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In this work we investigate the tidal deformability of a neutron star admixed with dark matter,
modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the
tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the
influence of the scalar field mass and self-interaction strength on the total mass and tidal properties
of the combined system. We find that dark matter core-like configurations lead to more compact
objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger
tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear
to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect
on both mass and tidal deformability. We discuss observational constraints and the connection
to anomalous detections. We also investigate how this model compares to those with an effective
bosonic equation of state and find the interaction strength where they converge sufficiently.

I. INTRODUCTION

Neutron stars are highly compact remnants of massive
stars. Due to the high densities inside of neutron stars,
they allow us to probe nuclear matter at high densities,
a region that is not readily accessible with analytic tech-
niques.

The equation of state (EoS) describes the interplay
between density and pressure, which is needed to close
the Tolman-Oppenheimer-Volkoff (TOV) equations [1, 2]
that describe the density profile of a spherically symmet-
ric star and the curvature of space-time that is produced
self-consistently. A significant constraint on the EoS is
the mass value of the most massive known compact star.
If an EoS is not able to generate a star of this mass,
it cannot describe reality. There are multiple pulsars
with masses at or above 2M⊙ [3–7]. Recently even a
2.35± 0.17M⊙ neutron star was reported by Romani et
al. [8]. There is also some speculation that the lighter
companion of the GW190814 gravitational wave event [9]
was the most massive neutron star ever observed, with a
mass of about 2.6 M⊙. However, there is some evidence
that the object should be considered the lightest observed
black hole instead [10–15]. Such high masses require stiff
EoSs, where the energy density strongly rises with in-
creasing pressure. This constraint is supported by the
NICER measurements of the pulsars J0030+0451 [16–18]
and J0740+6620 [19–21], which report quite large radii.
The contrary is true for the neutron star merger event
GW170817 detected by LIGO/Virgo [22–24], which fa-
vors more compact configurations generated by soft EoSs.
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It is additionally possible that neutron stars accumu-
late dark matter (DM) in a sufficient abundance to mod-
ify their observables, such as the mass, radius, and tidal
deformability. These quantities have been measured in
recent observations made by, e.g., NICER [16–21] and
the LIGO/Virgo/Kagra(LVK) collaborations, which thus
allow to constraint the properties of DM. DM is an inte-
gral part of the ΛCDM model, which is the concordant
model of cosmology [25]. Despite decades of searches, its
nature and properties are still largely unknown [26, 27].
A possible contender is DM being made up of an addi-
tional scalar field in the universe [28, 29]. The connection
between neutron stars – where the highest densities of
matter are expected – and DM has also been explored in
numerous publications and is an active area of research
[30–50]. DM as a scalar field could be around neutron
stars as a cloud or inside neutron stars as a core. Neu-
tron stars with DM cores could form 1) from a DM ‘seed’
through accretion of baryonic matter [51], 2) through
mergers of neutron stars and boson stars, 3) through ac-
cretion and subsequent accumulation of DM inside the
neutron star [30–32, 34, 36, 46, 47] or 4) through the de-
cay of standard model particles inside the neutron star
into DM [43–45, 48, 49]. The presence of DM clouds and
cores in and around neutron stars will affect the observ-
able properties of the neutron stars, thus making them
indirect laboratories for DM properties. It was previously
shown that even large dark matter fractions of up to 20%
are not excluded from current observations [52]. Present
and future gravitational wave detectors have the poten-
tial to detect the possible presence of DM in merging neu-
tron stars and to constrain the properties of DM, such as
its mass and its self-interaction strength [30, 41, 51, 53–
68].

In this work, we model DM as a minimally cou-
pled complex scalar field that only interacts with the
standard model (SM) via gravity and study its im-
pact on the neutron star observables. To this end,
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we construct equilibrium solutions and their first-order
perturbations and solve the coupled Einstein-Hilbert-
Klein-Gordon (EHKG) system of equations. Such sys-
tems, termed fermion-boson stars (FBS), were first in-
troduced by Henriques et al. [69] and subsequently an-
alytically studied in terms of stability under radial per-
turbations [70]. In [71] they were connected to current
constraints on the mass and radii of NSs and their dy-
namical properties were explored in [72–75]. In all of
these cases, these systems were investigated using a per-
fect fluid for the nuclear matter and a classical scalar field
for the bosonic DM, which is an approach that we will
also follow in this work. The described system is closely
related to boson stars [76–78], as it can be seen as a bo-
son star that coexists with a neutron star at the same
location in space.

The tidal deformability of such systems was first in-
vestigated in [53], where the authors considered scalar
bosonic DM with masses in the MeV to GeV range, which
is gauged by a U(1) vector boson and focused on the pa-
rameter space that results in the formation of a dark halo.
They further constructed an EoS for the bosonic sector
by using mean field theory. In order to obtain solutions
for their system, they thus extended the TOV equations
to account for two fluids at the same time. This model
was subsequently further investigated first in [52] in terms
of detectability prospects and in [79], where the result-
ing tidal deformability was presented for a wider range of
parameters that also include scenarios in which the DM
form a core. Similarly, in [57, 80], scalar DM that self-
interacts via a quartic coupling was considered. Here,
the authors used an effective EoS that was first derived
in [78] and then also used the two-fluid approach. The
utilized EoS is however only valid if the self-interactions
are sufficiently strong.

Our method is also applicable to scalar fields with
weak to no self-interactions. First, we review the equi-
librium solutions and show the effects of the ultralight
scalar field on the mass-radius relations. Then, we de-
rive the relevant equations for the tidal deformability,
and show the results of our numerical investigation. We
find two classes of solutions, DM cores inside the neutron
star and DM clouds enveloping the neutron star matter.
Core solutions have higher compactness and lower tidal
deformabilities, while cloud solutions can have large tidal
deformabilities and lower the compactness of the overall
object. For large DM fractions, a neutron star inside
these clouds could appear to violate the Buchdahl limit,
if the bosonic component is not observed, as for example
in NICER observations. The large tidal deformabilities
of the cloud solutions would be observable in LVK ob-
servations even for small DM fractions, while DM core
solutions only have small effects on the tidal deformabil-
ity, which would be difficult to discern from EoS effects.

This paper is structured as follows: In section II we
present the construction of equilibrium solutions and fur-
ther extend these equations in section III to also include
the first-order perturbations. In section IV we present

the resulting tidal deformability and compare it to obser-
vational constraints. In section V we compare the EHKG
solutions to the two-fluid model. Finally, in section VI
we summarize our findings. Throughout this work, we
use units in which G = M⊙ = c = 1. See also appendix
A for information on the unit conversion.

