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Inspirals of an intermediate mass black hole (IMBH) and a solar mass type object will be observable by
space based gravitational wave detectors such as the Laser Interferometer Space Antenna. A dark matter
overdensity around an IMBH—a dark matter spike—can affect the orbital evolution of the system.
We consider here such intermediate mass ratio inspirals on eccentric orbits, experiencing dynamical friction
of the dark matter spike. We find that by including the relative velocities of the dark matter particles, the
dynamical friction tends to circularize the orbit, in contrast to previous inquiries. We derive a general
condition for circularization or eccentrification for any given dissipative force. In addition to the dephasing,
we suggest using the circularization rate as another probe of the dark matter spike. Observing these effects
would be an indicator for the particle nature of dark matter.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) has
opened a fundamentally new window into the Universe.
The Laser Interferometer Gravitational-Wave Observatory
(LIGO) collaboration has seen the first binary black hole
merger, and, together with the Virgo collaboration, has
already collected a sizable catalogue of binary black hole
and neutron star mergers by now [1,2]. These compact
binary mergers allow new and unprecedented tests of
general relativity and matter at extremely high densities
[3,4]. In addition to ground-based detectors such as LIGO
and Virgo, there are several space-based observatories
planned, such as Laser Interferometer Space Antenna
(LISA) [5], Taiji [6], and TianQuin [7].
Meanwhile, the nature of dark matter continues to elude

direct and indirect detection probes [8,9]. First proposed to
explain galactic rotation curves, and integral to the success
of the standard cosmological ΛCDM model, the hunt for
dark matter has been going on for decades, with no fruitful
results. The ΛCDM model utilizes cold, collisionless dark
matter particles virializing into halos and seeding the
formation of structures in the universe. On small scales,
the effects of dark matter are more uncertain and a plethora
of models have been proposed [10].
While LIGO mostly observes solar mass binary mergers,

LISA will be able to observe IMBHs with masses ranging

from 102–106 M⊙. IMBHs have been detected, but their
origin and evolution is not well understood as of now [11].
Around these IMBHs, on very small scales, a dark matter
halo could grow adiabatically into a dark matter spike
[12,13]. These spikes have an extremely high local density
and would gravitationally interact with any object passing
by. During an intermediate mass ratio inspiral (IMRI),
where a stellar mass object inspirals onto an IMBH, the
dark matter spike can leave its imprint by modifying the
orbital evolution.
This has first been explored in [14,15], where the authors

predicted a dephasing of the GW signal due to dynamical
friction which the secondary object experiences while
passing through the dark matter spike [16]. This slows
down the object and results in a faster inspiral, which would
be observable in the phase evolution of the GW signals that
can be detected by LISA [17,18].
Additionally, if the secondary object is also a black hole,

it will accrete (i.e., absorb) some of the dark matter as it
passes through the spike. This was first explored in [19] and
later [20], where the accretion effects were found to be
subdominant to dynamical friction effects, but still impor-
tant on the long timescales involved. Then, [21,22] looked
at eccentric orbits, instead of using the circular approxi-
mation that was employed before, and found there to be an
eccentrification of the orbits. This would mean that the
circular approximation cannot be utilized, and that we
should expect most IMRIs in dark matter spikes to be
highly elliptical.
Meanwhile, [23] developed a model that promoted the

dark matter spike from a background actor to an integral
part of the evolution with the halo feedback model: As the
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secondary object passes through the spike, it loses momen-
tum, which is transferred into the dark matter halo and
locally depletes it. This results in a lower dark matter
density and less dynamical friction effects, and thus in a
longer inspiral compared to the static halo case. As the
object inspirals, the depleted region moves inward with it
and the outer region is refilled, leaving the spike itself
mostly intact. Nevertheless, this halo feedback model relies
on the circular orbit approximation, which according to
[21,22] would be an unrealistic scenario.
The motivation in this paper is to model IMRIs on

elliptical Keplerian orbits with GW emission, dynamical
friction, and include the relative velocities by means of the
phase space description of the dark matter halo in one
consistent framework. We find orbital circularization
instead of eccentrification through dynamical friction.
We explore the evolution and GW signal from different
initial conditions and different model parameters. We
derive a condition for eccentrification and circularization
for general dissipative forces acting on the secondary
object. We derive the circularization rate depending on
the dark matter spike properties, which can be used as
another probe of the spike and thus dark matter particle
properties.
The structure of the paper is as follows. In Sec. II, we

explain the theoretical framework to model the orbital
evolution of the IMRI and its GW emission. In Sec. III we
present our numerical results. We analyse them in Sec. IV.
Finally, we draw our conclusions in Sec. V.
Throughout the paper we adopt geometrized units

with c ¼ G ¼ 1.

II. IMRI MODELING

A. Dark matter spike

We consider an IMRI in which the central mass m1 is
assumed to be surrounded by a static, spherically sym-
metric dark matter spike. This spike can develop by
adiabatic growth of the central black hole. Initially, a black
hole seed grows by accretion of the surrounding halo, and
the slow increase of the potential concentrates the dark
matter particles into a density spike [12,13,24].
The existence of spikes around black holes is not certain.

They might be disrupted by processes such as major
mergers, and the models require the black holes to be in
the center of the dark matter halo. The dark matter particles
have to be nonannihilating and rather cold [18].
Nevertheless, their existence would be an indicator of
the particle nature of dark matter and could reveal much
about their host black hole’s history [24].
We adopt the description proposed in [18] and describe the

dark matter density around the IMBH by a simple power law

ρdmðrÞ ¼ ρ6

�
r6
r

�
αspike

; rin < r < rspike ð1Þ

with the radius from the central black hole r and the reference
radius r6 ¼ 10−6 pc. Following [13], the inner radius is
chosen tobe rin ¼ 4m1. The spike radius rspike is themaximal
radius of the spike, which can be obtained by comparing the
gravitational influence of the central black hole to the total
spike mass [15]. The range of the power law index is
1 < αspike < 3. Different origins of the spike can give
different values for αspike, such as αspike ¼ 7=3 for an
NFW halo forming a spike [15], αspike ¼ 7=4 for self-
interacting dark matter (SIDM) forming a spike [25], or
αspike ¼ 9=4 for a dark matter spike around primordial black
holes [26].
The description found in other literature with ρdmðrÞ ¼

