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Based on 7.33 fb~! of eTe™ collision data taken at center-of-mass energies between 4.128 and
4.226 GeV with the BESIII detector, we measure the branching fraction of D+ — D70 relative to
that of DiT — D~ to be (6.16 £ 0.43 - 0.19)%. The first uncertainty is statistical and the second
one is systematic. By using the world average value of the branching fraction of DT — DfeTe™,
we determine the branching fractions of Dt — Dfy and DT — DI 7 to be (93.5740.4440.19)%
and (5.76 + 0.44 + 0.19)%, respectively.

I. INTRODUCTION the strong interaction. The decay widths of DT — DT~
and/or Dt — Dfr% have been theoretically predicted

based on effective models, e.g. chiral perturbation theory

The excited strange charmed meson, D, is formed
from ¢5 quark-antiquark pair. Throughout this paper,
charge-conjugate states are always included. The D**
decays are dominated by the radiative process DT —
Dt~ and the isospin-violating hadronic process Dt —
Df7% due to the quark SU(2) flavor breaking and
isospin violating effects. Measurements of the branching
fractions (BFs) of the decays D}T are important to
explore quantum chromodynamics (QCD) [1] describing

(xPT) [2-4], the light-front quark model (LFQM) [5],
the relativistic quark model (RQM)[6], QCD sum
rules (QCDSR) [7, 8], the Nambu-Jona-Lasinio model
(NJLM) [9], lattice QCD (LQCD) [10], the non-
relativistic quark model (NRQM) [11, 12], and the
covariant model (CM) [13]. The BF of Dt — Dfr"
relative to that of Dt — DT~ has been measured by
using eTe” collision data accumulated at the Y(35) and



Y (4S) by the CLEO [14] and BaBar [15] experiments.
The precision of the world average of the BF of Dt —
D~ is about 0.7% [16]. Precision measurements of these
BFs help to constrain the model parameters, thereby
improving the effective models. In addition, the BFs are
important inputs in the precise determination of the D}
decay constant fp+ and the ¢ — s CKM matrix element
|V.s| via the ete™ — D** DT processes.

In this paper, we report an improved measurement of
the BF of Dt — DIr0 relative to D™ — Df~ and
then determine the BFs of Dt — Df~ and Dit —
D% This analysis is carried out by using 7.33 fb~! of
ete™ collision data taken at the center-of-mass energies
Eem between 4.128 and 4.226 GeV with the BESIII
detector.

II. BESIII DETECTOR AND MONTE CARLO

The BESIII detector [17] records symmetric ete™
collisions provided by the BEPCII storage ring [18] in
the center-of-mass energy range from 2.0 to 4.95 GeV,
with a peak luminosity of 1 x 103* ecm=2s~! achieved
at /s = 3.773 GeV. BESIII has collected large
data samples in this energy region [19]. BESIII is a
cylindrical spectrometer with a geometrical acceptance
of 93% over the 4m solid angle. It consists of
a helium-based multilayer drift chamber (MDC), a
plastic scintillator time-of-flight system (TOF), and a
CsI(T1) electromagnetic calorimeter (EMC), which are
all enclosed in a superconducting solenoidal magnet
providing a 1.0 T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive
plate counter muon identifier modules interleaved with
steel [20]. The charged particle momentum resolution is
0.5% at 1 GeV/c, and the specific energy loss (dE/dx)
resolution is 6% for the electrons from Bhabha scattering.
The EMC measures photon energies with a resolution
of 2.5% (5%) at 1 GeV in the barrel (end-cap) region.
The time resolution in the TOF barrel region is 68 ps.
The end-cap TOF system was upgraded in 2015 using
multi-gap resistive plate chamber technology, providing
a time resolution of 60 ps [21]. Approximately 83%
of the data used here was collected after this upgrade;
luminosities[22] at each energy are given in Table 1.

Simulated data samples are produced with a GEANT4-
based [23] Monte Carlo (MC) toolkit including the
geometric description of the BESIII detector and the
detector response. The simulation includes the beam
energy spread and initial state radiation (ISR) in the
ete™ annihilations with the generator KkMc [24]. In the
MC simulation, the production of open-charm processes
directly produced via eTe™ annihilations are modelled
with the generator CONEXC [25]. The ISR production
of vector charmonium(-like) states and the continuum
processes are incorporated in KKMC [24]. All particle
decays are modelled with EVTGEN [26] using BF's either
taken from the Particle Data Group [16], when available,

or otherwise estimated with LUNDCHARM [27]. Final
state radiation (FSR) from charged final state particles
is incorporated using PHOTOS [28].