II. EQUILIBRIUM SOLUTIONS

In this section, we review the construction of equilib-
rium solutions of FBS, which was first presented in [69].
We model dark matter as a massive and complex scalar
field that only interacts with the SM via gravity, such
that the action of the combined system is given by

S =

∫
d4x

√
−g

[
R

16π
−∇αΦ̄∇αΦ− V (Φ̄Φ) + Lm

]
,
(1)

where Lm is the Lagrangian describing nuclear matter
and V (Φ̄Φ) is the scalar field’s potential. The scalar field
is invariant under a global U(1) symmetry that gives rise
to a conserved Noether current

jµ = i
(
Φ̄∇µΦ− Φ∇µΦ̄

)
, (2)

which allows to generally define the total number of
bosons in the system as

Nb ≡
∫

d3x
√
−gg0µjµ. (3)

The energy-momentum tensor for the scalar part is
given by

T (Φ)
µν = −gµν

(
∂αΦ̄∂

αΦ+ V (Φ̄Φ)
)

+∂µΦ̄∂νΦ+ ∂µΦ∂νΦ̄.
(4)

Varying the action with respect to the scalar field re-
sults in the Klein-Gordon equation,

∇µ∇µΦ = ΦV ′(Φ̄Φ), with V ′(Φ̄Φ) :=
dV

d|Φ|2
. (5)

This equation directly implies that the energy-
momentum tensor of the scalar field is separately con-
served from the perfect fluid energy-momentum tensor.
The energy-momentum tensor for nuclear matter is as-
sumed to be of the perfect fluid form:

T (NS)
µν = [ρ(1 + ϵ) + P ]uµuν + Pgµν , (6)

where ρ is the rest-mass energy density and ϵ is the inter-
nal energy density, such that ρ(1 + ϵ) describes the total
energy density e. Requiring that the Noether current is
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FIG. 1: Left panel: Density plot that displays the total gravitational mass as a function of the central rest-mass density (ρc)
and central value of the scalar field (ϕc). Additionally, it displays the stability curve as the solid black line calculated using
Eq. (18), i.e. all configurations that lie within the bottom left parameter region that is bordered by the black line are stable
against radial perturbations. Right panel: Mass-radius diagram displaying the fermionic radius (the radius of the fermionic
component) vs the total gravitational mass for configurations that are within the stable region displayed in the left panel.
Each point corresponds to a single configuration and is color-coded according to the rest mass fraction of the dark matter
component. The solid black line shows the mass-radius curve for pure fermionic matter. For both plots a massive scalar field
with no self-interactions and the mass set to m = 1.3× 10−10 eV was considered in addition to the DD2 EoS.

conserved, i.e. ∇µ(ρu
µ) = 0, allows to define the total

number of baryons in the system generally as

Nf =

∫
d3x

√
−gg0µρuµ. (7)

We consider the system (for now) to be in spherical
symmetric equilibrium, such that the metric can be writ-
ten as

gµν = diag
(
−ev(r), eu(r), r2, r2 sin2 θ

)
. (8)

We further consider a static perfect fluid, such that
uµ = (ev/2, 0, 0, 0) and write the scalar field as

Φ(t, r) = ϕ0(r)e
−iωt, (9)

Using the spherical symmetric ansatz together with the
Klein-Gordon equation results in an equation describing
the radial dependence of the bosonic field

ϕ′′
0 = eu

(
V ′(ϕ2

0)− ω2e−v
)
ϕ0 +

(
u′ − v′

2
− 2

r

)
ϕ′
0. (10)

Additionally, the Einstein equations simplify to the fol-
lowing two equations regarding the metric functions u(r)
and v(r):

u′ = 8πreu
[
ω2ϕ2

0e
−v + V (ϕϕ̄)

+ e−uϕ′2
0 + ρ(1 + ϵ)

]
− eu − 1

r
,

(11)

v′ = 8πreu
[
ω2ϕ2

0e
−v − V (ϕϕ̄)

+ e−uϕ′2
0 + P

]
+

eu − 1

r
.

(12)

Also, the conservation of the energy-momentum tensor
of nuclear matter ∇µT

µν (NS) = 0 provides a differential
equation for P :

P ′ = −[ρ(1 + ϵ) + P ]
v′

2
(13)

This system of equations is closed by providing an EoS
P (ρ, ϵ) (or P (e)) for the nuclear matter part.

Further, for the considered system, the expressions for
the total number of fermions (nuclear matter) and bosons
(dark matter) simplify to

Nb = 8π

∫ ∞

0

drr2e(u−v)/2ωϕ2
0, (14)

Nf = 4π

∫ Rf

0

drr2eu/2ρ, (15)

where Rf denotes the fermionic radius, which is deter-
mined by the radial position at which the fermionic pres-
sure P vanishes. The total gravitational mass of the sys-
tem is given by
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Mtot = lim
r→∞

r

2

(
1− e−u(r)

)
. (16)

In order to integrate these equations, it is still neces-
sary to provide suitable initial conditions. We do this by
enforcing asymptotic flatness and regularity at the origin,
i.e.

lim
r→∞

v(r) = 0, v(0) = vc,

lim
r→∞

u(r) = 0, u(0) = 0,

lim
r→∞

ϕ0(r) = 0, ϕ0(0) = ϕc,

ϕ′
0(0) = 0, ρ(0) = ρc.

(17)

Asymptotic flatness generally requires fine-tuning vc to
some non-zero value. However, as was also discussed
in [69], it is possible to absorb a constant shift in v(r)
(e.g. v → v′ = v− vc) by rescaling the above set of equa-
tions by ω → ω′ = ωe−vc/2. This rescaling leaves the
set of equations invariant and has the advantage that we
automatically have vc = 0. After integrating to obtain a
solution, we can retrieve the physical values of ω and v
by doing the inverse transformation using the asymptotic
value of v(r).

For given ρc, ϕc it is necessary to find the value of ω,
such that the boundary conditions at infinity (Eq. (17))
are fulfilled, i.e. the eigenvalues. There are infinitely
many eigenvalues, which are characterized by how many
nodes (i.e. radial positions with ϕ(r) = 0) are present
in the scalar field profile. We find the lowest eigenvalue,
such that there are no nodes. The bosonic ODE sys-
tem is such that it will always diverge at finite radii, due
to finite numerical precision. We employ this in order
to efficiently find solutions. We use the fact that the
scalar field profile either diverges towards +∞ or −∞
and changes its direction of divergence when ω passes
an eigenvalue. This provides us with a binary criterion
and thus allows us to implement a bisection for ω which
converges exponentially fast.