ρspikeðrspiker Þαspike can be recovered using [18]

ρspike ¼ ðρ6rαspike6 ðkm1Þ−αspike=3Þ3=ð3−αspikeÞ

rspike ¼
�
km1

ρspike

�
1=3

k ¼ 3 − αspike
2π

0.23−αspike :

The dark matter particles in the halo can be described
by an equilibrium phase space distribution function
f ¼ dN=d3rd3v, describing the number density per phase
space volume. In our case, since the halo is spherically
symmetric, f ¼ fðEÞ, where E is the relative energy per
unit mass

Eðr; vÞ ¼ ΨðrÞ − 1

2
v2 ð2Þ

with the relative Newtonian gravitational potential ΨðrÞ.
Close to the black hole, this is simply ΨðrÞ ¼ m1

r .
Gravitationally bound particles are those with E > 0.
For a given spherically symmetric density profile ρðrÞ,

the distribution function fðEÞ can be obtained by the
Eddington inversion procedure [27]. For the power law
spike, this is given by

fspikeðEÞ ¼
αspikeðαspike − 1Þ

ð2πÞ3=2 ρ6

�
r6
m1

�
αspike

×
Γðαspike − 1Þ
Γðαspike − 1

2
Þ E

αspike−3=2 ð3Þ

with the Gamma function Γ. This gives us a lower bound on
αspike > 1. The upper bound αspike < 3 is derived from the
requirement that the enclosed mass is finite.
The density for a given distribution function is recovered

through

ρðrÞ ¼ 4π

Z
vmaxðrÞ

0

v2f

�
ΨðrÞ − 1

2
v2
�
dv ð4Þ
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with the escape velocity at radius r given by vmaxðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2ΨðrÞp

.

B. Orbital evolution

The IMRI system consists of a central mass m1 and a
secondary object m2, both of which are assumed to be
Schwarzschild black holes for simplicity as depicted in
Fig. 1. The secondary object is assumed to be on a
Keplerian orbit around the central mass. The system emits
GWs that might be observable by future GW detectors such
as LISA. Through this GW emission and other dissipative
forces, the secondary object loses orbital energy and
angular momentum, leading to an inspiral orbit.

1. Keplerian orbit

The secondary object is assumed to be on a Keplerian
orbit around the central mass. Here, we ignore the addi-
tional dark matter contribution to the total and reduced
mass μ of the Keplerian system and assume m ¼ m1 þm2,
μ ¼ m1m2

m , respectively. This is a decent approximation,
since we are looking at systems close to inspiral. These
have small orbital separations that are gravitationally
dominated by the central black hole, because the total
enclosed mass of the spike up to the location of the orbiting
object is much smaller than the mass of the central black
hole, mdmðr ¼ 105riscoÞ ≪ m1. Here, risco refers to the
radius of the innermost stable circular orbit for massive
objects, which is risco ¼ 6m1 for a Schwarzschild black
hole. Following [28], the inclusion of the gravitational

influence of the spike as a perturbative force would
primarily lead to orbital precession, which we neglect in
this paper.
Any Keplerian orbit can be described by two parameters,

the semimajor axis a and the eccentricity e. For a bound
orbit, we have 0 ≤ e < 1, where e ¼ 0 describes a circu-
lar orbit.
The orbital energy is given by [29]

Eorb ¼ −
mμ

2a
ð5Þ

and the angular momentum Lorb is given by the following
relation

e2 − 1 ¼ 2EorbL2
orb

m2μ3
: ð6Þ

Throughout one orbit, the radius and the velocity of the
orbiting object at the true anomaly ϕ can be obtained by the
relations

r ¼ að1 − e2Þ
1þ e cosϕ

ð7Þ

v2 ¼ m

�
2

r
−
1

a

�
; ð8Þ

while the mean orbital frequency is given analogously to
the circular case by

F ¼ 1

2π

ffiffiffiffiffi
m
a3

r
: ð9Þ

2. Dissipative forces

The orbit is assumed to lose energy on a secular
timescale much larger than the orbital timescale. This
assumption allows us to use the Keplerian orbits to
calculate the forces acting on the object. Over many orbits,
these forces then lead to a change in the orbital parameters.
To model the dissipative forces, we use the force term
Fðr; vÞ depending on the distance r and the velocity v of
the secondary object.
The energy and angular momentum loss for a given

dissipative force are obtained by averaging over one orbit
with orbital period T [21],

�
dE
dt

�
¼

Z
T

0

dt
T
dE
dt

¼ −
Z

T

0

dt
T
Fðr; vÞv; ð10Þ

�
dL
dt

�
¼
Z

T

0

dt
T
dL
dt

¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mað1−e2Þ

q Z
T

0

dt
T
Fðr;vÞ

v
: ð11Þ

The second equation is derived in Appendix A. These
integrals can be computed by the following relation, which
is valid for an arbitrary function Gðr; vÞ [29],

FIG. 1. A sketch of the Keplerian system with masses
m1 ≫ m2, semimajor axis a, and eccentricity e inside the dark
matter halo ρdm. In Eq. (7), we have ϕ ¼ π − φ, such that ϕ ¼ 0
is the periapsis, the closest point in the orbit, and ϕ ¼ π the
apoapsis, the farthest point in the orbit.
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Z
T

0

dt
T
GðrðtÞ; vðtÞÞ ¼ ð1 − e2Þ32

Z
2π

0

dϕ
2π

GðrðϕÞ; vðϕÞÞ
ð1þ e cosϕÞ2

ð12Þ

and with the help of Eqs. (7) and (8).
Thus, for a given force Fðr; vÞ, we can compute the

energy and angular momentum loss either analytically or
numerically using Eqs. (10) and (11).
The specific effects considered here are GW emission

loss and dynamical friction. Each can be modeled as a force
and lead to a loss of orbital energy over secular timescales

dEorb

dt
¼

�
dEgw

dt

�
þ
�
dEdf

dt

�
: ð13Þ

Similarly, the angular momentum of the orbit dissipates
over secular timescales as

dLorb

dt
¼

�
dLgw

dt

�
þ
�
dLdf

dt

�
: ð14Þ

Gravitational waves
The GW emission terms are given by [29]

