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The Born cross section of the process ete™ — n.J/1 at a center-of-mass energy /s = 3.773 GeV
is measured to be (8.89 £ 0.88 4 0.42) pb, using a data sample collected with the BESIII detector
operating at the BEPCII storage ring. The decay ¥ (3770) — n.J/4 is observed for the first time with
a statistical significance of 7.40. From a fit to the dressed cross-section line-shape of e*e™ — 1.J /1
from /s = 3.773 to 4.600 GeV we obtain the branching fraction of the decay (3770) — nJ/¥ to
be (11.6 + 6.1 £ 1.0) x 10™* when the 1(3770) decay amplitude is added coherently to the other
contributions, and (7.941.040.7) x 10™* when it is added incoherently. Here the first uncertainties

are statistical and the second are systematic.

The nature of the ¢(3770) resonance is still a subject of
debate. Conventionally, the ¢(3770) has been regarded
as the lowest-mass D-wave charmonium state above the
DD threshold, i.e. a pure ¢ meson in the quark mod-
el [1]. However, in Ref. [2] it is suggested that the (3770)
may contain a considerable tetra-quark component. This
would help to explain several unsolved issues of charmo-
nium physics that are at variance with the standard the-
oretical expectations, namely, the large non-DD decay
width of the state, the abnormal ratio of the branching
fractions of ¥(3770) — DD~ and ¢(3770) — D°D°,
and the p—7 puzzle [3]. Additionally, a large tetra-quark

component would suppress the re-annihilation mecha-
nism in the charmless final states of ¥ (3770) decays,
which will enhance penguin amplitudes (particularly in
b — s transitions) in B decays and non-K K decays of
¢ meson [4]. Recently, BESIII reported evidence for
ete” — mtw7¢(3770) at the center-of-mass (c.m.) en-
ergies /s = 4.26 and 4.36 GeV [5], indicating a possible
link between the t(3770) and the tetra-quark candidates
Y (4260) and Y (4360) [6-10]. Therefore, improved knowl-
edge of the nature of the (3770) will also deepen the
understanding of the nature of exotic charmonium-like
(also called XYZ) states and more generally the non-



perturbative behavior of the strong interaction.

As suggested in Ref. [2], a large tetra-quark compo-
nent in the ¢(3770) would lead to an enhancement of
the hadronic transition t(3770) — nJ/v, with a pre-
dicted branching fraction of ~ 15 x 10~%. Previously,
CLEO studied this decay under the assumption of no
interference between the resonant decay and the contin-
uum process. The branching fraction is measured to be
B((3770) — nJ /1) = (8.7+ 3.3 £2.2) x 10~%, compat-
ible with the prediction of Ref. [2], and corresponds to a
signal with a statistical significance of 3.5¢0 [11]. Usually,
the branching fraction of ¥(3770) — nJ/v is utilized as
an input in theoretical calculations of the hadronic tran-
sition properties of excited charmonium or charmonium-
like states, both in the large-distance meson loop [12, 13]
and the Nambu-Jona-Lasinio model [14]. In order to
advance our understanding, it is desirable to obtain a
more precise measurement with proper consideration of
the possible interference between the resonant decay and
the continuum process.

In this Letter, we report the measurement of the Born
cross section of eTe™ — 1.J/¢) using 2.93 fb ! of data [15]
taken at /s = 3.773 GeV with the BESIII detector. The
branching fraction of ¢(3770) — nJ/v¢ is determined by
fitting the dressed cross-section line-shape with a combi-
nation of previous measurements [16]. The J/4 is only
reconstructed through its decay to di-muons, while the
di-electron decay is not used because of the high contam-
ination from the radiative Bhabha process.

The BESIII detector is a magnetic spectrometer [17]
located at the Beijing Electron Positron Collider
(BEPCII). The cylindrical core of the BESIIT detec-
tor consists of a helium-based multilayer drift cham-
ber (MDC), a plastic scintillator time-of-flight system
(TOF), and a CsI (T1) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting
solenoidal magnet providing a 1.0 T magnetic field. The
solenoid is supported by an octagonal flux-return yoke
with resistive plate counter muon identifier modules in-
terleaved with steel. The acceptance of charged particles
and photons is 93% over 47 solid angle. The charged-
particle momentum resolution at 1 GeV/c is 0.5%, and
the specific ionization energy loss resolution is 6% for the
electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at 1 GeV
in the barrel (end-cap) region. The time resolution of the
TOF barrel part is 68 ps, while that of the end-cap part
is 110 ps.

