Supplemental Material for "First Measurement of the Decay Asymmetry in the Pure W-Boson-Exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$ "

W-Boson-Exchange Decay A⁺₂ → 2⁰K⁺¹
 A. Allishn,⁴ N. N. Achaso,⁵ P. Atlanson,¹⁴ X. C. All⁹ R. Allisent,¹⁵ A. Ansona,¹⁵ M. B. An,¹⁶ Q. An,¹⁰⁶ Y. P. Ha⁴⁶
 Dalian,⁵ P. Elisoni,¹⁵ Y. Dan,⁴⁵ A. Datasakawi,¹⁶ K. Degeneura,¹⁶ N. Degene¹⁶ M. L. Dak,¹⁷ H. C. Anargi,¹⁶ R. C. K. ¹⁶ C. Hallow,¹⁷ K. R. ¹⁶ K. D. ¹⁶ Y. J. C. ¹⁶ Y. B. ¹⁶ Y. D. ¹⁶ Y. J. Chan,¹⁶ Y. J. D. ¹⁶ Y. D. ¹⁶ Y. D. ¹⁶ Y. D. ¹⁶ Y. J. Chan,¹⁶ Y. J. D. ¹⁶ Y. J. ¹

- Z. W. Yang, ^{38,j,k} Z. P. Yao, ⁴⁹ M. Ye, ^{1,57} M. H. Ye, ⁹ J. H. Yin, ¹ Z. Y. You, ⁵⁸ B. X. Yu, ^{1,57,62} C. X. Yu, ⁴³ G. Yu, ^{1,62} J. S. Yu, ^{25,h} T. Yu, ⁷¹ X. D. Yu, ^{46,g} C. Z. Yuan, ^{1,62} L. Yuan, ² S. C. Yuan, ¹ X. Q. Yuan, ¹ Y. Yuan, ^{1,62} Z. Y. Yuan, ⁵⁸
 C. X. Yue, ³⁹ A. A. Zafar, ⁷² F. R. Zeng, ⁴⁹ X. Zeng, ^{13,f} Y. Zeng, ^{25,h} Y. J. Zeng, ^{1,62} X. Y. Zhai, ³⁴ Y. C. Zhai, ⁴⁹ Y. H. Zhan, ⁵⁸
 A. Q. Zhang, ^{1,62} B. L. Zhang, ^{1,62} B. X. Zhang, ¹ D. H. Zhang, ⁴³ G. Y. Zhang, ¹⁹ H. Zhang, ⁷⁰ H. H. Zhang, ⁵⁸ H. H. Zhang, ³⁴ H. Q. Zhang, ^{1,57,62} H. Y. Zhang, ^{1,57} J. Zhang, ⁸⁰ J. J. Zhang, ⁵¹ J. L. Zhang, ²⁰ J. Q. Zhang, ⁴¹ J. W. Zhang, ^{1,57,62} J. X. Zhang, ^{1,57,62} H. Y. Zhang, ^{1,57} J. Zhang, ⁸⁰ J. J. Zhang, ⁶² Jiawei Zhang, ^{1,62} L. M. Zhang, ⁶⁰ L. Q. Zhang, ^{1,57,62} J. X. Zhang, ⁴² P. Zhang, ^{1,62} Q. Y. Zhang, ^{1,62} Jianyu Zhang, ⁶² Jiawei Zhang, ^{2,5,h} X. D. Zhang, ⁴⁵ X. M. Zhang, ¹ X. Y. Zhang, ⁴⁰ Xuyan Zhang, ⁵⁴ Y. Zhang, ⁷¹ Y. Zhang, ⁶⁸ Y. T. Zhang, ⁸⁰ Y. H. Zhang, ^{1,57} Yan Zhang, ^{70,57} Yao Zhang, ¹ X. Y. Zhang, ⁴³ Z. Y. Zhang, ⁷¹ Y. Zhang, ⁶⁸ Y. T. Zhao, ³⁹ J. Y. Zhao, ^{1,62} J. Z. Zhao, ^{1,57} Lei Zhao, ^{70,57} Ling Zhao, ¹ M. G. Zhao, ⁴³ S. J. Zhao, ⁸⁰ Y. B. Zhao, ^{1,57} Y. X. Zhao, ^{31,62} Z. G. Zhao, ^{70,57} A. Zhemchugov, ^{36,a} B. Zheng, ⁷¹ J. P. Zheng, ^{1,57,62} L. J. L. Zhang, ⁴³ Y. Z. Zhou, ⁴³ Y. Z. Zhou, ⁷⁵ X. Y. Zhou, ⁷⁵ X. K. Zhou, ⁷⁵ X. K. Zhou, ⁷⁵ X. Y. Zhou, ^{70,57} X. Y. Zhou, ³⁹ Y. Z. Zhou, ^{13,f} J. Zhu, ⁴³ K. Zhu, ⁴³ K. Zhu, ¹ K. Ju, ^{1,57,62} L. Zhu, ³⁴ L. X. Zhu, ⁶² S. H. Zhou, ^{70,57} X. S. Q. Zhu, ⁴² T. J. Zhu, ^{13,f} Y. C. Zhu, ^{70,57} Z. A. Zhu, ^{1,62} J. H. Zou, ¹ J. Zu, ^{70,57},