�
dEgw

dt

�
¼ −

32

5

μ2m3

a5
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2 ; ð15Þ

�
dLgw

dt

�
¼ −

32

5

μ2m5=2

a7=2
1þ 7

8
e2

ð1 − e2Þ2 : ð16Þ

Dynamical friction
The dynamical friction is given by the Chandrasekhar

equation [16,23]

FDFðr; vÞ ¼
4πm2

2ρdmðrÞξðvÞ logΛ
v2

ð17Þ

with the Coulomb logarithm logΛ. The values for the
Coulomb logarithm in the literature are logΛ ¼
f3; 10; log ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p g [15,21,23]. In this paper, we adopt
the value used in [23], logΛ ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
. The factor

ξðvÞ accounts for the fact that the particles in the dark
matter halo are moving with different velocities relative to
the orbiting object, first introduced in [23]. Dark matter
particles only scatter and absorb momentum from the
orbiting object if they are moving with a slower velocity
compared to it.
To calculate the density of particles moving slower than

the orbital speed v, we can use Eq. (4)

ρdmðrÞξðvÞ ¼ 4π

Z
v

0

v02f
�
ΨðrÞ − 1

2
v02

�
dv0: ð18Þ

Numerically, we find ξðvÞ ∼ ðv=vorbÞ3 for v < vmax, inde-
pendent of radius. Only the circular orbital velocity

vorb ¼
ffiffiffi
m
a

p
changes with radius. This means that for

circular orbits (as in [23]), where the secondary object
always moves at v ¼ vorb, this can be approximated as a
constant. In the above reference, a value of ξðvÞ ≈ 0.58 for
a static halo with α ¼ 7=3 has been calculated, but as we
are looking at Keplerian orbits, the velocity of the orbiting
object changes throughout one orbit. Therefore we cannot
approximate it as a constant and instead need to include the
phase space description into the differential equations.

3. Orbital evolution

We are interested in the secular evolution of the orbital
parameters aðtÞ, eðtÞ and the mass of the secondary object
m2ðtÞ under the backreaction of the dissipative forces.
We can use Eq. (5) to obtain

∂Eorb

∂a ¼ m2m1

2a2
ð19Þ

da
dt

¼ dEorb

dt

� ∂Eorb

∂a : ð20Þ

In a similar fashion, the evolution for e can be derived from
Eq. (6) as

de
dt

¼ −
1 − e2

2e

�
dEorb

dt
=Eorb þ 2

dLorb

dt
=Lorb

�
: ð21Þ

By combining Eqs. (20) and (21) with Eqs. (13) and (14),
we obtain a system of differential equations that can be
solved numerically.

C. Gravitational wave signal

The binary system emits GWs as a result of the change in
the quadrupole moment. The system can be described with
two polar angles { and β. The inclination angle { is given
by the inclination of the plane of the orbit to the plane of
the sky, while β is the angle formed by the major axis and
the direction of the observer in the orbital plane (see for
example Fig. 1 in [30]). The gravitational strain calculation
of the two polarizations for a Keplerian orbit yields [31]

hþ ¼ −
mμ

pDL

��
2 cosð2ϕ − 2βÞ þ 5

2
e cosðϕ − 2βÞ

þ 1

2
e cosð3ϕ − 2βÞ þ e2 cosð2βÞ

�
ð1þ cos2{Þ

þ ðe cosϕþ e2Þsin2{
	

ð22Þ

h× ¼ −
mμ

pDL
½4 sinð2ϕ − 2βÞ þ 5e sinðϕ − 2βÞ

þ e sinð3ϕ − 2βÞ − 2e2 sinð2βÞ� cosð{Þ ð23Þ
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for a system at luminosity distance DL and semilatus
rectum p ¼ að1 − e2Þ.

1. Harmonic decomposition

The GW signal can be decomposed into the harmonics of
the mean orbital frequency as follows [30,32]

hþ;× ¼ A
X∞
n¼1

ðCðnÞ
þ;× cosðnlÞ þ SðnÞþ;× sinðnlÞÞ ð24Þ

with the mean anomaly

lðtÞ ¼
Z

t
dt2πF ð25Þ

and the amplitude

A ¼ −
Mc

DL
ð2πMcF Þ2=3: ð26Þ

that depends on the chirpmassMc¼μ3=5m2=5 of the system.
The coefficients CðnÞ

þ;×; S
ðnÞ
þ;× can be obtained by using

Eq. (7) and the Fourier-Bessel expansion of the orbital
motion, as described in [30,32,33]. This gives the coef-
ficients [34]

CðnÞ
þ ¼ −

�
2s2{ JnðneÞ −

2

e2
ð1þ c2{ Þc2βððe2 − 1ÞJnðneÞ þ neð1 − e2ÞðJn−1ðneÞ − Jnþ1ðneÞÞÞ

	
; ð27aÞ

SðnÞþ ¼ −
2

e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1þ c2{ Þs2β½−2ð1 − e2ÞnJnðneÞ þ eðJn−1ðneÞ − Jnþ1ðneÞÞ�; ð27bÞ

CðnÞ
× ¼ −

4

e2
c{s2β½ðe2 − 2ÞJnðneÞ þ neð1 − e2ÞðJn−1ðneÞ − Jnþ1ðneÞÞ�; ð27cÞ

SðnÞ× ¼ −
4

e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
c{c2β½−2ð1 − e2ÞnJnðneÞ þ eðJn−1ðneÞ − Jnþ1ðneÞÞ�; ð27dÞ

where the Jn are Bessel functions of the first kind, and
cβ ¼ cosðβÞ, sβ ¼ sinðβÞ. These equations are valid for any
eccentricity e.