The input cross section line shape of ete™ — D**DF
is based on the results in Ref. [29]. In this analysis,
the inclusive MC sample, which is generated at various
energy points and has an integrated luminosity of 40
times individual data sets, is used to determine detection
efficiencies and to estimate background contributions.

IIT. EVENT SELECTION

At the center-of-mass energies between 4.128 and
4.226 GeV, DT D7 pairs are produced copiously by
ete™ collisions. The DT mesons decay predominantly
via DT — DF~ and Dt — Dfn° Candidate events
are selected by reconstructing D and D, mesons via
hadronic decay modes. To obtain better momentum
resolution and lower background contamination, we
use three modes of D} — K+tK 7t versus D; —
K*K~7—, Df - KTK~ 7" versus D; — K2K~, and
D} — K%K versus Dy — K2K~, which are labelled
as modes I, IT, and III, respectively. In order to improve
detection efficiencies, no transition photon or 7° from the
Dit decay is required.

Charged tracks detected in the MDC are required to be
within a polar angle (0) range of |cosf| < 0.93, where 0 is
defined with respect to the z-axis, which is the symmetry
axis of the MDC. For charged tracks not originating
from K2 decays, the distance of closest approach to the
interaction point (IP) must be less than 10cm along
the z-axis, |V.|, and less than 1lcm in the transverse
plane, |V4,|. No additional charged track passing the
cosf and IP cuts is allowed for selected candidates.
Particle identification (PID) for charged tracks combines
measurements of the dE/dz in the MDC and the flight
time in the TOF to form likelihoods for charged pion
and kaon hypotheses, £(7) and L(K). Pion candidates
are required to satisfy £(r) > £(K) and L(w) > 0, and
kaon candidates are required to satisfy £(K) > L(w) and
L(K) > 0.

The KY candidates are reconstructed via the decay
K% — mtn~. The two charged pions are required to
satisfy |V;| < 20 cm and |cosf| < 0.93 but no particle
identification is applied. The 777~ invariant mass is
required to be within the interval (0.487,0.511) GeV /c?.
A vertex fit is performed, constraining the two tracks to
originate from a common vertex, and the decay length of
Kg candidates is required to be greater than twice the
resolution.

To suppress non-DZ D’ events, the beam-constrained
mass of the D candidate

MBC = Egea,m - |ﬁtag|27 (1)

is required to be within the intervals as shown in Table 1.
Here, Epcam is the beam energy and piag is the three-



Table 1. The integrated luminosity and Mgc requirement for

each energy (Ecm) point.

Eem (GeV) Luminosity (pb~!) Mpc (GeV/c?)

4.128 401.5 [2.010, 2.061]
4.157 408.7 [2.010, 2.070]
4.178 3189.0 [2.010, 2.073]
4.189 569.8 [2.010, 2.076]
4.199 526.0 [2.010, 2.079]
4.209 571.7 [2.010, 2.082]
4.219 568.7 [2.010, 2.085]
4.226 1091.7 [2.010, 2.088]

momentum of the reconstructed D, candidate in the
eTe™ center-of-mass frame. In each event, we only keep
one candidate per tag mode per charge, selecting the one
with the D} recoil mass

Moo = ¢ (e — \/\FroglP? + 75 )2 — [ingl?s  (2)

closest to the nominal D** mass [16]. The D} candidate
is selected in the presence of the tag D;. If there
are multiple D} combinations in an event, the one
giving the minimum [Mp+ + Mp- — 2mp,| is retained
for further analysis. Here Mp+ is the invariant mass
of the D¥ candidate and mp, is the nominal D,
mass [16]. Figure 1 shows the distribution of M, -
vs. Mp+ of the accepted candidates in data. To
suppress background, the invariant masses of KK ~n*

and KgK + combinations are required to be within the
interval M+ € (1.958,1.978) GeV/c?.

To improve momentum resolution, a two-constraint
(2C) kinematic fit, in which the invariant mass of the
KtK—7% or KgKjE combination is constrained to the
known Dy mass [16] is performed. The momenta updated
by the kinematic fit are kept for further analysis.

To separate the DT — Dfy and D!t — Dfx0
candidates, we define the missing mass squared of the
reconstructed DI D combination as

2
Mgliss = (Ecm —Eps - ED;) — | _ﬁpj _ﬁD; |2, (3)

where Ep+ and pp+ are the energy and momentum

of D¥ in the ete™ center-of-mass system, respectively.
The resultant M2, distribution of the accepted DF D
candidate combinations is shown in Fig. 2, where the
peak near to zero and its right-side peak correspond to

Dt — Dfvyand Dt — DFr° candidates, respectively.
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Fig. 1. The distribution of M- vs. M+ summing over
modes I, II, and III in data. The red rectangle denotes the

signal region.
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Fig. 2. The M2, distributions of the accepted candidates,
summing over modes I, II, and III. The points with error
bars are data, the open red histograms are the scaled signal
MC events, and the filled green histograms are normalized
background events from the inclusive MC sample. The blue
vertical arrow shows the dividing line for Dt — D¥~ and
Dt — DI 70 candidates; for the filled green histogram, the
small peaking background around zero is from the eTe™ —
D7 D7 process, and the open red and magenta histograms are
the signals of Dt — Df~ and DT — D70, respectively.