(BESIII Collaboration)

¹ Institute of High Energy Physics, Beijing 100049, People's Republic of China

² Beihang University, Beijing 100191, People's Republic of China

³ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China

⁴ Bochum Ruhr-University, D-44780 Bochum, Germany

⁵ Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia

⁶ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Central China Normal University, Wuhan 430079, People's Republic of China

Central South University, Changsha 410083, People's Republic of China

⁹ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China

¹⁰ China University of Geosciences, Wuhan 430074, People's Republic of China

¹¹ Chung-Ang University, Seoul, 06974, Republic of Korea

¹² COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan

Fudan University, Shanghai 200433, People's Republic of China

¹⁴ GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

¹⁵ Guangxi Normal University, Guilin 541004, People's Republic of China

¹⁶ Hangzhou Normal University, Hangzhou 310036, People's Republic of China

⁷ Hebei University, Baoding 071002, People's Republic of China

¹⁸ Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany

¹⁹ Henan Normal University, Xinxiang 453007, People's Republic of China

²⁰ Henan University, Kaifeng 475004, People's Republic of China

²¹ Henan University of Science and Technology, Luoyang 471003, People's Republic of China

²² Henan University of Technology, Zhengzhou 450001, People's Republic of China

²³ Huangshan College, Huangshan 245000, People's Republic of China

²⁴ Hunan Normal University, Changsha 410081, People's Republic of China

²⁵ Hunan University, Changsha 410082, People's Republic of China

²⁶ Indian Institute of Technology Madras, Chennai 600036, India

²⁷ Indiana University, Bloomington, Indiana 47405, USA

^{28a} INFN Laboratori Nazionali di Frascati, INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy

^{28b} INFN Sezione di Perugia, I-06100, Perugia, Italy

^{28c} University of Perugia, I-06100, Perugia, Italy

^{29a} INFN Sezione di Ferrara, INFN Sezione di Ferrara, I-44122, Ferrara, Italy

^{29b} University of Ferrara, I-44122, Ferrara, Italy

³⁰ Inner Mongolia University, Hohhot 010021, People's Republic of China

³¹ Institute of Modern Physics, Lanzhou 730000, People's Republic of China

³² Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia

³³ Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
 ³⁴ Jilin University, Changchun 130012, People's Republic of China

Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

³⁶ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

³⁷ Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

³⁸ Lanzhou University, Lanzhou 730000, People's Republic of China

³⁹ Liaoning Normal University, Dalian 116029, People's Republic of China

⁴⁰ Liaoning University, Shenyang 110036, People's Republic of China

⁴¹ Nanjing Normal University, Nanjing 210023, People's Republic of China

⁴² Nanjing University, Nanjing 210093, People's Republic of China

⁴³ Nankai University, Tianjin 300071, People's Republic of China

⁴⁴ National Centre for Nuclear Research, Warsaw 02-093, Poland

⁴⁵ North China Electric Power University, Beijing 102206, People's Republic of China