2. Stationary phase approximation

To calculate the signal in the frequency domain, the
stationary phase approximation is used, which is described
in Appendix A of [32]. As the amplitude only varies
slowly over time, the Fourier transform integrates over
rapidly oscillating sinusoidal terms in Eq. (24), which
are negligibly small, except when the stationary phase
condition

nF ðt�nÞ ¼ f ð28Þ

for a given time t�n is fulfilled. This suggests that an
eccentric binary emits at all integer multiples of the mean
orbital frequency. The stationary phase condition gives a
mapping between the time t�n and frequency of the nth
harmonic. All harmonics are emitted at any given time, so
there is no one-to-one correspondence between observed
frequency and time, as in the circular case.
With the stationary phase approximation, the Fourier

transform of the signal can be obtained, which reads for a
given harmonic [32,34]

h̃ðnÞþ;×ðfÞ ¼ −
Mc

2DL

ð2πMcF ðt�nÞÞ2=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n _F ðt�nÞ

q
× ½CðnÞ

þ;×ðt�nÞ þ iSðnÞþ;×ðt�nÞ�eiψn ; ð29Þ

where

nF 0 < f < nF isco: ð30Þ

Since the evolution takes place over a finite time,
only a finite range of frequencies are emitted for a given
harmonic. Therefore, the frequency ranges from some
initial frequency of the system F 0 to the final frequency
of the last stable orbit (LSO), which can be approximated
by the innermost stable circular orbit (ISCO) for low
eccentricities.
The phase of the harmonic is given by

ψn ¼ 2πft�n − nl −
π

4
: ð31Þ

This reduces to Eq. (25b) of [15] for the n ¼ 2 case.

3. Dephasing

To observe the effect the dark matter halo has on the
evolution, we can look at the dephasing. To this end, we
compare the number of GW cycles completed in the cases
with and without dark matter present, following [23].
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We can do this for each harmonic individually between
some initial time ti and final time tf with

NðnÞðtf ; tiÞ ¼ n
Z

tf

ti

F ðtÞdt: ð32Þ

Setting tf ¼ tc as the time of coalescence, we obtain

ΔNðnÞðtÞ ¼ NðnÞ
vacuumðtc; tÞ − NðnÞ

DMðtc; tÞ: ð33Þ
The dephasing effect is stronger for larger harmonics, as
they complete more phases in the same time span.
Unfortunately, while the system emits at all harmonics,
their contribution will not necessarily be observable. For
low eccentricities, the system emits primarily in the n ¼ 2
harmonic, like in the circular case. For higher eccentricities,
the system generally emits at higher harmonics, see, for
example, Fig. 2 in [32]. As the eccentricity evolves, the
observable harmonics can change over time, making the
dephasing effect difficult to track. To assess detectability,
we need to look at the detector sensitivity.

D. Detector sensitivity

To assess detectability, we consider the dimensionless
characteristic strain of the GW signal [35]

½hcðfÞ�2 ¼ 4f2jh̃ðfÞj2: ð34Þ
This needs to be compared to the noise amplitude

½hnðfÞ�2 ¼ fSnðfÞ; ð35Þ

where SnðfÞ is the power spectral density (PSD) function of
the noise of the detector. For LISA, we use the PSD function
given by Eq. (13) of [36]. The signal to noise ratio is then
expressed as

ϱ2 ¼
Z

∞

−∞
d logðfÞ





 hcðfÞhnðfÞ




2 ð36Þ

Thus, a plot of the characteristic strain and the noise
amplitude allows one to easily assess the detectability of
a given signal.

III. RESULTS

In this section we present the results from the numerical
integration of the system of differential equations. The
equations have been implemented in PYTHON and numeri-
cally evolved and evaluated. The code is publicly available
and can be found at: https://github.com/DMGW-Goethe/
imripy.

A. Inclusion of ξðvÞ
Let us start by exploring the results of the inclusion of the

term ξðvÞ [Eq. (18)] in the dynamical friction force.

A plot of ξðvÞ is shown in Fig. 2 for halos with
αspike ¼ f1.5; 2; 7=3g. At the orbital velocity it can be seen
that ξðvorbÞ ≈ 0.58 for αspike ¼ 7=3, as claimed in [23]. The

dotted line marks vmax ¼
ffiffiffi
2

p
vorb, which is the escape

velocity at the given radius, above which there can be
no orbiting particle in the dark matter halo. Below vorb, a
power law behavior can be seen with ξðvÞ ∝ v3, as claimed
in the previous section.
The inclusion of ξðvÞ has a drastic effect on the nature of

the dynamical friction force on a Keplerian orbit. This is
shown in Fig. 3, where the friction force [Eq. (17)] is
plotted over one orbital revolution, characterized by the
true anomaly ϕ. This is done including and excluding the
ξðvÞ term, referred to as phase space distribution (psd) and
static cases, respectively. Along with it, the energy loss as
given by the integrand of Eq. (10) is shown. It can be seen
that the inclusion of ξðvÞ changes the behavior of the
energy loss over one orbit. Following Eq. (7), ϕ ¼ 0 is
the periapsis, the closest point in the orbit, and ϕ ¼ π the
apoapsis, the furthest point in the orbit. In the static case,
the energy loss is strongest at the apoapsis, which leads to
the eccentrification of the orbit as observed by [21]. In the
psd case, the energy loss is strongest at the periapsis, which
leads to circularization.
Intuitively, the difference can be explained by the fact

that with ξðvÞ, the secondary object only scatters with DM
particles that are moving slower than it. Further out in the
orbit, the object is moving slower than it would on a
circular orbit. This means that there are comparatively less
interactions further out in the orbit. At the same time, there
are more interactions on the inner parts of the orbit, where
the object is moving faster than in the circular case.
Therefore, the force weakens further out in the orbit and

