Measurements of Normalized Differential Cross Sections of Inclusive π^0 and K_S^0 Production in e^+e^- Annihilation at Energies from 2.2324 to 3.6710 GeV: Supplemental Material

M. Ablikim¹, M. N. Achasov^{12,b}, P. Adlarson⁷², M. Albrecht⁴, R. Aliberti³³, A. Amoroso^{71,4,71C}, M. R. An³⁷, Q. An^{68,55}, Y. Bai⁵⁴, O. Bakina³⁴, R. Baldini Ferroli^{27,4}, I. Balossino^{28,4}, Y. Ban^{44,g}, V. Batozskaya^{1,42}, D. Becker³³, K. Begzsuren³⁰, N. Berger³³, M. Bertani^{27,4}, D. Bettoni^{28,4}, F. Bianch^{11,4,71C}, E. Bianco^{71,4,71C}, J. Bloms⁶⁵, A. Bortone^{71,4,71C}, I. Boyko³⁴, R. A. Briere⁵, A. Brueggemann⁶⁵, H. Cai⁷³, X. Cai^{1,55}, A. Calcaterra^{27,4}, G. F. Cao^{1,60}, N. Cao^{1,60}, S. A. Cetin^{59,4}, J. F. Chang^{1,55}, W. L. Chang^{1,60}, G. R. Che⁴¹, G. Chelkov^{34,a}, C. Chen⁴¹, Chao Chen⁵², G. Chen¹, H. S. Chen^{1,60}, M. L. Chen^{1,55}, S. J. Chen⁴⁰, S. M. Chen⁵⁸, T. Chen^{1,60}, X. R. Chen^{29,60}, X. T. Chen^{1,60}, Y. B. Chen^{1,55}, Z. J. Chen^{24,4}, W. S. Cheng^{71C}, S. K. Choi⁵², X. Chu⁴¹, G. Cibinetto^{28,4}, F. Cossio^{71C}, J. J. Cui⁴⁷, H. L. Dai^{1,55}, J. P. Dai⁷⁶, A. Debyssi¹⁸, R. E. de Boer⁴, D. Dedovich³⁴, Z. Y. Deng¹, A. Denig³³, I. Denysenko³⁴, M. Destefanis^{71,4,71C}, F. De Mori^{71,4,71C}, Y. Ding³⁸, Y. Ding³², J. Dong^{1,55}, L. Y. Dong^{1,60}, M. Y. Dong^{1,55,60}, X. Dong⁷³, S. X. Du⁷⁸, Z. H. Duan⁴⁰, P. Egorov^{34,a}, Y. L. Fan⁷³, J. Fang^{1,55}, S. S. Fang^{1,60}, W. X. Fang¹, Y. Fang¹, R. Farinelli^{28,4}, L. Fava^{71,8,17,17}, F. Feldbauer⁴, G. Felici^{27,4}, C. Q. Feng^{68,55}, J. H. Feng⁵⁶, K. Fischer⁶⁶, M. Fritsch⁴, C. Fritzsch⁶⁵, C. D. Fu¹, H. Gao⁶⁰, X. L. Gao^{68,m}, Y. N. Gao^{44,g}, Yang Gao^{68,55}, S. Garbolino^{71/5}, I. B. Guo³⁹, R. P. Guo⁴⁶, Y. P. Guo^{11,4,717}, L. M. Gu⁴⁰, M. H. Gu^{1,55}, Y. T. Gu¹⁵, C. Y Guan^{1,60}, A. Q. Gno^{29,60}, L. B. Guo³⁹, R. P. Guo⁴⁶, Y. P. Guo^{11,4}, A. Guskov^{34,a}, W. Y. Han³⁷, X. Q. Hao¹⁹, K. A. Harris⁶², K. K. He⁵², K. L. He^{1,60}, F. H. Heinsius⁴, C. H. Heinz²³, Y. K. Heng^{1,55,60}, C. Herold⁵⁷, G. Y. Hou^{1,60}, Y. R. Hou⁶⁰, Z. L. Hou¹, H. M. Hu^{1,60}, J. F. Hu^{53,4}, T. Hu^{1,55,60}, Y. Hu¹, G. S. Huang^{68,55}, K. X. q T. Johansson⁷², S. Kabana³¹, N. Kalantar-Nayestanaki⁶¹, X. L. Kang⁹, X. S. Kang³⁸, R. Kappert⁶¹, M. Kavatsyuk⁶¹, B. C. Ke⁷⁸, I. K. Keshk⁴, A. Khoukaz⁶⁵, R. Kiuchi¹, R. Kliemt¹³, L. Koch³⁵, O. B. Kolcu^{59A}, B. Kopf⁴, M. Kuemmel⁴, M. Kuessner⁴, A. Kupsc^{42,72}, W. Kühn³⁵, J. J. Lane⁶⁴, J. S. Lange³⁵, P. Larin¹⁸, A. Lavania²⁵, L. Lavezzi^{71A,71C}, T. T. Lei^{68,k}, Z. H. Lei^{68,55}, H. Leithoff³³, M. Lellmann³³, T. Lenz³³, C. Li⁴¹, C. Li⁴⁵, C. H. Li³⁷, Cheng Li^{68,55}, D. M. Li⁷⁸, F. Li^{1,55}, G. Li¹, H. Li⁴⁹, H. Li^{68,55}, H. B. Li^{1,60}, H. J. Li¹⁹, H. N. Li^{53,i}, J. Q. Li⁴, J. S. Li⁵⁶, J. W. Li⁴⁷, Ke Li¹, L. J Li^{1,60}, L. K. Li¹, Lei Li³, M. H. Li⁴¹, P. R. Li^{36,j,k}, S. X. Li¹¹, S. Y. Li⁵⁸, T. Li⁴⁷, W. D. Li^{1,60}, W. G. Li¹, X. H. Li^{68,55}, X. L. Li⁴⁷, Xiaoyu