⁴⁶ Peking University, Beijing 100871, People's Republic of China

⁴⁷ Qufu Normal University, Qufu 273165, People's Republic of China

⁴⁸ Shandong Normal University, Jinan 250014, People's Republic of China

⁴⁹ Shandong University, Jinan 250100, People's Republic of China

⁵⁰ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

Shanxi Normal University, Linfen 041004, People's Republic of China

⁵² Shanxi University, Taiyuan 030006, People's Republic of China

⁵³ Sichuan University, Chengdu 610064, People's Republic of China

⁵⁴ Soochow University, Suzhou 215006, People's Republic of China

⁵⁵ South China Normal University, Guangzhou 510006, People's Republic of China

⁵⁶ Southeast University, Nanjing 211100, People's Republic of China

⁵⁷ State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China

Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

⁵⁹ Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand

⁶⁰ Tsinghua University, Beijing 100084, People's Republic of China

^{61a} Turkish Accelerator Center Particle Factory Group, Istinye University, 34010, Istanbul, Turkey

^{61b} Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey

⁶² University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

University of Groningen, NL-9747 AA Groningen, The Netherlands

⁶⁴ University of Hawaii, Honolulu, Hawaii 96822, USA

⁶⁵ University of Jinan, Jinan 250022, People's Republic of China

⁶⁶ University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany

⁶⁸ University of Oxford, Keble Road, Oxford OX13RH, United Kingdom

⁶⁹ University of Science and Technology Liaoning, Anshan 114051, People's Republic of China

⁷⁰ University of Science and Technology of China, Hefei 230026, People's Republic of China
 ⁷¹ University of South China, Hengyang 421001, People's Republic of China
 ⁷² University of the Punjab, Lahore-54590, Pakistan
 ^{73a} University of Turin and INFN, University of Turin, I-10125, Turin, Italy

^{73b} University of Eastern Piedmont, I-15121, Alessandria, Italy ^{73c} INFN, I-10125, Turin, Italy

⁷⁴ Uppsala University, Box 516, SE-75120 Uppsala, Sweden

⁷⁵ Wuhan University, Wuhan 430072, People's Republic of China

⁷⁶ Xinyang Normal University, Xinyang 464000, People's Republic of China

Yantai University, Yantai 264005, People's Republic of China

⁷⁸ Yunnan University, Kunming 650500, People's Republic of China

⁷⁹ Zhejiang University, Hangzhou 310027, People's Republic of China

⁸⁰ Zhengzhou University, Zhengzhou 450001, People's Republic of China

^a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

^b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia

^c Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

^d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany

^e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory

for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China

^f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People's Republic of China

^g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of

China

^h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China

ⁱ Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal

University, Guangzhou 510006, China

^j Also at MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People's Republic of China ^k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People's Republic of China

¹ Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan

(Dated: January 4, 2024)

I. DECAY ASYMMETRY PARAMETERS

For the process $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-, \Lambda_c^+ \to BP$ and $\bar{\Lambda}_c^-$ decaying to anything, where B and P denote a $J^P = \frac{1}{2}^+$ baryon and a $J^P = 0^-$ pseudoscalar meson, respectively, the amplitude can be constructed using the helicity basis. For the

weak non-leptonic decay $\Lambda_c^+ \to BP$, the Lee-Yang variables [1] α_{BP} , β_{BP} and γ_{BP} are defined with respect to the s-wave and p-wave amplitudes, such as

$$\alpha_{BP} = \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2}, \quad \beta_{BP} = \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2}, \quad \gamma_{BP} = \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2}, \tag{1}$$

where s and p are the parity-odd and parity-even decay amplitudes. In a non-relativistic picture, they correspond to the L = 0 (S-wave) and L = 1 (P-wave) orbital angular momenta of the baryon-meson system, respectively.