FIG. 2. The phase space factor, which selects only the particles
that are moving slower than a given speed v from the dark
matter halo. This is for a dark matter halo with fm1;ρ6g¼
f103M⊙;5.448×1015M⊙=pc3g. The dotted line marks vmax ¼ffiffiffi
2

p
vorb, the escape velocity at the given orbital radius. All

particles bound in the dark matter halo move more slowly
than this, thus ξðvÞ caps at one. At smaller velocities, a power
law behavior can be seen with ξðvÞ ∝ v3 for the different
αspike ¼ f1.5; 2; 7=3g.
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is stronger on the inner parts of the orbit, compared to the
static case.
For comparison, we can look at the systems analyzed in

[21]. The system’s evolution is plotted in Fig. 4, which is
modeled after Fig. 1(b) of [21], and has the same system
parameters fm1; m2; ρspike; rspikeg ¼ f103 M⊙; 10 M⊙;
226 M⊙=pc3; 0.54 pcg. We have modeled three power
laws corresponding to αspike ¼ f1.5; 2; 7=3g. The dotted

lines represent the evolution with their model, ξðvÞ≡ 1 and
logΛ ¼ 10. The solid lines are the results of the evolution
with the model from Sec. II.
The evolution is presented in a plot of eccentricity versus

dimensionless semilatus rectum p̃ ¼ að1 − e2Þ=m1, for
purposes of comparison. The temporal evolution is from
right to left in the plot, as the semilatus rectum decreases
during the inspiral. Two effects can be observed here. First,
there is no eccentrification of the orbit, due to the inclusion
of ξðvÞ, as expected from the previous paragraph. We will
further analyze this in Sec. IV. Second, there are two
regimes that can be observed in both cases. Initially (to
the right of the plot), the dynamical friction dominates
the energy loss. Later in the inspiral, the GW emission
dominates the energy loss. This leads to a stronger
circularization of the orbit. For the case with ξðvÞ, this
can be seen by a change in the slope of the eccentricity. This
change happens earlier than in the case of [21], which is
due to a smaller logΛ. Notice that [21] uses logΛ ¼ 10,
while we use logΛ ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p ¼ log 10 ≈ 2.3. This
results in an earlier dominance of the GW emission loss
over the dynamical friction effects.
Finally, we want to compare the dephasing effects that

the inclusion of ξðvÞ brings about. This is shown in Fig. 5.
The dephasing in the second harmonic, ΔNð2Þ, can be seen
to be dependant on the initial eccentricity. For the almost
circular case, e0 ¼ 10−4, the ratio between the amount of
dephasing can be seen to approach 0.58, which is the value
presented in [23] as the reduction factor of the dynamical
friction strength in the circular case. For higher eccen-
tricities, the relative impact in the psd case is stronger (as it
gets further away from 1). This can be explained by the fact
that GWemission is stronger for such higher eccentricities.
Thus, as the eccentricity is higher in the static case, GW

FIG. 3. The dynamical friction force and energy loss over one
eccentric orbit. This is done for both the case with ξðvÞ (psd) and
without (static). The parameters of the halo and orbit are
fm1;m2;ρ6;αspike;a0;e0g¼f103M⊙;1M⊙;5.448×1015M⊙=pc3;
7=3;100 risco;0.1g. The change of shape can be observed in the
energy loss. The dotted lines represent the orbital average.

FIG. 4. The evolution of the eccentricity e as a function of
semilatus rectum p, modeled after Fig. 1(b) in [21]. The semilatus
rectum decreases monotonically with time, so the temporal
evolution is from right to left. The red, blue, green lines
correspond to a spike power law index of αspike ¼
f1.5; 2; 7=3g respectively. The dashed lines represent the evolu-
tion with logΛ ¼ 10 and ξðvÞ≡ 1, while the solid lines corre-
spond to logΛ ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
, and ξðvÞ as given by Eq. (18).

The initial semilatus rectum is p̃0 ¼ 5000 and initial eccentricity
is e0 ¼ f0.3; 0.6g. The other parameters of the system are as in
[21]: fm1; m2; ρspike; rspikeg ¼ f103 M⊙; 10 M⊙; 226 M⊙=pc3;
0.54 pcg.

FIG. 5. The relative dephasing ΔNð2Þ
dyn=ΔN

ð2Þ
stat for the static

(ξðvÞ≡ 1) and psd case for different initial eccentricities
e0 ¼ f10−4; 0.2; 0.9g. The solid black line is at the value of
0.58, which is quoted by [23] to be the relative reduction of the
dynamical friction force in the psd case (for αspike ¼ 7=3). The
other parameters of the system are fm1; m2; ρspike; rspike; a0g ¼
f103 M⊙; 1 M⊙; 226 M⊙=pc3; 0.54 pc; 200 riscog.
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emission dominates earlier and speeds up the inspiral,
compared to the psd case.

B. Spike profiles

In this section we focus on the psd case with the
inclusion of ξðvÞ and explore different power law indices.
The values considered here are αspike ¼ f7=3; 9=4; 7=4g.
As an example, we consider the system analyzed

in [23] with m1 ¼ 103 M⊙, m2 ¼ 1 M⊙, ρ6 ¼
5.448 × 1015 M⊙=pc3, at a luminosity distance of dL ¼
100 Mpc. An initial semimajor axis is chosen with
a0 ¼ 100 risco, such that the system inspirals on the order
of ∼10 years, and the initial eccentricity is set to e0 ¼ 0.1.
The dark matter density is plotted in Fig. 6 and the results of
the numerical integration are shown in Fig. 7.
There, the three different power law spikes are plotted,

along with the case without dark matter. In the evolution
of the semimajor axis a over time it can be seen that the
inspiral time is significantly shortened, compared to the
case with no dark matter. The effect is stronger for larger
power laws, because they result in higher dark matter
densities in the region of inspiral.
The evolution of the eccentricity in relation to the

semimajor axis is plotted as well. A similar behavior is
observed here, the larger power law spikes have a stronger
effect on the evolution. As expected, the dynamical friction
circularizes the orbit, but at a different rate than GW
emission loss. Early on in the evolution, the dynamical
friction effects dominate and the eccentricity is slowly
reduced, compared to when the GW emission loss domi-
nates later on.

FIG. 6. The dark matter density profile for the different power
laws αspike ¼ f7=3; 9=4; 7=4g with the density parameter ρ6 ¼
5.448 × 1015 M⊙=pc3.