Once a sufficiently accurate ω is found, we modify the
integration, such that ϕ0 is set to zero at a finite radius
r∗B . This radius r∗B is found by the condition ϕ0(r

∗
B)/ϕc <

10−4. This is necessary because otherwise, the numerical
integration diverges at finite radii. Since we have the
additional neutron matter component, in some part of
the parameter space, the integration would diverge before
P has converged to 0. For example, in compact dark
matter core configurations, the integration could diverge
while still inside the neutron star component. Therefore,
we artificially set ϕ0 = 0 for r > r∗B , which allows us to
circumvent the divergence and accurately resolve the rest
of the neutron star component. The condition was chosen
such that the remaining contribution of the scalar field to
the other quantities (i.e. the metric components) would
be minimized. We have checked for lower thresholds and
the extracted results are the same.

We integrate the system until a radius is reached at
which both the scalar field ϕ0 and the fermionic compo-
nent parameterized by P have converged to zero. There,
we can extract the properties of interest, such as the total
mass Mtot and number densities Nf , Nb.

For some configurations, due to numerical precision
limits, the scalar field convergence condition cannot be
fulfilled. This generally happens for small initial field
values ϕc ≲ 10−4, where the bosonic cloud extends far
outside the neutron star. In these cases, we extract the
mass Mtot at the point where its derivative has a global
minimum. When the scalar field diverges, also the metric
components do, and with it the calculated mass of the
system. By taking the point where the derivative of the
mass has a global minimum, which roughly corresponds
to where the scalar field and its derivative is closest to
zero, we get the best estimate of the mass of the system
before the divergence.

Once we have a Fermion-Boson-Star solution for given
ρc, ϕc, the stability of the physical system is of impor-
tance. To this end, we need to calculate a whole fam-
ily of solutions and use the stability criterion derived in
[70], which is a generalization of the stability criterion for
neutron stars. The idea is to find extrema in the total
number of particles for fixed mass, depending on the cen-
tral values ρc, ϕc. At these lines must be the transition
between stable and unstable configurations

dNf

dσ
=

dNb

dσ
= 0, (18)

where d/dσ denotes the derivative in the direction of con-
stant total mass, i.e. up to a normalization factor

dNf

dσ
∝ −∂Mtot

∂ρc

∂Nf

∂ϕc
+

∂Mtot

∂ϕc

∂Nf

∂ρc
. (19)

Figure 1 shows what configurations are stable depend-
ing on the central value of the rest mass density and the
central value of the scalar field according to the above
condition for the case of a massive scalar field with no
self-interactions and the mass set to m = 1.34×10−10 eV.
Additionally, the resulting mass and radii for the stable
configurations are also displayed.

III. TIDAL DEFORMABILITY

In order to obtain the tidal deformability, we will fol-
low the same procedure that was used in [81] to obtain
the tidal deformability of pure neutron stars and subse-
quently also applied to pure boson stars in [82, 83]: We
are expanding the matter and gravitational field around
a static, spherically symmetric configuration and then in-
sert this expansion into the linearized Einstein equations
to obtain a system of differential equations that allows
solving for the linear perturbations, from which we then
extract the tidal deformability.
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Applying an external quadrupolar tidal field Eij to
a spherically symmetric star results in it developing a
quadrupolar moment Qij as a response. At linear order,
this response is proportional to the applied tidal field,
such that Qij = −λtidalEij , where λtidal is the tidal de-
formability. The induced quadrupolar moment modifies
the gtt metric component, such that at leading order in
the asymptotic rest frame at large radii [84]

gtt = −1 +
2Mtot

r
− Eijxixj

(
1 +

3λtidal

r5

)
, (20)

where xi define a Cartesian coordinate system with r2 =
δijx

ixj .
We now turn to explicitly deriving the equations gov-

erning the linear perturbations from the linearized Ein-
stein equations. We focus on static, even-parity, and
quadrupolar (l = 2) metric perturbations, which we de-
note by hµν . Further, we choose to work in the Regge-
Wheeler gauge, in which hµν takes the form

hµν = Y20(θ, φ)×

diag
(
−ev(r)H0(r), e

u(r)H2(r), r
2K(r), r2K(r) sin2 θ

)
,

(21)

where H0, H2 and K describe the radial dependence of
each perturbed metric component and Y20 is the (l,m) =
(2, 0) spherical harmonic. At the same time, we expand
the scalar field. We denote the first-order perturbation
as δΦ and use the same ansatz as [83], such that

δΦ(t, r, θ, φ) = ϕ1(r)
e−iωt

r
Y20(θ, φ), (22)

where the same time dependence was chosen for the per-
turbations in order to ensure that the energy-momentum
tensor remains static. We can obtain a set of differen-
tial equations that relate the perturbations to the back-
ground solutions by expanding the Einstein equations to
first order in hµν and ϕ1.

Inserting this expansion into the Klein-Gordon equation (Eq. (5)) and only keeping terms linear in the perturbations
results in

ϕ′′
1 =

u′ − v′

2
ϕ′
1 +

[
−2ϕ′

0 − rϕ′′
0 +

v′ + u′

2
rϕ′

0 + ω2rϕ0e
u−v

]
H0

+

[
6eu

r2
+

v′ − u′

2r
+ 16πϕ′2

0 + eu
(
V ′(ϕ2

0) + 2ϕ2
0V

′′(ϕ2
0)− ω2e−v

)]
ϕ1.

(23)

Similarly, we expand the Einstein equations, i.e. we look at δGµν = 8πδTµν . The perturbed energy-momentum tensor
of the fermionic part is written as δT

µ(NS)
ν = diag(−δP/c2s, δP, δP, δP ), where we used δe = δP ∂e/∂P = δP/c2s, with

cs the sound speed. The perturbed energy-momentum tensor of the scalar field is computed by expanding Eq. (4).
Subtracting the θθ from the ϕϕ component of the perturbed Einstein equations reveals H2(r) = −H0(r). Adding the
θθ component to the ϕϕ component allows to obtain an expression for δP , which can be substituted into the tt minus
the rr component to obtain a differential equation for H0:

H ′′
0 +

[
v′ − u′

2
+

2

r

]
H ′

0

+

[
−8π

1 + 3 c2s
c2s

ϕ′2
0 + 8πω2eu−v c

2
s − 1

c2s
ϕ2
0 −

u′v′ + v′2

2
+ v′′ +

3u′ + 7v′

2r
+

u′ + v′

2rc2s
− 6

r
eu
]
H0

=

[
−16π

r

1 + 3 c2s
c2s

ϕ′′
0 +

8π

r

(
3u′ + v′ +

u′ − v′

c2s
− 4

r

1 + 3 c2s
c2s

)
ϕ′
0 +

16π

r
eu
(
V ′(ϕ2

0)
c2s + 1

c2s
+ ω2e−v c

2
s − 1

c2s

)
ϕ0

]
ϕ1.