Large samples of simulated events produced with the
GEANT4 based [18] Monte Carlo (MC) software, which
includes the geometric description of the BESIII detector
and the detector response, are used to determine the de-
tection efficiency and to estimate the background contri-
bution. The simulation includes the beam-energy spread
and initial-state radiation (ISR) in the ete™ annihila-
tions modeled with the generator KKMC [19, 20]. The

decays (3770) — nJ /v, J/ — puTu~, and n — vy are
generated with the VVS (Vector Vector Scalar) P_wave,
VL (Vector Lepton Lepton), and phase space (PHSP)
configurations of EVTGEN [21, 22], respectively. The
inclusive MC samples consist of the production of the
DD pairs, the non-DD decays of the 1(3770), the ISR
production of J/v¢ and (3686) states, and the con-
tinuum processes (ete~ — i, dd, s5) incorporated in
KKMC [19, 20]. The known decay modes are mod-
eled with EVTGEN [21, 22] using branching fractions
taken from the Particle Data Group (PDG) [23], and
the remaining unknown decays from the charmonium
states with LUNDCHARM [24, 25]. The final-state ra-
diation from charged particles is incorporated with the
PHOTOS package [26].

Each candidate event is required to have two charged
tracks with zero net charge, and at least two photon can-
didates. For each charged track, the distance of the clos-
est approach to the interaction point is required to be
less than 1 cm in the radial direction and less than 10 cm
along the beam axis. The polar angle 8 of the tracks
with respect to the axis of the MDC must be within the
fiducial volume of the MDC (|cosf| < 0.93). Photon
candidates are reconstructed from isolated showers in
the EMC which are at least 10° away from the near-
est charged track. The photon energy is required to be
at least 25 MeV in the barrel region (| cosf| < 0.80) or
50 MeV in the end-cap region (0.86 < |cosf| < 0.92). In
order to suppress electronic noise and energy depositions
which are unrelated to the event, the difference between
the EMC time and the event start time is required to
satisfy 0 < ¢ < 700 ns.

Tracks with momentum greater than 1 GeV/c and en-
ergy deposited in the EMC less than 0.4 GeV are as-
sumed to be muon candidates from J/1 decay. A vertex
fit is performed for the two charged tracks, constraining
them to originate from the interaction point. To im-
prove the resolution and suppress background, a four-
constraint (4C) kinematic fit is applied for the candidate
events, imposing energy-momentum conservation under
the hypothesis of ete™ — ~yyu™p~. In the case the
event has more than two photon candidates, all photon
pairs are tested in the kinematic fit and the combina-
tion with the smallest value of x3. is retained. The
events are required to satisfy Xic < 48 to be retained
for further analysis. This requirement is set by opti-
mizing a figure-of-merit, defined as \/%, where S is
the number of signal MC events and B is the num-
ber of background events from the inclusive MC sam-
ples. The values of S and B are normalized accord-
ing to the integrated luminosity and the branching frac-
tion of ¢ (3770) — nJ/v from the CLEO measure-
ment [11]. To further suppress background events, the
higher and lower energy photons are required to satis-
fy Einigh < 0.52 GeV and E,iow > 0.135 GeV, respec-
tively. To remove contamination from the background



process ¥(3770) = YXe1, X1 — VIV, T/ — php,
any event with 0.239 GeV < E,jow < 0.259 GeV and
0.377 GeV < E phigh < 0.396 GeV is removed.
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Figure 1: Distribution of M'(yvy) versus M (uu) of the can-

didate events for eTe™ — nJ/4 in data.

Figure 1 presents the distribution of the modified in-
variant mass of the vy pair (M’'(vv)) against the in-
variant mass of the p*pu~ pair (M(up)) for the events
in data after applying all the selection criteria. Here
M'(yy) = M(yy) + M(pp) —my,y, where my,y, is the
known J/v¢ mass [23]. A clear accumulation of signal is
observed around the intersection of the J/¢ and n mass
regions.

The number of signal events is obtained by an un-
binned maximum-likelihood fit to the distributions of
M'(yv) in the J/¢ signal region and sideband re-
gions, with the 7 signal line-shape shared for both re-
gions. The J/v¢ signal region is defined as M (uu) €
(3.06,3.15) GeV/c? and the sideband regions as M (uu) €
(2.9,3.0) GeV/c? and (3.2,3.3) GeV/c?. The 7 signal is
described by the sum of a Crystal Ball function [28] and
a Gaussian function, while the combinatorial background
is described by a second-order polynomial function. The
number of 77 events in the sideband regions is multiplied
by a scale factor f and subtracted from the number of n
event in the signal region, to give the signal yield. The
scale factor f = 0.49 is the ratio of non-J/¢ events in
the J/4 signal region and sideband regions, determined
by a fit to the M (uu) distribution. In the fit, the J/4
signal is described by the shape extracted from the signal
MC simulation and the combinatorial background is de-
scribed by a third-order Chebychev polynomial function.
Figure 2 shows the distributions and fit results in M (uu)
and M’'(yv). The observed signal yield is determined to
be N°Ps = 222 4 22, where the uncertainty is statistical
only.