FIG. 7. Top: the evolution of the semimajor axis a. Below, the
evolution of the eccentricity e, depending on the semimajor axis.

Bottom: the characteristic strain of the GW signal hð2Þc (solid), hð3Þc

(dashed) compared to the LISA sensitivity, and the dephasing
ΔNð2Þ. The system parameters are fDL;m1;m2; ρ6;αspike;
a0; e0g ¼ f500 Mpc; 103 M⊙;1 M⊙; 5.448× 1015 M⊙=pc3; 7=3;
100 risco; 0.1g.
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This can also be seen in the GW signal of the system.
The characteristic strain of the second and third harmonic
are shown for the cases, and they behave differently for
different power laws. Both harmonics are in the observable
band of LISA for the given luminosity distance. The initial
rising slopes are due to the region where dynamical friction
loss dominates over the GW emission loss and the typical

hð2Þc ∼ fh̃ð2Þ ∼ f−1=6 [37] dependency is only later recov-
ered. Intuitively, the system spends less time emitting at
low frequencies and thus the spectrum is lower in Fourier
space. The third harmonic can be seen to decay away faster
as the system is circularizing. The rate of circularization is
observable in the ratio of the second and third harmonic.
The rate of circularization depends on the local dark matter
density, but also on the power law index, as the next section
will show.
Finally, the dephasing effects are shown for the second

harmonic ΔNð2Þ, which is the dominant one in this case.
The dephasing mostly depends on the local dark matter
density, which is shown in the overall behavior of ΔNð2Þ.
The cycle difference is shown to be around 105–106 at
f ∼ 2 × 10−2, where the system has 5 years left to inspiral,
as seen in [23].

1. Varying initial eccentricity

For varying initial eccentricity e0, we show the evolution
for e0 ¼ f10−4; 0.1; 0.6g in Fig. 8. It can be seen
that the evolution of the eccentricity is qualitatively
similar in between the cases. Initially, there is a phase
dominated by dynamical friction effects with slow
circularization, later there is a phase dominated by GW
emission loss, with faster circularization. This means
that the system spends a significant amount of time
close to its initial eccentricity. Therefore, real systems
could be in principle observed with intermediate
eccentricities.
The characteristic strain shows the interplay of eccen-

tricity and harmonics. The larger the eccentricity, the
weaker the second and the stronger the third harmonic.
For e0 ¼ 0.6, they are on equal grounds. For the highest

eccentricities, hð1Þc is expected to be the dominant one [32].
It should be easier to observe the dephasing effects for
higher harmonics, since ΔNðnÞ ∼ n

2
ΔNð2Þ, while these are

observable. This makes systems at intermediate eccen-
tricities optimal to observe the dephasing.
It can be seen that the eccentricity of the system does

not have a strong influence on the amount of dephasing
ΔNð2Þ. Only for higher eccentricity, the overall dephasing
effects are smaller, because the system inspirals faster
for higher eccentricity. This was already observed in
Fig. 5.

2. Varying dark matter density

The next parameter we vary is the dark matter density in
the form of ρ6. We choose the values as ρ6¼f5.448×
1013 M⊙=pc3;5.448×1015 M⊙=pc3;5.448×1017 M⊙=pc3g
and show the results in Fig. 9.
The time of inspiral is heavily influenced by the dark

matter density. The dark matter density can speed up the
inspiral from several hundred years to the order of a single
year. The characteristic strain of the evolution is also
strongly influenced by the dark matter density. When
dynamical friction is dominant, the spectrum changes
dramatically to one with a rising slope.
The evolution of the eccentricity is also dependent on

the dark matter density. For ρ6 ¼ 5.448 × 1013 M⊙=pc3 the
dynamical friction effects are subdominant to the GW
emission loss. Therefore, the eccentricity mostly looks
like it would with just GW emission loss. For ρ6 ¼
5.448 × 1015 M⊙=pc3, the dynamical friction and GW
emission loss are on equal footing. Early on, dynamical
friction dominates, while a little later GW emission loss
takes over, which can be seen in the change of shape in the
characteristic strain. The eccentricity evolution is modified,
and the circularization rate seems to be an average of the
two effects. The difference between the different αspike
models can be seen by eye. For ρ6¼5.448×1017M⊙=pc3,
the behavior of the eccentricity evolution seems to flip
for the different power law models. This can be explained
as follows: In the next section, we will show that the
circularization rate due to dynamical friction is approx-
imately equal to de

dt ∼ αspikeρdm. For the lower dark matter
densities either the GW emission loss dominates, or the
resulting behavior is a combination of both dissipative
forces. Especially for αspike ¼ 7=4, the dark matter density
at a0 ∼ 100risco ≪ 104isco ≈ r6 is much lower than for the
other power law indices, which is why the circularization
effects are dominated by GW. For the higher dark matter
density, the evolution is dominated by dynamical friction,
and the circularization de

da ∼ αspike (see Sec. III B 3), which
flips the curves.
Whether or not these dark matter densities are realized in

nature remains to be seen.
Even for smaller dark matter densities, when the influ-

ence on the characteristic strain is not visible by eye, the
dephasing effect is still strong with ΔNð2Þ ∼ 104–106 for
the different models.