Li^{1,60}, Y. G. Li^{44,g}, Z. X. Li¹⁵, Z. Y. Li⁵⁶, C. Liang⁴⁰, H. Liang³², H. Liang^{1,60}, H. Liang^{68,55}, Y. F. Liang⁵¹, Y. T. Liang^{29,60}, G. R. Liao¹⁴, L. Z. Liao⁴⁷, J. Libby²⁵, A. Limphirat⁵⁷, C. X. Lin⁵⁶, D. X. Lin^{29,60}, T. Lin¹, B. J. Liu¹, C. Liu³², C. X. Liu¹, D. Liu^{18,68}, F. H. Liu⁵⁰, Fang Liu¹, Feng Liu⁶, G. M. Liu^{53,i}, H. Liu^{36,j,k}, H. B. Liu¹⁵, H. M. Liu^{1,60}, H. H. Liu^{11,f}, P. L. Liu¹, Q. Liu⁶⁹, S. B. Liu⁶⁹, J. Y. Liu^{1,60}, K. Liu¹, K. Y. Liu³⁸, Ke Liu²¹, L. Liu^{68,55}, Lu Liu⁴¹, M. H. Liu^{11,f}, P. L. Liu¹, Q. Liu⁶⁰, S. B. Liu^{68,55}, T. Liu^{11,f}, W. K. Liu⁴¹, W. M. Liu^{68,55}, X. L. Lu¹, Y. Lu⁷, Y. P. Lu^{1,55}, Z. H. Lu^{1,60}, C. L. Luo³⁹, M. X. Luo⁷⁷, T. Luo^{11,f}, X. L. Luo^{1,55}, X. R. Lyu⁶⁰, Y. F. Lyu⁴¹, F. C. Ma³⁸, H. L. Ma¹, L. L. Ma⁴⁷, M. M. Ma^{1,60}, Q. M. Ma¹, R. Q. Ma^{1,60}, R. T. Ma⁶⁰, X. Y. Ma^{1,55}, Y. Ma^{44,g}, F. E. Maas¹⁸, M. Maggiora^{71A,71C}, S. Maldaner⁴, S. Malde⁶⁶, Q. A. Malik⁷⁰, A. Mangoni^{27B}, Y. J. Mao^{44,g}, Z. P. Mao¹, S. Marcello^{71A,71C}, Y. P. Lu^{1.55}, Z. H. Lu^{1.60}, C. L. Luo³⁹, M. X. Luo⁷⁷, T. Luo^{11,f}, X. L. Luo^{1.55}, X. R. Lyu⁶⁰, Y. F. Lyu⁴¹, F. C. Ma³⁸, H. L. Ma⁴, M. L. Ma⁴⁷, M. M. Ma^{1.60}, Q. M. Ma¹, R. Q. Ma^{1.60}, R. T. Ma⁶⁰, X. Y. Ma^{4.55}, Y. Ma^{44.9}, F. E. Maas¹⁸, M. Maggiora^{TA,T/C}, S. Maldane⁴, S. Malde⁶⁶, Q. A. Malik⁷⁰, A. Mangoni^{27,B}, Y. J. Ma^{64.9}, Z. P. Maol¹, S. Marcello^{71,A,T/C}, Z. X. Meng⁶³, J. G. Messchendorp^{13,61}, G. Mezzadri^{28,4}, H. Miao^{1.60}, T. J. Min⁴⁰, R. E. Mitchell²⁶, X. H. Mo^{1.55,60}, N. Yu. Muchnoi^{12,5}, Y. Nefedov³⁴, F. Nerling^{18,4}, I. B. Nikolaev^{12,9}, Z. Nig^{1.55}, S. Nisar^{10,4}, Y. Niu⁴⁷, S. L. Olsen⁶⁰, Q. Ouyang^{1.55,60}, S. Pacetti^{27B,277}, X. Pan^{11,4}, Y. Pan⁵⁴, A. Pathak³², Y. P. Pei^{68,55}, F. Z. Qi¹, H. Qi^{68,55}, H. R. Qi⁵⁸, M. Qi⁴⁰, T. Y. Qi^{11,7}, S. Qian^{1.55}, W. B. Qian⁶⁰, Z. Qian⁵⁶, C. F. Qiao⁶⁰, J. J. Qiu⁶⁹, L. Q. Qin¹⁴, X. P. Qin^{11,1,7}, X. S. Qin⁴⁷, Z. H. Qin^{1.55}, J. F. Qiu¹, S. Q. Qu⁵⁸, K. H. Rashid⁷⁰, C. F. Redmer³³, K. J. Ren³⁷, A. Rivetti^{71C}, V. Rodin⁶¹, M. Rolo^{71C}, G. Rong^{1.60}, Ch. Rosne¹⁸, S. N. Ruan⁴¹, A. Sarantsev^{34,e}, Y. Schelhaas³⁰, C. Schnier⁴, K. Schoenning⁷², M. Scodeggio^{28,4,28,B}, K. Y. Shan^{11,f}, W. Shan²³, X. Y. Shan^{68,55}, J. F. Shangguan⁵², L. G. Shao^{1.60}, M. Shao^{68,55}, Y. Z. Sun^{1,55}, J. J. Song¹⁹, W. M. Song^{32,1}, Y. X. Song^{14,4}, S. Sosi^{71,4,71C}, S. Sptatro^{71,4,71C}, F. Stiele³³, P. P. Su⁵², Y. J. Su^{66,55}, Y. Z. Sun¹, f. H. F. Shen^{1.60}, M. M. Song^{62,21}, Y. X. Son^{74,4,71C}, S. Sosi^{71,4,71C}, F. Stiele³³, P. P. Su⁵², Y. J. Su^{64,55}, Y. Z. Sun⁴, G. S. Son^{71,4,71C}, F. Stiele³³, P. P. Su⁵², Y. J. Su^{64,55}, Y. Z. Sun⁴, G. S. Son^{71,4,71C}, S. Sptatro^{71,4,71C}, F. Stiele³³, P. P. Su⁵², Y. J. Su^{66,55}, Y. Z. Sun⁴, G. S. Son^{71,4,71C}, Y. Sun^{65,55}, Y. Z. Sun⁴, G. S. Su^{44,9}, S. Son^{74,49}, Y. Son^{25,10}, U. Tma^{65,55}, J. Y. Shi^{1,60}, N. Y. Sun³², Y. J. Su^{65,55}, Y. J. Su^{55,5}, Y. Z. S