The Born cross section is determined by

Nobs
(14 88R). (1 +6VP) .- Br’
(1)
where £ is the integrated luminosity, (1 + 6™%) is the
ISR correction factor [27], (1 + 6VF) is the vacuum po-
larization factor taken from QED calculation [30], Br is
the product of the branching fractions of the subsequent
decays of intermediate states as given by the PDG [23],
and ¢ is the detection efficiency. The ISR correction fac-
tor is obtained by an iterative method [29], in which the
dressed cross section (0P (y/s)=cB(y/5) - (1 +6¥F)) of
ete™ — nJ/¢ measured in this study and previously
with c.m. energies from /s = 3.81 to 4.60 GeV [16] are
used as input. Table I shows the measured Born cross
section at /s = 3.773 GeV and the values of the other
parameters in Eq. 1.

aB(eTe” ol /) =

The following sources of the systematic uncertainty are
considered in the cross-section measurement. The uncer-
tainty on the integrated luminosity is 0.5% [15]. The
uncertainty associated with the reconstruction efficiency
of an individual lepton or photon is 1.0% [31-33], giving
2% for each pair of particles. An uncertainty of 1% asso-
ciated with the J/1 mass window requirement is assigned
by comparing the J/1 mass resolution between data and
MC simulation, and taking the difference in the selection
efficiency. The helix parameters of the charged tracks
are corrected in simulation to improve the agreement of
X3¢ between data and MC simulation [34]; the system-
atic uncertainty from the kinematic fit is estimated by
removing the correction and taking the 0.6% difference
in the detection efficiency as the uncertainty. The sys-
tematic uncertainty from the ISR correction factor asso-
ciated with the input cross section line-shape is estimated
by sampling the parameters of the dressed cross-section
line-shape using a multidimensional Gaussian function.
The resultant distribution of (1 4 6™®) values is fitted
with a Gaussian function and the standard deviation of
0.5% is assigned as the systematic uncertainty. In addi-
tion, the 1(3770) and (4040) resonance parameters are
varied within their uncertainties and the parametrization
of the continuum is considered by including a 1/s™ term,
giving a 2.3% uncertainty. The uncertainties on the quot-
ed branching fractions of the decays of the intermediate
states are taken from the PDG [23], and lead to a 0.8%
uncertainty on the cross section. To determine the un-
certainty associated with the fit procedure, we perform
alternative fits by varying the resolution of the signal
shape, the order of the polynomial background shape,
the normalization factor, and the fit range, individually,
and use the difference in results to assign a 2.0% uncer-
tainty. The total systematic uncertainty is obtained to
be 4.7% adding all the individual items in quadrature,
where the dominant contribution is from the background
shape. The systematic uncertainty from each source is
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Table I: The values of the integrated luminosity £, the detection efficiency e, the product of radiative correction factor and
vacuum polarization factor (1 + 6™%) . (14 6YF), and the obtained Born cross section of ete™ — nJ/1 at /s = 3.773 GeV.

The uncertainties on the efficiency and cross section are statistical only.

L@pbh) &%)

A+ (1+6"F) B(J/Yp = ut 1) (%) Blp— v7)(%)

Nobs O'B (pb)

2931 £15 454+£0.1 0.80

5.96 £ 0.03

394+£0.2 222422 8.89+0.88

given in the Supplemental Material [35].

The branching fraction of ¢(3770) — nJ/vy is deter-
mined from a maximum likelihood fit to the dressed cross
section of ete™ — nJ/1 from /s = 3.773 to 4.6 GeV.
The likelihood is constructed taking the fluctuations of
the number of signal and background events into ac-
count [36]. T'wo scenarios are used to describe the dressed
cross section line-shape, with two different treatments of
the ¥(3770) resonant decay amplitude: one in which the
¥ (3770) contribution is coherent

Teo. = |0 \/®(s) + €' BWy(3770) + '?*BWy4040)
—|—ei¢3BWy(4230) + ei¢4BWy(4390) |2 5 (2)

and the other where it is incoherent

Tinco. = |BWy(3770) 2+ [C -/ B(s) + €' BW y(4040)
+e¢'?BWy (4230) + €*BWy sony[*- (3)