(24)

Here primes denote derivatives with respect to the coordinate radius r. The above equation contains a term depending
on v′′, which is explicitly given by

v′′ = 8πeu (rPu′ + rP ′ + P ) + 16πrϕ′
0ϕ

′′
0 + 8πϕ′2

0 + 16πreu
(
−V ′(ϕ2

0) + ω2e−v
)
ϕ0ϕ

′
0

− 8πeuV (ϕ2
0) (ru

′ + 1) + 8πω2eu
[
r(u′ − v′)e−v + e−v

]
ϕ2
0 + eu

ru′ − 1

r2
+

1

r2
.

(25)
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As mentioned in [83], for radii larger than the typical
size of the combined system, the differential equation for
H0 reduces to

H ′′
0 +

(
2

r
+ eu

2M

r2

)
H ′

0 −
(
6eu

r2
+ e2u

4M2

r4

)
H0 = 0,

(26)
which has a solution in terms of associate Legendre func-
tions

H0 ≈ c1Q
2
2

( r

M
− 1
)
+ c2P

2
2

( r

M
− 1
)
. (27)

Expanding this equation in r/M and matching to
Eq. (20) results in

λtidal =
16

15
M5(1− 2C)2[2 + 2C(y − 1)− y] (28)

× {3(1− C)2[2− y + 2C(y − 1)] log(1− 2C)
+ 2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y

+ C(3y − 2) + 2C2(1 + y)]}−1,

where y ≡ rextH
′
0(rext)/H0(rext), C ≡ Mext/rext and rext

denotes radial position at which λtidal is calculated. The
dimensionless tidal deformability is defined as Λtidal :=
λtidal/M

5
tot.

In order to determine the behavior of ϕ1 and H0 at the
origin (and thus determine the initial conditions we have
to impose), we expand all quantities around the origin as

ϕ1(r) =
∑
i

ϕ1,ir
i, (29)

where ϕ1,i are the expansion coefficients that do not have
any dependency on the radius. Similarly, we also expand
H0 with H0,i as the coefficients. After plugging this ex-
pansion into Eqs. (23) and (24) and solving the resulting
polynomial equations order by order results in

ϕ1(r) = ϕ1,3 r
3 +O

(
r5
)
,

H0(r) = H0,2 r
2 +O

(
r4
)
.

(30)

We additionally impose the boundary conditions

lim
r→∞

ϕ1 = 0. (31)

Now, we can use the fact that Eq. (24) is invariant under
a simultaneous rescaling of ϕ1 and H0. Due to this, we
can rescale the equations to automatically have H0,2 = 1.
Similarly to the procedure for ω, we use a bisection al-
gorithm to then find the initial ϕ1,3 such that the above
conditions are fulfilled. ϕ1 converges to 0 just as ϕ0, so we
also set ϕ1(r) = 0 for r > r∗B . This allows us to circum-
vent the divergence of the perturbations, while having

no effect on the tidal deformability, since the equations
for ϕ1, H0 decouple with ϕ0 ≡ 0. Then, the tidal de-
formability is constant for any r > r∗B and can easily be
extracted.

In case the convergence condition cannot be fulfilled,
we follow the procedure in [83] and extract y at rext such
that it is a local maximum. Since there are two compo-
nents in the neutron star at play, there can be multiple
local maxima, of which we choose the one at the largest
radius.

The code is publicly available along with examples and
the procedures to obtain the results.1

IV. RESULTS

We now specialize to a potential that is quartic in the
field:

V (Φ̄Φ) = m2Φ̄Φ +
λ

2
(Φ̄Φ)2, (32)

where m is the particle mass and λ is the self-
interaction parameter. To allow for easy comparison with
previous works, we use the effective interaction param-
eter Λint = λ/(8πm2). This was originally introduced
in [78] to quantify the self-interaction strength, i.e. for
Λint ≪ 1 the total gravitational mass of a pure boson
stars scales as M ∝ 1/m, while for Λint ≫ 1 we have
M ∝ 1/m2. Also, in this regime the stress-energy tensor
becomes approximately isotropic, meaning that an EoS
might be used to model this case (see sec. V below). It
is important to keep in mind that Λint was introduced
in the context of pure boson stars and thus the scaling
relations of the total mass are not generally valid for the
mixed system, i.e. FBSs. Nonetheless, we still find it con-
venient to use it as a general measure to compare different
choices of the mass and self-interaction strength.

We investigate nine different models with m =
{0.1, 1, 10} ·1.34×10−10 eV and Λint = {0, 10, 100}. This
mass range is chosen such that the Compton wavelength
of the bosonic field is half the Schwarzschild radius of
the sun, see the explanation in Appendix A. The range
of self-interaction is well within bullet cluster constraints
for dark matter, since [85, 86]

πΛ2
intm =

λ2

64πm3
=

σ

m
< 1

cm2

g
(33)

⇐⇒ Λint < 1050
√

1.34 · 10−10eV
m

,

where σ/m is the effective cross-section.
For the fermionic component, we employ the DD2 EoS

(with electrons) from the CompOSE database [87, 88].

1 github.com/DMGW-Goethe/FBS-Solver

https://github.com/DMGW-Goethe/FBS-Solver
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FIG. 2: The relation between total gravitational mass M and the fermionic radius Rf for the FBSs with different DD2 forms
mass fractions. The rows correspond to three different bosonic masses m = {1, 10, 0.1} · 1.34 × 10−10 eV, while the columns
correspond to three different Λint = {0, 10, 100}. The EoS we employ for the fermionic part is the DD2. Notice the different
scale of the bottom plots. Observing only the fermionic radius of these systems would appear to violate the Buchdahl limit,
even though the whole FBS does not.



8

0.0

0.5

1.0

1.5

2.0

2.5
m= 1.34× 10−10 eV
Λint = 0

m= 1.34× 10−10 eV
Λint = 10

m= 1.34× 10−10 eV
Λint = 100

0 10 20
0.0

0.5

1.0

1.5

2.0

2.5
m= 1.34× 10−9 eV
Λint = 0

0 10 20

m= 1.34× 10−9 eV
Λint = 10

0 10 20

m= 1.34× 10−9 eV
Λint = 100

0.0 0.2 0.4 0.6 0.8 1.0

Effective Gravitational Radius [km]

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l G
ra

vi
ta

tio
na

l M
as

s [
M

¯
]

0.0 0.2 0.4 0.6 0.8 1.0

Dark Matter Mass Fraction
FBS Configurations
Pure BS
Pure DD2

0 200 400 600
0

5

10

15

20

25
m= 1.34× 10−11 eV
Λint = 0

0 200 400 600

m= 1.34× 10−11 eV
Λint = 10

0 200 400 600

m= 1.34× 10−11 eV
Λint = 100

0.0 0.2 0.4 0.6 0.8 1.0

Effective Gravitational Radius [km]