The parameters α_{BP} , β_{BP} , and γ_{BP} satisfy

$$\alpha_{BP}^2 + \beta_{BP}^2 + \gamma_{BP}^2 = 1.$$
 (2)

We work with helicity amplitudes. For $\Lambda_c^+ \to B(\frac{1}{2}^+) P(0^-)$ decays, we have two helicity amplitudes, $\mathcal{H}_{\frac{1}{2}}$ and $\mathcal{H}_{-\frac{1}{2}}$. Using the relations $s = \frac{1}{\sqrt{2}}(\mathcal{H}_{\frac{1}{2}} + \mathcal{H}_{-\frac{1}{2}})$, $p = \frac{1}{\sqrt{2}}(\mathcal{H}_{\frac{1}{2}} - \mathcal{H}_{-\frac{1}{2}})$, the asymmetry parameters defined with helicity amplitudes are

$$\alpha_{BP} = |\mathcal{H}_{\frac{1}{2}}|^2 - |\mathcal{H}_{-\frac{1}{2}}|^2,$$

$$\beta_{BP} = \sqrt{1 - \alpha_{BP}^2} \sin\Delta_{BP},$$

$$\gamma_{BP} = \sqrt{1 - \alpha_{BP}^2} \cos\Delta_{BP},$$
(3)

where we take the normalization $|\mathcal{H}_{\frac{1}{2}}|^2 + |\mathcal{H}_{-\frac{1}{2}}|^2 = 1$, and Δ_{BP} is the phase angle difference between two helicity amplitudes $\mathcal{H}_{\frac{1}{2}}$ and $\mathcal{H}_{-\frac{1}{2}}$.

If the Λ_c^+ and $\bar{\Lambda}_c^-$ decays respect CP symmetry, we have relations between the Λ_c^+ and $\bar{\Lambda}_c^-$ asymmetry parameters

$$\alpha_{\bar{B}\bar{P}} = -\alpha_{BP}, \ \beta_{\bar{B}\bar{P}} = -\beta_{BP}, \ \gamma_{\bar{B}\bar{P}} = \gamma_{BP}.$$

$$\tag{4}$$

II. JOINT ANGULAR DISTRIBUTION FORMULA FOR THE DECAY $\Lambda_c^+ \to \Xi^0 K^+$

In the helicity frame of the $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ system, θ_0 is the polar angle of the Λ_c^+ with respect to the e^+ beam axis in the e^+e^- CM system. For the $\Lambda_c^+ \to \Xi^0 K^+$ decay, ϕ_1 is the angle between the $e^+\Lambda_c^+$ and $\Xi^0 K^+$ planes and θ_1 is the polar angle of the Ξ^0 with respect to the direction of $\bar{\Lambda}_c^-$ evaluated in Λ_c^+ 's rest frame. For the helicity system describing $\Xi^0 \to \Lambda \pi^0$ decay, ϕ_2 is the angle between the $\Xi^0 K^+$ and $\Lambda \pi^0$ planes and θ_2 is the polar angle of the Λ with respect to the direction of K^+ evaluated in Ξ^0 's rest frame. For the helicity angles describing the $\Lambda \to p\pi^-$ decay, ϕ_3 is the angle between the $\Lambda \pi^0$ and $p\pi^-$ planes and θ_3 is the polar angle of the proton with respect to the direction of π^0 evaluated in Λ 's rest frame. In the $\Lambda_c^+ \to \Xi^0 K^+$ process, as shown in Table I, λ_1 , λ_2 , λ_3 , λ_4 and λ_5 indicate the helicity of Λ_c^+ , $\bar{\Lambda}_c^-$, Ξ^0 , Λ and p. $\mathcal{A}_{\lambda_1,\lambda_2}$, \mathcal{B}_{λ_3} , \mathcal{C}_{λ_4} and \mathcal{D}_{λ_5} are the helicity amplitudes.

TABLE I. Definition of decays, helicity angles and amplitudes, where λ_i indicates the helicity values for the corresponding hadron.