Here ®(s) = ¢3/s is the P-wave PHSP factor used
to parameterize the continuum term, with ¢ being
the n momentum in the ete™ c.m. frame, BW =

s\_/ljf/ﬁlj};ﬁlll / J](\;)Q) is the Breit-Wigner function, ¢ is the

relative phase between the resonant decay and the PHSP
term, and C is a real parameter. In the Breit-Wigner for-
mula, M, I', and I, and B are the mass, the total width,
the electronic width (whose definition includes vacuum
polarization effects), and the branching fraction to n.J /v
of the resonance. The mass and total width of (3770)
and 1(4040), and the electronic width of (3770) are
fixed to the PDG values [23], while B and the param-
eters of the other resonances are free parameters to be
determined by the fit. Only the statistical uncertainty of

the dressed cross section is considered in the fit. There
are four solutions from the coherent fit and one solution
from the incoherent fit. Figure 3 shows the cross-section
measurements plotted against /s, with the fit results su-
perimposed. The result for the coherent fit is degenerate
for the four solutions. The fit qualities estimated by a x2-
test approach are x?/n.d.f. = 102.4/119 for the coherent
fit and 106.9/120 for the incoherent fit, where n.d.f is
the number of degrees of freedom. The statistical sig-
nificance of the ¢(3770) — nJ/v decay in the coherent
(incoherent) fit is estimated to be 7.4 (7.60), calculated
by the change of the likelihood values with and without
the 1(3770) resonance contribution included, and tak-
ing the change in the number of degrees of freedom into
account [37]. The branching fractions from the fits are
summarized in Table II. The results of the other reso-
nant parameters are consistent with those found in the
earlier study [16]. The statistical uncertainty of the co-
herent fit is large due to the lack of data points around
the 9(3770) peak, which leads to a poor constraint on
the relative phase ¢;.

There are several sources of potential systematic bias
in the branching-fraction measurement. By way of ex-
ample we quote the uncertainties for solution 1 of the
coherent fit. The uncertainty of the c.m. energy is
0.8 MeV [38] for all data samples; this uncertainty is
propagated to the branching-fraction measurement to
give a relative uncertainty of 0.5%. The uncertainty from
the energy spread is 0.1%, which is estimated by convolv-
ing the fit formula with a Gaussian function with a stan-
dard deviation of 1.4 MeV, which is the measured value
of the spread [36, 39]. The uncertainty arising from the
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Table II: The branching fractions of ¥(3770) — nJ/1 deter-
mined from the coherent and incoherent fits.

B(4(3770) = nJ/¢)

Fit scenario (x10~4) ¢1(rad)
Solutionl  11.64+6.14+1.0 4.04+0.5
Coherent fit Solution2 12.0+6.3+1.1 4.3+0.5
Solution3  11.6 +6.14+1.0 3.840.5
Solutiond 11.94+6.3+1.1 4.1+0.5

Incoherent fit 79+1.0+0.7 -

¥ (3770) and (4040) resonant parameters is studied by
varying the parameters within their uncertainties, which
leads to an effect of 8.1%, where the dominant contri-
bution (6.9%) is from the partial width to di-electrons.
The uncertainty of the parameterization of the contin-
uum term is assigned to be 0.8% by changing the 1/s
dependence to 1/s™, where n is a free parameter. The un-
certainty from the dressed cross-section measurement has
two contributions: the one of 1.7% is uncorrelated among
the c.m. energy points and is included in the fit to the
dressed cross section; the other of 3.0% is common to all
data points and is directly propagated to the B measure-
ment. The total systematic uncertainty is 8.9%, and the

individual contributions are listed in the Supplemental
Material [35].

In summary, the Born cross section of eTe™ — n.J /1 at
V/5 = 3.773 GeV is measured to be 0B (ete™ — nJ/y) =
(8.8940.884tat £0.424y5) pb. The decay ¥(3770) — nJ/¢
is observed for the first time with a statistical significance
of 7.40. The branching fraction of ¢ (3770) — nJ/4 is
determined from the fit to the dressed cross section line-
shape of eTe™ — nJ/1¢ in the range of /s = 3.773 to
4.60 GeV including the decays of the ¢(3770), ¢ (4040),
Y (4230) and Y (4390) resonances as well as the PHSP
term. When the interference of the decay of the 1(3770)
with the other processes is neglected, the branching frac-
tion is determined to be (7.9 & 1.0gtat & 0.75ys) X 1074,
which is close to the result of CLEO [11] but with twice
the precision. When interference is considered, four solu-
tions are obtained with branching fractions varying be-
tween (11.6 £6.15pat £ 1.05y5) x 1074 and (12.0 £ 6. 1540t +
1.1gys) X 10~%. These results would benefit, as essen-
tial inputs, to the calculations of charmonia decaying
into light vector pseudo-scalar (VP) states [12, 13] and
hadronic transitions of highly excited charmonium(-like)
states [14]. And we notice the measured branching frac-
tions are close to the predicted value of Ref. [2] and hint
at a possible tetra-quark component in the 1(3770) res-
onance. A finer scan around the (3770) is desirable to
reduce the uncertainties in the future.
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