3. Varying central mass

When varying the central mass, one needs to be careful
about the dark matter spike density. Larger central black
holes typically reside in heavier dark matter halos, which
would result in a stronger spike and a higher dark matter
density, see, for example, the procedure laid out in Sec. II
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of [15]. Here, we do not consider the complications that
arise from this, and instead just vary the central mass m1

and see which effects it has on the model. This is shown in
Fig. 10. The inspiral is considered with an initial semimajor

axis of a0 ¼ 102risco, where risco ¼ 6m1, to allow a fair
comparison between the evolution.
A similar interaction with the dark matter density can

be observed here. For larger m1, risco is larger and for

FIG. 8. Top: the eccentricity evolution depending on the semimajor axis. The behavior is consistent for different initial eccentricities.
Bottom: the characteristic strain of the GW signal hð2Þc (solid), hð3Þc (dashed) compared to the LISA sensitivity, and the dephasing ΔNð2Þ

for varying initial eccentricity e0 ¼ f10−4; 0.1; 0.6g. The parameters of the system are fDL;m1; m2; ρ6; αspike; a0g ¼
f500 Mpc; 103 M⊙; 1 M⊙; 5.448 × 1015 M⊙=pc3; 7=3; 100 riscog.
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FIG. 9. Top: the time evolution of the semimajor axis and eccentricity evolution depending on the semimajor axis. Bottom: the
characteristic strain of the GW signal hð2Þc (solid), hð3Þc (dashed) compared to the LISA sensitivity, and the dephasing ΔNð2Þ for varying
dark matter density ρ6 ¼ f5.448 × 1013 M⊙=pc3; 5.448 × 1015 M⊙=pc3; 5.448 × 1017 M⊙=pc3g. The parameters of the system are
fDL;m1; m2; ρ6; αspike; a0; e0g ¼ f500 Mpc; 103 M⊙; 1 M⊙; 7=3; 100 risco; 0.1g.
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FIG. 10. Top: the evolution of the semimajor-axis during the inspiral. Notice the different timescales involved. Bottom: the
characteristic strain of the GW signal hð2Þc (solid), hð3Þc (dashed) compared to the LISA sensitivity, and the dephasing ΔNð2Þ for
varying central mass m1 ¼ f103 M⊙; 104 M⊙; 105 M⊙g. The constant parameters of the system are fDL;m2; ρ6; αspike; a0; e0g ¼
f500 Mpc; 1 M⊙; 5.448 × 1015 M⊙=pc3; 7=3; 5 × 102 risco; 0.1g.
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m1 ¼ 105 M⊙, 102risco ∼ r6. Therefore, a similar flip in
behavior can be seen in the evolution of the eccentricity.
Since for r > r6, αspike ¼ 7=4 actually has the highest
densities, the overall inspiral time is smaller. But this will
not be observable in the dephasing signal in the last five
years of the system’s lifetime.
As the mass of the central object m1 increases, the

frequency of the orbital motion and the GWs decrease,
which moves the inspiral further into the LISA band. Also,
the strength of the characteristic strain is increased by an
order of magnitude. The inspiral takes place on much larger
timescales, making it difficult to observe in its entirety. This
also results in a larger total difference in the dephasing, but
smaller in the last five years of observation.
Generally, a larger central mass makes the inspiral signal

stronger and therefore also higher harmonics. This could
make the dephasing effect and the eccentricity easier to
observe. Although not observable in its entirety, it could
still tease out dark matter effects.

IV. ANALYSIS

A. Conditions for circularization and eccentrification

In this section, we further explore the eccentrification
effects for a generic dissipative force and for dynamical
friction specifically, with and without ξðvÞ.
The explanation given in the previous section—as to

why the inclusion of ξðvÞ circularizes the orbit—makes
sense from an orbital mechanics point of view, but not from
the equations themselves. The energy loss enters into the
differential equations through its average, and its shape
throughout the orbit should not matter at first glance.
Thus, to rectify this, we have to look at Eq. (21),

describing the evolution of the eccentricity. To this end,
we first take a look at the sign of the term in the parenthesis

X≔
1

Eorb

�
de
dt

�
þ2

1

Lorb

�
dL
dt

��
< 0;eccentrification

> 0;circularization
ð37Þ

First, let us focus on a single force. For a positive X, a
single force will circularize the orbit, while for a negative
X, it will eccentrify it. What ultimately happens to the
eccentricity is then given by the relative strength of the
forces.
Plugging in Eqs. (10), (11), (5), and (6), we can rewrite

the above equation as

X ¼ 2ð1− e2Þ3=2
μ

Z
2π

0

dϕ
2π

ð1þ e cosϕÞ−2Fðr; vÞ
�
av
m

−
1

v

�
:

ð38Þ

To simplify calculations, we make an ansatz for the form of
the force as

Fðr; vÞ ∼ rαvβ; ð39Þ

and plug in Eqs. (7) and (8). Disregarding the prefactors,
we find

X ∝
Z

2π

0

dϕ
2π

ðcosϕþ eÞð1þ e cosϕÞ−ð2þαÞ

× ð1þ 2e cosϕþ e2Þðβ−1Þ=2: ð40Þ

To the first order in e this integral evaluates to

X ∝
Z

2π

0

dϕ
2π

ðcosϕþ eþ ð−3þ β − αÞe cos2 ϕÞ

¼ e
2
ð−1þ β − αÞ; ð41Þ

which is positive for α < β − 1. If this condition is fulfilled,
the force will circularize the orbit. The condition also holds
in third order in e, see Appendix B.
Analyzing our forces, we have

Fgw ∝ r−4v−1ð11r−2 þ v2Þ → circularization

Fdf jξðvÞ≡1 ∝ r−αspikev−2 → eccentrification for αspike < 3

Fdf jξðvÞ∝v3 ∝ r−αspikev1 → circularization

The circularization of the GW emission backreaction has
long been known and exploited, especially for binary
systems with similar masses [29].
The eccentrification through dynamical friction without

ξðvÞ has also been explored first in [21]. The inclusion of
ξðvÞ as approximately ∝ v3 changes the nature of the
dynamical friction force, so that a power law spike must
circularize the orbit.
Thus, for β ¼ 1, this also has the curious effect that the

circularization is directly proportional to αspike. Including
some prefactors, we have de

dt ∝ −X ∝ −αspikeρdmðaÞ. While
most other effects, such as dephasing, are only affected by
the local dark matter density, the circularization is sensitive
to the power law index. A measurement of both the inspiral
rate da

dt ∝ ρdmðaÞ (in the dynamical friction dominated
regime) and the circularization de

dt could in principle reveal
the shape of the dark matter distribution.
A more formal calculation gives to first order in e (see