Level	Decay	Helicity angle	Helicity amplitude
0	$e^+e^- \to \Lambda_c^+(\lambda_1) \bar{\Lambda}_c^-(\lambda_2)$	$(heta_0)$	$\mathcal{A}_{\lambda_1,\lambda_2}$
1	$\Lambda_c^+ \to \Xi^0(\lambda_3) K^+$	$(heta_1,\phi_1)$	\mathcal{B}_{λ_3}
2	$\Xi^0 o \Lambda(\lambda_4) \pi^0$	$(heta_2,\phi_2)$	\mathcal{C}_{λ_4}
3	$\Lambda \to p(\lambda_5) \pi^-$	$(heta_3,\phi_3)$	\mathcal{D}_{λ_5}

According to the total amplitude (M), the differential dacay rate $(d\Gamma)$ can be expressed as $d\Gamma \propto |M(\vec{\xi}_i; \vec{\eta})|^2$, where $\vec{\xi}_i$ denotes the kinematic angular observables $(\theta_{0,1,2,3} \text{ and } \phi_{1,2,3})$ and $\vec{\eta}$ denotes the free parameters $(\alpha_{\Xi^0 K^+} \text{ and } \phi_{1,2,3})$

 $\Delta_{\Xi^0 K^+}$). The joint angular distribution can be calculated as

$$\frac{d\Gamma}{d\cos\theta_{0} \ d\cos\theta_{1} \ d\cos\theta_{2} \ d\cos\theta_{3} \ d\phi_{1} \ d\phi_{2} \ d\phi_{3}}} \propto \sum_{\substack{\lambda_{1},\lambda_{1}',\lambda_{2},\lambda_{2}',\lambda_{3},\lambda_{4}',\lambda_{4}',\lambda_{5}}} \rho^{\lambda_{1}-\lambda_{2},\lambda_{1}'-\lambda_{2}}(\theta_{0}) D_{\lambda_{1},\lambda_{3}}^{\frac{1}{2}*}(\theta_{1},\phi_{1},0) D_{\lambda_{1}',\lambda_{3}'}^{\frac{1}{2}}(\theta_{1},\phi_{1},0) \mathcal{B}_{\lambda_{3}} \mathcal{B}_{\lambda_{3}'}^{*}}$$
(5)
$$D_{\lambda_{3},\lambda_{4}}^{\frac{1}{2}*}(\theta_{2},\phi_{2},0) D_{\lambda_{3}',\lambda_{4}'}^{\frac{1}{2}}(\theta_{2},\phi_{2},0) \mathcal{C}_{\lambda_{4}} \mathcal{C}_{\lambda_{4}'}^{*} D_{\lambda_{4},\lambda_{5}}^{\frac{1}{2}*}(\theta_{3},\phi_{3},0) D_{\lambda_{4}',\lambda_{5}}^{\frac{1}{2}}(\theta_{3},\phi_{3},0) |\mathcal{D}_{\lambda_{5}}|^{2},$$

where $\rho^{\lambda_1 - \lambda_2, \lambda_1' - \lambda_2}(\theta_0) = \sum_{\lambda_0 = \pm 1} d^1_{\lambda_0, \lambda_1 - \lambda_2}(\theta_0) d^1_{\lambda_0, \lambda_1' - \lambda_2}(\theta_0) A_{\lambda_1, \lambda_2} A^*_{\lambda_1', \lambda_2}$ corresponds to the Λ_c^+ spin density matrix, λ_0 is the helicity of virtual photon, and $D^J_{m,n}(\phi, \theta, \gamma) = e^{-im\phi} d^J_{m,n}(\theta) e^{-in\gamma}$ is Wigner-D function [2]. The helicity amplitudes $\mathcal{A}_{\lambda_1, \lambda_2}$ are related to the asymmetry parameters $\alpha_0 = \frac{\left|\mathcal{A}_{\frac{1}{2}, -\frac{1}{2}}\right|^2 - 2\left|\mathcal{A}_{\frac{1}{2}, \frac{1}{2}}\right|^2}{\left|\mathcal{A}_{\frac{1}{2}, -\frac{1}{2}}\right|^2 + 2\left|\mathcal{A}_{\frac{1}{2}, \frac{1}{2}}\right|^2}$, and helicity \mathcal{B}_{λ_3} is

related to the asymmetry parameter $\alpha_{\Xi^0 K^+} = \frac{\left|\mathcal{B}_{\frac{1}{2}}\right|^2 - \left|\mathcal{B}_{-\frac{1}{2}}\right|^2}{\left|\mathcal{B}_{\frac{1}{2}}\right|^2 + \left|\mathcal{B}_{-\frac{1}{2}}\right|^2}$, helicity \mathcal{C}_{λ_4} is related to the asymmetry parameter