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l G
ra

vi
ta

tio
na

l M
as

s [
M

¯
]

FIG. 3: The relation between total gravitational mass M and the effective gravitational radius Rg for the FBSs with different
DD2 forms mass fractions. The effective gravitational radius is the radius at which 99% of the rest mass is contained. The rows
correspond to three different bosonic masses m = {1, 10, 0.1} · 1.34× 10−10 eV, while the columns correspond to three different
Λint = {0, 10, 100}. The EoS we employ for the fermionic part is the DD2. In the case of pure neutron stars, the crust has
comparatively low density, which makes this effective gravitational radius significantly smaller than the fermionic one.
Notice the different scales of the bottom plots. For low masses, the bosonic component forms a core and the total compactness
of the object increases. For higher masses, the bosonic component forms a cloud and can significantly decrease the compactness
of the object.
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FIG. 4: The relation between dimensionless tidal deformability Λtidal = λtidal/M
5 and total gravitational mass M for the

FBSs with different DM mass fraction. The rows correspond to three different bosonic masses m = {1, 10, 0.1} ·1.34×10−10 eV,
while the columns correspond to three different interactions strengths Λint = {0, 10, 100}. For the fermionic part, we employ
the DD2 EoS.

The DD2 EoS is based on a relativistic mean-field model
with density dependent coupling constants which has
been fitted to the properties of nuclei and results from
Brueckner-Hartree-Fock calculations for dense nuclear
matter. Thereby, the EoS describes also the EoS of pure

neutron matter from chiral effective field theory, see [89].
For the purpose of our investigations the particular choice
of the nuclear equation of state is not of importance and
does not change our conclusions.
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A. Mass-Radius Relations and Tidal Deformability

First, the mass-radius relations are plotted in Fig. 2
and Fig. 3.

We use a grid of ρc, ϕc to populate the plots, selecting
only the stable configurations as explained in section II.
Each point is colored by the resulting DM mass fraction
NB/(NB + NF ). Instead of a mass-radius curve, this
gives a mass-radius region for the FBSs with different
fermionic and bosonic content. Important to note is that
in Fig. 2 we plot the fermionic radius, the radius where
the fermionic component vanishes. The bosonic radius
can be orders of magnitudes larger or smaller, depending
on the mass and self-interaction parameter. To better
understand these objects, we also plot the effective grav-
itational radius – the radius at which 99% of the rest
mass is contained – in Fig. 3. Here, the compactness of
the FBS can be inferred. For pure neutron stars with
the DD2, the crust has comparatively low density, which
makes this effective gravitational radius smaller than the
fermionic one. Which radius is more relevant for a given
problem depends on the observation, e.g. the fermionic
radius would be crucial for electromagnetic signatures,
such as those observed by the NICER telescope. The
effective gravitational radius would be more relevant for
the inspiral in binary mergers and enters through the
compactness and the tidal deformability.

Some general trends can be seen in the figures. Stars
dominated by the fermionic part are close to the pure
DD2 solution, as expected. For stars dominated by the
bosonic component, the pure boson star solutions are re-
covered. For m = {1, 10} · 1.34 × 10−10 eV, the regions
in Fig. 2 extend to lower masses with similar apparent
compactness. These results are consistent with the lines
shown in [75]. A look at Fig. 3 reveals the behavior of
these solutions. For m = 1.34×10−9 eV, the bosonic com-
ponent is predominantly inside the fermionic one as a DM
core. For m = 1.34×10−10 eV, the bosonic and fermionic
distributions have a similar extent, for low DM mass frac-
tion the compactness is increased, while for higher DM
mass fraction the compactness decreases as the DM forms
a cloud. This is similar to the behavior seen in [90] for a
different mass range, where increasing the DM mass frac-
tion leads to cloud formation. For m = 1.34× 10−11 eV,
the bosonic component completely envelops the fermionic
one in a cloud and can significantly decrease the com-
pactness of the object (notice the different scales on the
x-axis). The apparent compactness of the fermionic part
increases on the other hand. Here, only observing the
fermionic radius as in Fig. 2 would seem like a violation
of GR, as the apparent compactness exceeds the Buch-
dahl limit of 4/9.

The relation between tidal deformability and total
gravitational mass is plotted in Fig. 4. Here, we show
the dimensionless tidal deformability Λtidal = λtidal/M

5.
In blue-bordered lines, the tidal deformability of the DD2
EoS is shown, while the tidal deformability of a pure bo-
son star is shown in yellow-bordered lines. The latter

agrees with the trend lines shown in [83].
For m = 1.34× 10−9 eV, the DM is mostly confined to

the inner part of the neutron star as a core and therefore
does not affect the tidal deformability significantly. Only
for stars completely dominated by DM, the results are
close to the pure boson star solutions. For larger inter-
actions Λint ≈ 100, the tidal deformability is decreased.

For m = 1.34× 10−11 eV on the other hand, where the
bosonic component forms a cloud, there is a significant
effect on the tidal deformability. The tidal deformabil-
ity of boson stars is much higher than the one of purely
fermionic ones, so even small amounts of DM can signif-
icantly increase the tidal deformability of the FBS. For
constant ρc, the tidal deformability increases orders of
magnitude as ϕc increases. Then, there is a turning point
where the tidal deformability decreases while increas-
ing total gravitational mass and converges to the purely
bosonic solutions. Overall, this opens up a vast new pa-
rameter space, even for small DM mass fractions. While
the presence of these bosonic clouds in small quantities
would barely be observable in the mass-radius plane, it
would clearly affect the tidal deformability even in small
quantities, as visible in Fig. 5.

For m = 1.34 × 10−10 eV, the behavior is more de-
pendent on the interaction strength Λint. For weaker
interactions, the tidal deformability stays roughly in the
same order of magnitude for constant ρc, while slowly
converging to the pure bosonic solution for increasing ϕc.
For stronger interactions, the tidal deformability actually
increases as it converges to the bosonic solution, as the
bosonic component starts to form a cloud. This behavior
is consistent with the observations of [57], where an effec-
tive EoS was used for modeling the bosonic component.

B. Comparison to Observational Constraints

There are measurements of the (fermionic) radius of
neutron stars by the NICER telescope, tracking hot spots
on their surface with X-ray observations. For the mil-
lisecond pulsar PSR J0030+0451 they derive the con-
straints on the mass M = 1.34+0.15

−0.16 M⊙ (68%) and ra-
dius R = 12.71+1.14

−1.19 (68%) [17]. A second, heavier mil-
lisecond pulsar PSR J0740+6620 has been measured at
M = 2.07+0.07

−0.07 M⊙ (68%) with radius R = 12.39+1.30
−0.98 km

(68%) [20]. These measurements constitute only two sin-
gle points on the mass-radius curve (in the neutron star
case) or region (in the FBS case), but it can show which
curves/regions would support the existence of such stars.