Appendix B)

de
da

¼ e
2a

αspike ð42Þ

Of course, this is only valid for the idealized case where
dynamical friction is the dominant force and the power law
behavior of ξðvÞ is exact. This needs to be improved by
more accurate modeling. Nevertheless, it shows that dark
matter effects can be observable not just from dephasing
but also from the circularization rate.
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B. Comparison to previous works

A huge caveat of the approach laid out in Sec. II is that
halo feedback is not considered. As the secondary object
loses energy and angular momentum to the dark matter
halo, the halo should not be considered static and evolve
along with the inspiral. There can be a considerable amount
of energy injected into the halo. A halo feedback model has
been developed in [18,23] for circular orbits. It predicts that
the dark matter density would deplete locally in the region
around the orbit and thus decrease dynamical friction
effects. As the object inspirals, the depleted region moves
inward and refills the outer region. This leaves the dark
matter halo mostly intact, but prolongs the inspiral com-
pared to the static halo case. Thus, the dephasing effect ΔN
is reduced by a factor of ∼102 for a mass ratio of q ∼ 103.
For q ∼ 105 the halo feedback mechanism seems to be less
relevant.
A combination of low-eccentricity orbits and halo feed-

back model could see an even stronger circularization of the
orbit. This is due to the fact that the orbit is locally depleted
and as the object inspirals, there will generally be many
more particles on the inner part compared to the outer part,
strengthening the circularization effects explained in
Sec. III. Whether a circular approximation is enough to
describe realistic scenarios remains to be seen.
During the finalization of this paper, [28] have published

their results. They include the gravitational influence of the
dark matter spike as a perturbative force on osculating
Keplerian orbits. This results primarily in orbital precession
for large distances p > 105risco for an example case with
fm1;m2;ρspike;rspike;αspikeg¼f103M⊙;10M⊙;226M⊙=pc3;
0.54pc;7=3g. They assume that dynamical friction eccen-
trifies the orbit, and therefore orbital precession would be
an important effect. If on the other hand the orbit is being
circularized, orbital precession would be of less impact.
Their observation cannot be dismissed, since on those
scales, the phase space distribution function as described by
Eq. (4) is no longer valid, because it assumes the potential
to be dominated by the central black hole. We would need
to model the transition phase of the potential from the
central black hole to the spike dominated part to accurately
assess what happens to the dynamical friction and the
orbital eccentricity.

V. CONCLUSIONS

If dark matter forms a spike around IMBHs, it will affect
the inspiral of stellar mass objects around it. We have
studied the dynamical friction effects in such a system.
They cause a dephasing effect in the GW signal, which
should be observable by LISA. We have shown that the
dynamical friction losses tend to circularize the orbit, in
contrast to the observations by [21,22]. This is due to the
inclusion of the relative velocities of the dark matter
particles. We have analyzed the mechanism behind orbital

eccentrification and circularization and derived a general
condition for arbitrary forces. A measurement of the
circularization rate can in principle reveal the shape of
the dark matter distribution. Whether the circularization
effect is strong enough such that most objects in the LISA
band will be circular remains to be investigated by
exploring other relevant effects, such as accretion and
the baryonic environment. This will be left for future work.
We have not considered the halo feedback mechanism

explored in [18,23], but as the orbits are being circularized
instead of eccentrified we see supporting evidence for the
circular approximation they utilize.
Overall, observing the dephasing effect in an IMRI

would be a unique test of the particle nature of dark matter
and given the existence of dark matter spikes, should be
observable with LISA.
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APPENDIX A: ANGULAR MOMENTUM LOSS

Equation (11) can be derived from the relation for the
specific angular momentum for Keplerian orbits





 dLdt




 ¼ jr × Fj ¼ jFj

j_rj jr × _rj ¼ F
v
r2 _ϕ; ðA1Þ

since the force vector is antiparallel to the velocity vector.
Together with the relation for the derivative of the true
anomaly [29]

_ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mað1 − e2Þ

p
r2

; ðA2Þ

we have

�
dL
dt

�
¼

Z
T

0

dt
T
dL
dt

¼ −
Z

T

0

dt
T
Fðr; vÞ r

2 _ϕ

v

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mað1 − e2Þ

q Z
T

0

dt
T
Fðr; vÞ

v
: ðA3Þ
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APPENDIX B: CONDITION IN THIRD ORDER

To third order in e the integral in Eq. (40) evaluates to

X ∝ −
e
16

ð1þ α − βÞ
× ð8þ e2ð11þ α2 þ αð7 − 2βÞ − 6β þ β2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Y

Þ: ðB1Þ

Since 0 ≤ e2 < 1 and Y > −8 for α > −10, the condition
Eq. (41) holds for any reasonable force.

APPENDIX C: CALCULATING
CIRCULARIZATION RATE

Assuming our force to be of the form Fðr; vÞ ¼ F0rαvβ,
we have

da
dt

¼ dEorb

dt

�∂Eorb

∂a
¼−

2

μ
a2þα−ðβþ1Þ=2ð1þ e2Þ3=2þα−ðβþ1Þ=2mðβ−1Þ=2F0

×
Z

2π

0

dϕ
2π

ð1þ ecosϕÞ−ð2þαÞð1þ2ecosϕþ e2Þðβþ1Þ=2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≈1þe2=4ð3þα2þαð3−2βÞ−2βþβ2Þ

ðC1Þ

to second order in e.

Compare this to

de
dt

¼ −
1 − e2

2e
X

¼ −
e
μ
aα−ðβ−1Þ=2ð1 − e2Þ3=2þα−ðβ−1Þ=2

×mðβ−1Þ=2F0ð−1þ β − αÞ

×

�
1þ e2

8
ð11þ α2 þ αð7 − 2βÞ − 6β þ β2Þ

�
ðC2Þ

Combining the two equations gives

de
da

¼ eð1 − e2Þ
2a

ð−1þ β − αÞ

×
1þ e2

8
ð11þ α2 þ αð7 − 2βÞ − 6β þ β2Þ

1þ e2
4
ð3þ α2 þ αð3 − 2βÞ − 2β þ β2Þ ðC3Þ

Neglecting the second order terms and setting β ¼ 1 and
α ¼ −αspike gives Eq. (42).
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