IV. BRANCHING FRACTIONS

Following Ref. [30], the BF of Dt — DF~ relative to
the sum of D+t — Df~and Dt — Df 7Y is determined
by

prod
Bp:+piy N7

Iy = (4)

= prod prod’
Bps+_,pty+Bps+ ptmo  NPOC+ N,

where N}Y’“’d and N}:go‘i are the numbers of produced
Dt — Dfy and Dt — D}Fr0 events, respectively.



This ratio captures the binomial nature of the separation
of the low-background signal into the two decays under
study.

As shown in Fig. 2, the individual signal regions of
M2, . are defined as [—0.020,0.013] and [0.013,0.040]
GeV?/c* for DY — Dfy and D:* — Dfn"
respectively. The dividing line accepts about 99.0% of
the D** — D~ signal and about 98.5% of the DIt —
D} 7Y signal. Due to the overlapping M2, . distributions,
some Dit — D} events can be misidentified as D+ —
DF#% and vice versa. To account for this effect, the

yields of NP and N}:(de are obtained by solving the
following equation

N ) = = ) (V). ®
N;T)E:’ - Nﬂ,og E,Yﬁo €700 N;’SO
where NP is the number of selected events in data

by counting, Nib k2 is the number of background events
estimated from the inclusive MC sample; €;; is the
efficiency of the generated Dt — DT + i events selected
as Dt — D} + j, where i and j denote v or 7. Both
Dt — DFr% D~ are simulated. The background
rates estimated from the inclusive MC sample for the
modes I, IT, and IIT are all less than 1.5%.

To consider different detection efficiencies for ISR and
FSR effects, the detection efficiencies at various energy
points have been weighted by individual single tag D7
yields in data.

Table 2 lists the quantities used for the f, measure-
ments and the results obtained. Weighting the f, results
for the modes I, II, and III by their inverse statistical
uncertainties squared, we obtain their average f, =
(94.20 £ 0.38)%.

V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the BF measurements
are discussed below. The systematic uncertainty due to
M2, . resolution is examined in the following procedure.
We perform a fit to M2, distribution of data. To take
into account the resolution difference between data and
MC, a signal MC shape smeared with a Gaussian function
is used. From the fit, we obtain the parameters (means,
widths) of the Gaussian resolution functions, which
are (1.0 £ 0.1,1.0 £ 0.2), (1.1 £ 0.1,1.0 £ 0.2), and
(0.4 +0.3,1.7 4+ 0.4) MeV?/c* for the modes I, II, and
ITI, respectively. The change of BF before and after
smearing the Gaussian resolution function to the M2,
distribution of the signal MC events, 0.07%, is taken as
the associated systematic uncertainty.

The systematic uncertainty caused by the statistical
uncertainty of the MC efficiencies is estimated by varying
each of the efficiency matrix elements by +1o. The
largest change of the BF is taken as the systematic
uncertainty.

The systematic uncertainty from background esti-
mation is considered in two parts. The number of
background events is calculated from the inclusive MC
sample. The corresponding systematic uncertainty is
estimated from the uncertainties of the cross sections
used in generating this sample. The dominant
background events are from open charm processes of
ete” — DD, and efe” — Di*D;. The systematic
uncertainty is estimated by varying the cross sections and
BFs of the hadronic D} decays by +1lo. This effect
on the BF measurement is negligible. In addition, we
have also varied the simulated background events by the
ratio of the background events observed in the DI D7
sideband regions between data and the inclusive MC
sample. The change of the BF, 0.10%, is taken as the
corresponding systematic uncertainty.

Other possible systematic uncertainty sources, such
as the ISR simulation, the kinematic fit, the tracking
and the particle identification efficiencies between the
two decay modes of Dit the Mpc requirement and the
M2, . range, have also been investigated. All of them are
negligible.

All systematic uncertainties are summarized in
Table 3. Assuming the systematic uncertainties from
different sources are independent, the total systematic
uncertainty is obtained to be 0.17% by adding all the
sources quadratically.