We plot the posterior distributions of these measure-
ments in Fig. 5 which should be compared to the regions
in Fig. 2, where the fermionic radius is plotted.

The FBS solutions with a core become more compact
depending on the DM fraction. For higher DM fraction,
they are not able to produce the maximum mass required
by the PSR measurements. DM cloud solutions on the
other hand can easily reach higher maximum masses.
This is in accordance with [90], who modeled the FBS
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FIG. 5: Left panel: Resulting mass and radii of FBS for the two cases of m = 1.34 × 10−10 eV and m = 1.34 × 10−11 eV
shown together with constraints from HESS J1731-347 [91], PSR J0030+0451 [17], PSR J0740+6620 [20], PSR J1311-3430
[92] and J0952-0607 [8]. In both cases, the self-interaction was set to zero and the percentage number denotes the DM mass
fraction. For the NICER and HESS measurements, dashed lines display the 1σ, while straight lines show the 2σ regions. Right
panel: Dimensionless tidal deformability for the same set of parameters shown together with the constraint coming from the
GW170817 event [24].

with an effective EoS and also included the changing
photon geodesics due to the DM cloud, and [52] who
performed a Bayesian analysis with the effective EoS.

Another measurement comes from the supernova rem-
nant HESS J1731-347. Modeling the X-ray spectrum
with accurate distance information from GAIA, they re-
port a mass of M = 0.77+0.20

−0.17 M⊙ (68%) with radius
R = 10.4+0.86

−0.78 km (68%) [91]. This is an unusually light
neutron star, which standard star evolution theory strug-
gles to explain, see e.g. [93]. The authors of [91] propose
it to be a strange star, but looking at Fig. 2, this region
is also well populated by DM core solutions. Of course,
one would have to repeat their analysis with an actual
bosonic component to get accurate constraints, which we
leave for future work.

Lastly, there is the observation of GW170817, a bi-
nary neutron star merger. Reference [24] has derived con-
straints with minimal assumptions on the nature of the
compact objects. They use a mass-weighted linear combi-
nation of the individual tidal deformabilities and cite an
upper limit of 630. Alternatively, assuming neutron stars
with the same EoS, ref. [23] has derived constraints on
the tidal deformability with the help of universal relations
[94, 95]. These constraints are not perfectly applicable
to our case, as the I-Love-Q relations are not necessarily
applicable (although they might be [59] – we leave this
for future work) and our two FBS stars might have the
same EoS but different DM mass fractions. Nevertheless,
we can make some initial guesses. It can be seen that the
measurements generally favor lower tidal deformabilities.
Extrapolating this to Fig. 4, this would mean that the
DM cloud scenarios with larger tidal deformability are
disfavored. Favored on the other hand are DM core situ-

ations, which can lower the tidal deformability. A more
thorough analysis might place quantitative constraints on
these models, which we leave for future work.

Previous studies using an effective EoS description for
the bosonic component reach similar conclusions and
have placed initial constraints on different mass ranges,
such as [57, 79, 96].

Overall, the different measurements seem complemen-
tary, and combining them in a proper analysis might
significantly constrain the parameter space. DM cloud
solutions can have large tidal deformabilities, even for
small DM fractions, these would most likely be observ-
able in LVK measurements. DM core effects on the tidal
deformability on the other hand can hide inside neu-
tron stars and only slightly change the properties even
for larger DM fractions. But core solutions can explain
the HESS measurement, and assuming different DM frac-
tions for different stars, they are not ruled out by the
maximum mass measurement. Of course, these effects
are somewhat degenerate with the neutron star EoS.
Breaking these degeneracies requires other methods, such
as looking at correlations in the galactic DM distribution
with the neutron star (FBS) mass distribution [79, 96].

V. COMPARISON WITH AN EFFECTIVE EOS

Due to the significant numerical effort associated with
solving the full system of equations (eqs. 10 - 13) self-
consistently, earlier studies [78, 80] have used an effective
EoS P (e) for the scalar field, treating it like a perfect fluid
with pressure P and total energy density e. The effec-
tive EoS was originally derived in [78] for the cases where
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FIG. 6: Distribution of the relative error (e.g. |Λtidal,full −
Λtidal,eff |/Λtidal,full) of the dimensionless tidal deformability
Λtidal (upper panel) and total mass Mtot (lower panel) as a
function of Λint. For example, the straight line shows the
boundary, below which half of the FBS configurations lie,
meaning that half of them have a relative error of less than
the shown value for a given Λint. Subscripts of full and eff
denote quantities obtained from the full system and from the
effective EoS, respectively. Only stable FBS were considered
for the relative error at a given Λint and computations were
performed for m = 6.7×10−11 eV. The agreement between the
full system and the effective EoS becomes generally better for
large Λint, however, at some point, numerical inaccuracies in
the full system dominate the relative error, which starts to be
problematic for Λint ≳ 400.

Λint = λ/8πm2 > 0 is large (strong self-interactions). It
models exclusively the ground state of the scalar field and
assumes an isotropic energy-momentum tensor (which is
only valid in the given limit). The EoS has the advan-
tage that the scalar field must not be solved for directly,
and the evolution equations simplify to the default TOV-
equations. The effective EoS is given by

P =
4

9
ρ0

[(
1 +

3

4

e

ρ0

)1/2

− 1

]2
, (34)

where ρ0 = m4/2λ. Note that our expressions for ρ0
and Λint deviate from [78, 80] by a factor of two due to
the different normalization of the scalar field Φ and the
self-interaction parameter λ in the potential (32). The
authors of [80] used the effective EoS in a two-fluid sys-
tem of perfect fluids, which interact only gravitationally,
to compute the tidal deformability of FBS. In the follow-
ing, we compare the results obtained from integrating the
two-fluid model (see [80] for details) and from solving the

full system (10-13). In addition, the tidal deformability
is computed as one would for a single-fluid system (de-
tails in [80]) for the two-fluid model, and as described in
section III for the full system.