 $\alpha_{\Lambda\pi^{0}} = \frac{\left|\mathcal{C}_{\frac{1}{2}}\right|^{2} - \left|\mathcal{C}_{-\frac{1}{2}}\right|^{2}}{\left|\mathcal{C}_{\frac{1}{2}}\right|^{2} + \left|\mathcal{C}_{-\frac{1}{2}}\right|^{2}} \text{ and helicity } \mathcal{D}_{\lambda_{5}} \text{ is related to the asymmetry parameter } \alpha_{p\pi^{-}} = \frac{\left|\mathcal{D}_{\frac{1}{2}}\right|^{2} - \left|\mathcal{D}_{-\frac{1}{2}}\right|^{2}}{\left|\mathcal{D}_{\frac{1}{2}}\right|^{2} + \left|\mathcal{D}_{-\frac{1}{2}}\right|^{2}}.$ Then the joint angular distribution becomes

$$\begin{aligned} \frac{a}{d\cos\theta_{0} d\cos\theta_{1} d\cos\theta_{2} d\cos\theta_{3} d\phi_{1} d\phi_{2} d\phi_{3}} \\ &\propto 1 + \alpha_{0} \cos^{2}\theta_{0} \\ &+ (1 + \alpha_{0} \cos^{2}\theta_{0}) \alpha_{\Xi^{0}K^{+}} \alpha_{\Lambda^{0}} \cos\theta_{2} \\ &+ (1 + \alpha_{0} \cos^{2}\theta_{0}) \alpha_{\Xi^{0}K^{+}} \alpha_{\mu^{-}} \cos\theta_{2} \cos\theta_{3} \\ &+ (1 + \alpha_{0} \cos^{2}\theta_{0}) \alpha_{\Xi^{0}K^{+}} \sqrt{1 - \alpha_{\Lambda^{\pi^{0}}}^{2}} \alpha_{\mu^{\pi^{-}}} \sin\theta_{2} \sin\theta_{3} \cos(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \alpha_{\Xi^{0}K^{+}} \sin\theta_{1} \sin\phi_{1} \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \alpha_{\Xi^{0}K^{+}} \sin\theta_{1} \sin\phi_{1} \cos\theta_{2} \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \alpha_{\Xi^{0}K^{+}} \alpha_{\Lambda^{\pi^{0}}} \alpha_{\mu^{\pi^{-}}} \sin\theta_{1} \sin\phi_{1} \cos\theta_{3} \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \alpha_{\Xi^{0}K^{+}} \alpha_{\Lambda^{\pi^{0}}} \alpha_{\mu^{\pi^{-}}} \sin\theta_{1} \sin\phi_{2} \sin\theta_{3} \cos(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \alpha_{\mu^{\pi^{-}}} \sin\theta_{1} \sin\phi_{1} \sin\theta_{2} \sin\theta_{3} \cos(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \alpha_{\Lambda^{\pi^{0}}} \cos\theta_{1} \sin\theta_{1} \sin\theta_{2} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \alpha_{\Lambda^{\pi^{0}}} \cos\theta_{1} \sin\theta_{2} \sin(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \alpha_{\mu^{\pi^{-}}} \cos\theta_{1} \sin\theta_{1} \sin\theta_{2} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \cos\theta_{3} \\ &- \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \alpha_{\mu^{\pi^{-}}} \cos\theta_{1} \sin\theta_{1} \sin\theta_{2} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \cos\theta_{3} \\ &+ \sqrt{1 - \alpha_{0}^{2}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \alpha_{\mu^{\pi^{-}}} \cos\theta_{1} \sin\theta_{1} \sin\theta_{2} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \sin\theta_{3} \sin(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\ &+ \sqrt{1 - \alpha_{0}^{2}}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \sqrt{1 - \alpha_{\Lambda^{\pi^{0}}}^{2}} \alpha_{\mu^{\pi^{-}}} \cos\theta_{1} \sin\theta_{1} \sin\theta_{2} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \sin\theta_{3} \sin(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\ &+ \sqrt{1 - \alpha_{0}^{2}}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \sqrt{1 - \alpha_{\Lambda^{\pi^{0}}}^{2}} \alpha_{\mu^{\pi^{-}}} \cos\theta_{1} \sin\phi_{1} \sin\phi_{2} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \sin\theta_{3} \sin(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\ &+ \sqrt{1 - \alpha_{0}^{2}}} \sin\Delta_{0} \sin\theta_{0} \cos\theta_{0} \sqrt{1 - \alpha_{\Xi^{0}K^{+}}} \sqrt{1 - \alpha_{\Lambda^{\pi^{0}}}^{2}} \alpha_{\mu^{\pi^{-}}} \cos\phi_{1} \cos(\Delta_{\Xi^{0}K^{+}} + \phi_{2}) \sin\theta_{3} \sin(\Delta_{\Lambda^{\pi^{0}}} + \phi_{3}) \\$$