VI. SUMMARY

By analyzing 7.33 fb~! of eTe™ collision data taken at
the center-of-mass energies between 4.128 and 4.226 GeV,
we measure the BF of D** — D~ relative to the sum
of Dt — Df~ and Dt — D70 to be f, = (94.20 &+
0.3840.17)%. This gives the BF of Dt — D0 relative
to that of D;* — Dy to be B+, pio/Bp=+ ,pt, =

+ =1 = (616 043 + 0.19)%. The D;* is known

to decay dominantly into three final states of D},
Df7% and Dfete™ [13]. Combining the world average
of Byt ,ptere- = (0.67 £ 0.16)% [16], we obtain
Bp:+_,p+, = (93.57 £0.44 £ 0.19)% and Bp-+_, p+,0 =
(5.76 £ 0.44 £+ 0.19)%.

Figure 3 shows the comparison of the measured BF
of BD:+—>DS+WO/BD;‘+—>DS+7 with other experiments and
the world average value [16]. Our measurement is
well consistent with the previous ones but with better
precision.  Table 4 shows comparisons of the BFs
measured in this work with the world average values and
the decay widths or BFs predicted by various theories.
Our results of BD;_)D?Y and BD;—>DS+W° are consistent

with those predicted in Ref. [13]. At present, only
limits on the D*t width have been reported. More
experimental measurements and theoretical calculations
of the D** decays will be beneficial to give quantitative
tests on the predicted partial decay widths, thereby
better understand the radiative and strong decays of



Table 2. The quantities used for f, measurements and the obtained results. The average result is weighted over the modes I,
II, and III by their inverse statistical uncertainties squared. The uncertainties are statistical only.

obs obs bkg bkg
Mode N3 N Ny N2

vy (%)

€70 (%) €70, () €p0q0 (%) v (%)

I 2293.0 £47.9 239.0 £15.5 31.0£0.9 5.0 +£0.4 14.16 £ 0.04 0.42 £ 0.01 0.22 £ 0.02 15.08 £0.17 93.52 £0.49
II 1044.0 £32.3 83.0£9.1 12.0£0.5 1.0£0.2 15.97 £0.07 0.46 £ 0.01 0.16 = 0.03 16.38 £0.29 95.32 £ 0.63

11T 119.0£109 11.0+3.3

1.0£0.2 0.0£0.0 17.27 £0.23 0.52 £ 0.05 0.00 £ 0.00 18.08 +0.96 94.31 + 2.04

Average

94.20 £ 0.38

D**. As necessary inputs, the reported BFs with much
improved precision are also important for the precise
measurements of ij and |V.s| by using the reactions
of ete™ — Dt DF.

Table 3. Relative systematic uncertainties in the determina-
tion of f,.

Source Uncertainty (%)
M2, . resolution 0.07
MC statistics 0.12
Background 0.10
Sum 0.17

CLEO PRD86,072005 0.062:0.004:0.006

BaBar PRD72,091101 0.063:0.004:0.006

PDG 0.062:0.007

This work 0.062:0.004:0.002

0.02 0.04 0.06

B(D," ~1°D¢)/B(D." ~yD?)

Fig. 3. Comparison of BD;*+—>D5+W0/BD;*+—>D;W measured by
this work and previous experiments. The points with error
bars are from different experiments. For each experiment, the
shorter error bar denotes statistical only while the longer error
bar combines both statistical and systematic uncertainties.
The green band corresponds to the £1c limit of the world
average.
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Table 4. Comparisons of the partial widths (I') and BFs (in brackets). The decay widths are in units of keV. The first two
rows are from this work and the PDG, while the others are from various theoretical predictions. The superscript  denotes the

value corresponding to g = 0.52, f = 2.6 GeV ™', and m. =

value for k% = 0.55; and ¢ denotes the values for (a) model.

1.6 GeV; ® denotes the values for a linear model; ¢ denotes the

r [B]Df%Dj'y

r [B]D*%D?ﬂ'o BD:JFHD;FWU/BD:JFHD;F'V

This work ...[(93.57 + 0.41 +0.16)%] ...[(5.76 =0.39 + 0.16)%]  (6.16 +0.40 £ 0.17)%

PDG [16] L[(94.2 4+ 0.7)%) (5.9 +0.7)%] (6.2 +0.8)%
CM [13] 3.53 [(92.7+0.7)%]  0.2777052% [(7.3 +0.7)%)] (7.9+£0.8)%
xPT [2]* 4.5
XPT [3] 8 x 107°/B(D*t — D*~)
XPT [4] 0.008119-0938

LFQM [5]? 0.18 + 0.01
RQM [6]° 0.32170 052

QCDSR [7] 0.25 + 0.08

QCDSR [8] 0.59 + 0.15
NJLM [9] 0.09

LQCD [10] 0.066 + 0.026

NRQM [11] 0.21

NRQM [12]¢ 0.40
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