For the initial conditions of the two-fluid model we
choose the same conditions as in [80]. For better compa-
rability between the full system and the effective EoS, we
first want to find an expression relating the scalar field
ϕ to the energy density eeff of the effective fluid. To de-
rive this relation, we set the Ttt component of Eq. (4)
equal to the Ttt-component of a perfect fluid (therefore
T

(Φ)
tt

!
= eeff · ev, and use the approximations used in [78]

(i.e. neglecting spatial derivatives). We obtain an ex-
pression that depends only on the scalar field value ϕ (see
Eq. (17)), the scalar field mass m and the self-interaction
parameter λ

eeff(ϕ) = 2m2ϕ2 +
3

2
λϕ4, (35)

where e−vω2 = m2+λϕ2 was substituted using the Klein-
Gordon equation (10). Equation (35) holds for all radii
(under the approximations stated above). To get the
initial conditions for eeff,c, one simply plugs in the corre-
sponding central value of the scalar field ϕc.

Figure 6 shows the relative error ϵrel for the quanti-
ties Mtot and the tidal deformability Λtidal, computed
using the full system and the effective two-fluid system,
with respect to Λint. It can be seen that the errors (the
shaded regions) generally decrease for increasing Λint.
This is consistent with the assumption that the effective
EoS Eq. (34) becomes exact only in the limit of strong
self-interactions. For small Λint the relative error reaches
100% for the total mass and diverges for the tidal de-
formability. This is to be expected since the total mass
converges to zero for pure boson stars when using the ef-
fective EoS in the limit Λint → 0 (see fig. 2 in [78]), while
it reaches a constant value when computing the mass us-
ing the full system. Likewise, due to the definition of
the tidal deformability (see above), a diverging error is
to be expected. For Λint ≈ 100 the maximal error of the
total mass (tidal deformability) is on the order of 88%
(> 104 %), whereas the lower 95-th percentiles of errors
are noticeably smaller at around < 47% (< 240%). This
means that only 5% of the computed configurations have
relative errors higher than 47% (250%). The median er-
ror denoted by the solid blue line is around 1% (2%).
At Λint = 300 the maximal error reaches 85% (> 104 %)
and the median error reaches 0.4% (0.8%). Asymptoti-
cally, the error is constrained by floating-point precision
and the inherent error of the effective EoS as compared
to the full system.

To gain a better understanding how the effective EoS
and the full system compare, we compute the tidal de-
formability Λtidal using both systems. The left panel
of figure 7 shows the tidal deformability of pure bo-
son stars calculated for different self-interaction strengths
Λint = {10, 100, 200, 400}. The solid lines show the so-
lutions using the full system and the dashed lines are
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FIG. 7: Left panel: Tidal deformability Λtidal plotted against the total gravitational mass Mtot for pure BS and various
self-interaction strengths Λint. The boson mass is m = 6.7× 10−11 eV in all cases. The solid lines are the values obtained using
the full system eqs. (10-13) and the dashed lines are the corresponding solutions using the effective bosonic EoS Eq. (34). Right
panel: Tidal deformability Λtidal with respect to the total gravitational mass M of different FBS for different self-interaction
strengths Λint. The boson mass is m = 6.7 × 10−11 eV in all cases. All lines have a constant central value of the scalar field
ϕc = 0.02, but different central densities ρc. Only stars within the stability region are shown. The solid lines are the values
obtained using the full system eqs. (10-13) and the dashed lines are the corresponding solutions using the effective bosonic EoS
Eq. (34).

the values obtained using the effective EoS. The effective
EoS can qualitatively reproduce the solution of the full
system, even for small Λint. With increasing lambda, the
agreement between full and effective system becomes bet-
ter. At around Λint = 400, the quantitative agreement
reaches a few % relative difference.

Next, we consider the case for mixed configurations
with nonzero scalar field- and central density. The right
panel of Fig. 7 shows the tidal deformability with re-
spect to the FBS mass. Several curves of constant cen-
tral scalar field ϕc were calculated at different Λint =
{10, 100, 200, 400}. The choice of constant ϕc is per se
arbitrary but was made for the sake of simpler compara-
bility with future works. The solid lines show the solu-
tions obtained using the full system and the dashed lines
were computed with the effective EoS (all other values
being equal). With increasing Λint, the solutions using
the effective EoS agree with the full system with increas-
ing accuracy. Even though at lower Λint < 200 the devi-
ations are quite large, the qualitative trend is correctly
recovered. At Λint = 400, both systems produce rea-
sonably similar results (within a few % of relative differ-
ence). This supports the usage of the effective EoS for
large Λint ≳ 400 also for the computation of the tidal
deformability Λ.

A few notes on the usefulness of the effective EoS
Eq. (34) and the two-fluid system: We were able to ver-
ify the general notion, that the effective EoS becomes
asymptotically more accurate, for most configurations.
However, a significant percentage of FBS configurations
with high relative errors remain, especially when con-

sidering the tidal deformability, where the relative error
surpasses 200% for roughly five percent of all configura-
tions. This is due to the different low mass limits and
the definition of the dimensionless tidal deformability.
Nevertheless, we conclude that the usage of the effec-
tive EoS is justified in the cases where Λint ≳ 400, as
the errors are acceptable for most (massive) configura-
tions. Of course, solving the full system eqs. (10-13) will
always yield the exact results in theory. In practice, it
can be numerically difficult to integrate the full system
at high Λint ≳ 400 because (1) the frequency ω must be
tuned up to higher accuracy than what is possible using
64-bit floating-point numbers and (2) increasingly small
step-sizes are needed, to solve the equations correctly.
During our tests, we could determine that the more rele-
vant constraining factor is the high needed accuracy for
ω, rather than the step-size. Smaller initial ϕc lead to
larger bosonic radii ≫ 10 km, for which the numerical
integration becomes problematic. This concerns 5% of
the considered configurations. In contrast, the two-fluid
system together with the effective bosonic EoS is numer-
ically robust and does not require numerical root-finding
for ω, and can manage well with larger numerical step-
sizes. With equal step-sizes and initial conditions, the
two-fluid system takes around two orders of magnitude
less computation time than solving the full system. The
speedup can be increased further when considering that
the two-fluid system also tolerates larger step-sizes while
staying numerically accurate.
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VI. CONCLUSIONS

In this work, we considered the impact of a complex
scalar field on the mass and tidal deformability of neu-
tron stars. The scalar field was assumed to be massive
and self-interacting, but to only interact gravitationally
with the fermionic neutron star matter. We derived the
equations describing the linear perturbations of the com-
bined FBS system induced by the presence of an exter-
nal gravitational tidal field and numerically solved them
to obtain the tidal deformability of the combined sys-
tem. We found that the scalar field masses m and self-
interaction strengths λ which result in the core-like con-
figurations of the dark matter lead to objects with higher
compactness and reduced tidal deformability. This is the
case for masses m ≳ 1.34×10−10 eV. However, large self-
interactions λ allow for higher FBS masses or can in some
cases result in cloud-like configurations. In some of these
cases, observing only the fermionic radius would appear
to violate the Buchdahl limit.