where the α_0 is the angular distribution parameter of $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ and Δ_0 is the transverse polarization for Λ_c^+ . The decay asymmetry parameters $\alpha_{\Lambda\pi^0}$ and $\alpha_{p\pi^-}$ are taken from PDG [3]. The $\Delta_{\Xi^0K^+} = \delta_{\frac{1}{2}}^{\mathcal{B}} - \delta_{-\frac{1}{2}}^{\mathcal{B}}$ and $\Delta_{\Lambda\pi^0} = \delta_{\frac{1}{2}}^{\mathcal{C}} - \delta_{-\frac{1}{2}}^{\mathcal{C}}$ are the difference of the phase of the helicity amplitude B and C, respectively. For the charge conjugate mode, $\bar{\Lambda}_c^- \to \bar{\Xi}^0 K^-$, the formula of angular distribution is same.

III. SYSTEMATIC UNCERTAINTY

The systematic uncertainties arise mainly from the reconstruction of final states, ΔE requirement, $M_{\rm BC}$ signal selection, the background subtraction, the uncertainties from the quoted values of α_0 , Δ_0 , $\alpha_{\Lambda\pi^0}$, $\alpha_{\bar{\Lambda}\pi^0}$, $\Delta_{\Lambda\pi^0}$, $\Delta_{\bar{\Lambda}\pi^0}$, $\Delta_{\bar{\Lambda}\pi^0}$, $\alpha_{\bar{\mu}\pi^-}$, and $\alpha_{\bar{p}\pi^+}$, and the fit bias. Systematic uncertainties from various sources are combined in quadrature to calculate the total systematic uncertainties.

The reconstruction efficiency of charged kaon is studied with the control sample of $J/\psi \to K_S^0 K^{\pm} \pi^{\mp}$ events, that for π^0 with $\psi(3686) \to \pi^0 \pi^0 J/\psi$ and $e^+e^- \to \omega \pi^0$, and that for Λ with $J/\psi \to \bar{p}K^+\Lambda$ and $J/\psi \to \Lambda\bar{\Lambda}$ [4]. The signal MC samples are re-weighted based on the data-MC differences in various momentum ranges resulting in new MC integration and new fitting parameters. The uncertainties related to the ΔE and $M_{\rm BC}$ requirement are evaluated by smearing the signal MC sample with a Gaussian resolution function. The changes of the fit results based on new accepted signal MC events are taken as the systematic uncertainties. All effects mentioned above are negligible except for Λ reconstruction.

For the background subtraction, we consider both background size and the background modelling. The background size including combinational background and mis-reconstructed component is obtained from the fit to the $M_{\rm BC}$ spectrum. The relevant systematic uncertainties are examined by repeating the fits with a alternative background size obtained from the Gaussian sampling of the fitted parameters. The ensemble of fitted parameters obtained will be fit to a Gaussian and the sum of the fitted Gaussian resolution and the difference between the fitted Gaussian mean and the nominal result are assigned as the systematic uncertainty for background size. The uncertainty of the background modelling also considers both combinational background and the mis-reconstructed component. The mis-reconstructed model is examined by an alternative signal MC sample produced with the new input parameters $\alpha_{\Xi^0K^+}$ which are changed within $\pm 1\sigma$. The uncertainty due to the combinational background model is estimated by varying the relative weights between $\Lambda_c^+ \bar{\Lambda}_c^-$ pairs and other hadronic events based on the uncertainties of their cross section ratio.

