. Whilst persistent bleeding due to the bite
inflicted injury appears to be the primary mechanism of prey subjuga-
tion, the involvement of putative life-threatening sepsis induced by oral
bacteria (Auffenberg, 1981; Montgomery et al., 2002; Bull et al., 2010)
and/or the anticoagulant and hipotensive effect of venom (Fry et al.,

2009; Dobson et al., 2024) inoculated into the wound have been hy-
pothesized. However, the ecological and evolutionary bases of sepsis
and/or venom in Komodo prey acquisition remain experimentally un-
supported. Notably, extinct Varanus (Megalania) priscus differed from
extant Komodo Dragon by possessing labial and lingual grooves that run
from the base toward the tip of the tooth, an ancestral morphology
thought to represent evidence for venom use by one of the largest known
terrestrial lizards (Fry et al., 2009).

3.2. Proteomic analyses of Abronia graminea and A. lythrochila
mandibular gland extracts

Outcome of the bottom-up mass spectrometric assignments of the
proteins extracted from the mandibular glands of A. graminea (Suppl.
Table S1) and result of the label-free shotgun proteomic analysis of the
protein extracts of A. graminea (Suppl. Tables S2 and S3) and
A. lythrochila (Suppl. Tables S4 and S5) are summarized in Fig. 3. Both
alligator lizards expressed identical toxin types albeit at different rela-
tive abundances. Further, in addition of structural and house-keeping
proteins, the gland extract proteomes of A. graminea and A. lythrochila
contain also proteins (protein disulfide-isomerase, peptidyl-prolyl cis-
trans isomerase, peroxiredoxin-6, thioredoxin, glutaredoxin, and heat
shock 70 and 90, at relative abundances of 0.01–0.03% of the total
quantified maxillary gland extracts) thought to play a key role cata-
lyzing the oxidative folding of venom toxins such as natriuretic peptides,
PLA2 and CRISP, whose functional molecular scaffolds are stabilized by
a network of intramolecular disulfide linkages (Reeks et al., 2015). Both,
the transcriptome (Koludarov et al., 2012) and proteome analyses (this
work) confirm the presence of potentially toxic proteins expressed in the
mandibular glands of Abronia species.

The set of conserved proteins found in the mandibular glands of the
alligator lizards such as B-type natriuretic peptides, cysteine-rich
secretory proteins (CRISP), group III phospholipase A2 (PLA2), and
kallikrein-type serine proteinase, are present also in the gland tran-
scriptomes, and in gland extracts of Varanus and Heloderma species (Fry
et al., 2010a, 2010b; Koludarov et al., 2017). Group III PLA2s and
kallikrein-type serine proteinases are shared across all the lizard venoms
(Dobson et al., 2024). Kallikrein was identified as the only putative toxin
in the mandibular gland extract of the earless monitor lizard Lanthanotus
borneensis (Mebs et al., 2021), a sister taxon to Varanidae within the
Paleoanguimorpha branch (Fig. 4). Kallikrein appears also to be the
predominant enzyme in Varanus mandibular glands (Koludarov et al.,
2017), where its dominant in vitro documented toxic actions are the
cleavage of the alpha- and beta-chains of fibrinogen, thus disrupting the
final stage of clot formation, and the liberation of kinins from kininogen
(Datta and Tu, 1997; Dobson et al., 2019; Dobson et al., 2024). Inducing
blood loss and hypotension may enhance a predator’s chances of
weakening and subjugating a prey. On the other hand, kallikrein is also
known to cause intense pain in helodermatid envenomings to humans

Fig. 2. Scanning electron microscopy of pleurodont teeth of A. lythrochila (Bar -
0.6 mm).

Fig. 3. Relative abundances of toxin families gathered by label-free ion-intensity shotgun MS analysis from the protein extracts of the submandibulary glands of
Abronia graminea (panel A) and Abronia lythrochila (panel B).

J.J. Calvete et al.
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(Russell and Bogert, 1981; Amri and Chippaux, 2021). In an ecological
context, inflicting incapacitating pain in the predator may enable a
quick retreat for the perpetrator (Niermann et al., 2020). In addition, the
vasodilatory action of B-type natriuretic peptides along with kinin
release from kininogen by kallikrein enzymes underlie the hypotensive
effect of helodermatid venoms (Mebs, 1968; Alagón et al., 1986).
Although the ecological role of helodermatid kallikrein cannot be
generalized to other anguid lizards, it is tempting to speculate that the
extreme specialization of the earless monitor lizard towards a
kallikrein-only toxic mandibular secretion might represent an adapta-
tion for a defensive role.

Together with kallikrein, group III PLA2 and CRISP proteins have
been identified as recruited for use as toxins in lizard venoms (Fry et al.,
2010b). Platelet aggregation-blocking group III PLA2 appears to be
responsible for the anticoagulant toxicity documented for varanid oral
secretions (Dobson et al., 2021, 2024). CRISP molecules first appeared
in reptile venoms at the base of the Toxicofera clade (Fry et al., 2006)
and are widely distributed in venoms of extant snakes of family Colu-
bridae, and in helodermatid and varanid species of lizards. CRISP mol-
ecules have been associated with the inhibition of a number of
voltage-gated ion channels (Tadokoro et al., 2020; Dobson et al.,
2021). The toxinological profile of these molecules may suggest ion
channel neurotoxicity of helodermatid and varanid lizard venoms.
However, the biological activities and ecological role of CRISP toxins in
the alligator lizards, Abronia graminea and Abronia lythrochila, or in any
other anguimorph taxa, remain absolutely obscure.

4. Concluding remarks

Our understanding of the adaptive relationships between dentition
and the evolutionary ecology of anguimorph lizards is hindered by both,
fundamental gaps in the fossil record (Evans, 2003) and the scarce
multidisciplinary and multiomics studies of extant organisms. Our
finding that species within the Anguidae clade of the neoanguimorpha

branch express in their mandibular glands proteins homologous to
toxins of venomous toxicoferan taxa, varanid and helodermatid lizards
and snakes, provides further support for the presence of a handful of
conserved toxin families in the oral secretions across the 100+ million
years of Anguimorpha cladogenesis (Fig. 4). In vitro shared hypotension
induction through the liberation of kinins from kininogen by Hel-
oderma, Lanthanotus and Varanus oral secretions, might suggest that
this activity was present in the last common ancestor of anguimorph
lizards. Whether these ancestrally recruited proteins have evolved tro-
phic traits retaining their toxic activity, or this function has regressed
due to lack of selective ecological pressure to maintain it, awaits omics
analyses of unexplored anguimorph lineages (i.e. Xenosauridae,
Anniellidae, Anguinae) and functional studies on natural prey of oral
secretions across Anguimorpha cladogenesis.
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