When comparing the results to available observational
data of pulsars, it becomes clear that their uncertain-
ties are currently too large (apart from the pulsar mass
measurements) to derive quantitative constraints on the
dark matter component. The degeneracy of the effects of
DM in the FBS with the EoS poses an additional chal-
lenge. As certain DM masses can increase the total mass
of the system while leaving the fermionic radius roughly
constant, this makes previously excluded EoS possible
again, if they appear in a mixed configuration of NS mat-
ter and DM. Likewise, the unusually light neutron star
HESS J1731-347 is difficult to reconcile with known high-
mass pulsar measurements, using a regular EoS.

The relatively weak constraint from GW170817 on the
tidal deformability (Λtidal ≤ 800 at Mtot ≈ 1.4M⊙) is
currently also not strong enough to significantly narrow
down the dark matter properties. With the upcoming
joint run of LIGO, Virgo and KAGRA, we expect more
observational data, which will enable us to derive quan-
titative constraints. We plan to investigate how to con-
strain dark matter properties using these observations in
the future.

In addition to solving for the scalar field explicitly, we
also utilized an effective EoS to describe its contribution
to the stress-energy-tensor and reduce the complexity of
this model to a two-fluid system. This approach was
recently used by [80] to compute the tidal deformability.
In this work, we compared the result of using the effective
EoS to solving the full system of equations. We found
that for m = 6.7 × 10−11 eV and interactions strengths
Λint > 300− 400 with Λint = λ/(8πm2), the usage of the
effective EoS is typically justified. We do not expect this
conclusion to be dependent on the value of the mass m,
but rather only on Λint. Still, even for large values of
Λint, we find a significant number of configurations with
relative errors of > O(102).

Finally, it would be interesting to study the exact im-
pact the additional scalar field has on binary merger dy-

namics. In [97] this was initially studied for a non-self-
interacting scalar field. In general, it will be necessary to
extend this study to also account for self-interactions, as
this can drastically modify the FBS properties and thus
impact the observed gravitational wave signal. We will
study this in detail in the future.
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Appendix A: Units

In this work, we considered units in which c = G =
M⊙ = 1. As a direct consequence, distances are mea-
sured in units of ≈ 1.48 km, ℏ ≈ 1.2 × 10−76 ̸= 1 and
mplanck =

√
ℏc/G ≈ 1.1× 10−38.

We describe the Boson star using the Klein-Gordon
equation, which in SI units and flat spacetime reads as
(□ − (mc/ℏ)2)ϕ = 0. The term mc/ℏ is the inverse of
the reduced Compton-wavelength λc = ℏ/mc, which sets
the typical length scale for the system even in the self-
gravitating case. Setting it equal to the gravitational ra-
dius GM/c2, which in the case of mass-scales of ∼ M⊙ is
approximately 1.48 km, leads to m = ℏ/cλc, which corre-
sponds to 1.34×10−10 eV, which then also automatically
results in Boson stars with masses ∼ 1M⊙. Previous
works such as e.g. [71] therefore specify the mass of the
scalar particle in units of 1.34× 10−10 eV.

Appendix B: Alternative Conventions

There is an alternative convention for the metric used
in some publications, e.g. [71], where the spherically sym-
metric, stationary metric is described by

ds2 = −α(r)2dt2 + a(r)2dr2 + r2(dθ2 + sin2 θdϕ2) (B1)

The ODEs for the equilibrium solution Eq. (10)-(13) are
then given by

ϕ′′
0 =

[
−ω2a2

α2
+ a2V ′

]
ϕ0 +

[
a′

a
− α′

α
− 2

r

]
ϕ′
0 (B2)

a′ =
a

2

[
1− a2

r
+ 8πra2

(
ω2ϕ2

α2
+ V +

ϕ′
0
2

a2
+ ρ(1 + ϵ)

)]
(B3)
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α′ =
α

2

[
a2 − 1

r
+ 8πra2

(
ω2ϕ2

α2
− V +

ϕ′
0
2

a2
+ P

)]
(B4)

P ′ = − [ρ(1 + ϵ) + P ]
α′

α
(B5)

where V = V (ϕϕ̄). Plugging in the quartic potential
Eq. (32), this would give the same equations as in [71],

except for a different normalization of the field ϕ0, which
differs by a factor of

√
2.

Making an ansatz for the pertubations as in Eq. (21)

hµν = Y20(θ, φ)×
diag

(
−α(r)2H0(r), a(r)

2H2(r), r
2K(r), r2K(r) sin2 θ

)
,

(B6)

and performing the same steps leads to the perturbation equations for H0, ϕ1 gives

H ′′
0 −

[
a′

a
− α′

α
− 2

r

]
H ′

0 (B7)

−
[
8πω2ϕ2

0

a2

α2

1− c2s
c2s

+ 8πϕ′
0
2 1 + 3c2s

c2s
− 2

α′′

α
+ 2

α′a′

αa
+ 4

α′2

α2
− a′

ra

1 + 3c2s
c2s

− α′

rα

1 + 7c2s
c2s

+ 6
a2

r2

]
H0

= 16π

[
ω2ϕ0

a2

rα2

c2s − 1

c2s
+ ϕ0V

′ a
2

r

1 + c2s
c2s

− ϕ′′
0

r

1 + 3c2s
c2s

+ ϕ′
0

a′

ra

1 + 3c2s
c2s

+ ϕ′
0

α′

rα

c2s − 1

c2s
− 2

ϕ′
0

r2
1 + 3c2s

c2s

]
ϕ1

ϕ′′
1 =

[
a′

a
− α′

α

]
ϕ′
1 +

[
−ω2 a

2

α2
+ 32πϕ′

0
2
+ 2ϕ2

0a
2V ′′ + a2V ′ − a′

ra
+

α′

rα
+ 6

a2

r2

]
ϕ1 (B8)

+

[
ω2rϕ0

a2

α2
− rϕ′′

0 +

(
r
a′

a
+ r

α′

α
− 2

)
ϕ′
0

]
H0

which need to be complemented with the explicit description for α′′

α′′ = 4πω2
[
2rϕ2

0aa
′ + 2rϕ0a

2ϕ′
0 + ϕ2

0a
2
] 1
α
+

[
4πra2

(
−ω2ϕ2

0

α2
+ P − V +

ϕ′
0
2

a2

)
+

a2 − 1

2r

]
α′ (B9)

+

[
4πr(2Paa′ − 2V aa′ − 2ϕ0a

2ϕ′
0V

′ + a2P ′ + 2ϕ′
0ϕ

′′
0) + 4πa2(P − V ) + 4πϕ′

0
2
+

aa′

r
+

1− a2

2r2

]
α

We have implemented both conventions into our code and checked that they give the same results.
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