The systematic uncertainty due to the input parameters is evaluated by varying these parameters within $\pm 1\sigma$ using a Gaussian sampling method. For each parameter, the obtained results are fit to a Gaussian function and the sum of the fitted Gaussian resolution and the difference between the fitted Gaussian mean and the nominal result is taken as the systematic uncertainty. The systematic uncertainties arising from fit bias are investigated via pull distribution checks. The mean values of the pull distributions are used to correct the nominal results. The differences between the uncorrected and corrected results are assigned as systematic uncertainties.

All systematic uncertainties discussed above are summarized in Table II.

Source	$\alpha_{\Xi^0K^+}$	$\Delta_{\Xi^0 K^+}$ [rad]
Tracking and PID efficiencies	negligible	negligible
π^0 reconstruction	negligible	negligible
Λ reconstruction	0.01	0.01
ΔE and $M_{\rm BC}$ signal regions	negligible	negligible
Background subtraction	0.03	0.08
Input parameters	0.01	0.14
Fit bias	negligible	0.05
Total	0.03	0.17

TABLE II. Systematic uncertainties in $\alpha_{\Xi^0 K^+}$ and $\Delta_{\Xi^0 K^+}$.

IV. RELATION WITH WEAK DECAY AMPLITUDE

In the Standard Model, the amplitude for the two-body weak decay $\Lambda_c^+ \to \Xi^0 K^+$ can be parameterized as $\mathcal{M} = i\bar{u}_{\Xi^0}(A - B\gamma_5)u_{\Lambda_c^+}$, based on the S-wave and P-wave amplitudes, s = A and $p = \kappa B$ [3]. Combination the Eq. (1) and the relationship between $\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$ and the amplitude, the partial decay width $(\Gamma_{\Xi^0 K^+})$ and decay asymmetry

can be obtained as follows:

$$\Gamma_{\Xi^{0}K^{+}} = \frac{\mathcal{B}(\Lambda_{c}^{+} \to \Xi^{0}K^{+})}{\tau_{\Lambda_{c}^{+}}} = \frac{|\vec{p}_{c}|}{8\pi} \Big[\frac{(m_{\Lambda_{c}^{+}} + m_{\Xi^{0}})^{2} - m_{K^{+}}^{2}}{m_{\Lambda_{c}^{+}}^{2}} |A|^{2} + \frac{(m_{\Lambda_{c}^{+}} - m_{\Xi^{0}})^{2} - m_{K^{+}}^{2}}{m_{\Lambda_{c}^{+}}^{2}} |B|^{2} \Big],$$

$$\alpha_{\Xi^{0}K^{+}} = \frac{2\kappa |A| |B| \cos(\delta_{p} - \delta_{s})}{|A|^{2} + \kappa^{2} |B|^{2}},$$

$$\Delta_{\Xi^{0}K^{+}} = \arctan\frac{2\kappa |A| |B| \sin(\delta_{p} - \delta_{s})}{|A|^{2} - \kappa^{2} |B|^{2}},$$
(7)

with $\kappa = |\vec{p}_c|/(E_{\Xi^0} + m_{\Xi^0}) = \sqrt{(E_{\Xi^0} - m_{\Xi^0})/(E_{\Xi^0} + m_{\Xi^0})} \approx 0.234582$ and \vec{p}_c is the momentum of the Ξ^0 baryon in the rest frame of Λ_c^+ particle [5]. Upon solving the system of equations presented in Eq. (7), an analytic solution of the amplitude magenitudes |A| and |B|, as well as the strong phase difference $(\delta_p - \delta_s)$ can be obtained.

- [1] T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645 (1957).
- [2] E. P. Wigner, Pure Appl. Phys. 5, 142 (1959).
- [3] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
- [4] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 121, 062003 (2018).
- [5] J. Zou, F. Xu, G. Meng and H. Y. Cheng, Phys. Rev. D 101, 014011 (2020).