62

63

64

65

66

67

68

69

70

71 72

73 74

75

76

77

78

79

80

81

82 83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

¹⁹ Henan Normal University, Xinxiang 453007, People's Republic of China

²⁰ Henan University of Science and Technology, Luoyang 471003, People's Republic of China

²¹ Henan University of Technology, Zhengzhou 450001, People's Republic of China

²² Huangshan College, Huangshan 245000, People's Republic of China

²³ Hunan Normal University, Changsha 410081, People's Republic of China

²⁴ Hunan University, Changsha 410082, People's Republic of China

²⁵ Indian Institute of Technology Madras, Chennai 600036, India

²⁶ Indiana University, Bloomington, Indiana 47405, USA

27INFN Laboratori Nazionali di Frascati, (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN

Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy

INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122. Ferrara. 101

Italy

²⁹ Institute of Modern Physics, Lanzhou 730000, People's Republic of China

³⁰ Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia

³¹ Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7D, Arica, Chile

³² Jilin University, Changchun 130012, People's Republic of China

³³ Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

³⁴ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

³⁵ Justus-Liebiq-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

³⁶ Lanzhou University, Lanzhou 730000, People's Republic of China

37Liaoning Normal University, Dalian 116029, People's Republic of China

³⁸ Liaoning University, Shenyang 110036, People's Republic of China

³⁹ Nanjing Normal University, Nanjing 210023, People's Republic of China

⁴⁰ Nanjing University, Nanjing 210093, People's Republic of China

⁴¹ Nankai University, Tianjin 300071, People's Republic of China

⁴² National Centre for Nuclear Research, Warsaw 02-093, Poland

⁴³ North China Electric Power University, Beijing 102206, People's Republic of China

⁴⁴ Peking University, Beijing 100871, People's Republic of China

⁴⁵ Qufu Normal University, Qufu 273165, People's Republic of China

⁴⁶ Shandong Normal University, Jinan 250014, People's Republic of China

⁴⁷ Shandong University, Jinan 250100, People's Republic of China

⁴⁸ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

⁴⁹ Shanxi Normal University, Linfen 041004, People's Republic of China

124	50 Shanxi University, Taiyuan 030006, People's Republic of China
125	⁵¹ Sichuan University. Chenadu 610064. People's Republic of China
126	⁵² Soochow University, Suzhou 215006, People's Republic of China
127	⁵³ South China Normal University, Guanazhou 510006, People's Republic of China
128	⁵⁴ Southeast University, Nanijna 211100, People's Republic of China
129	⁵⁵ State Key Laboratory of Particle Detection and Electronics. Beijing 1000/9. Hefei 230026. People's Republic of China
130	⁵⁶ Sun Yat-Sen Universitu Guanazhou 510275 People's Republic of China
131	⁵⁷ Suranaree University of Technology University Avenue 111 Nakhon Ratchasima 30000 Thailand
132	⁵⁸ Tsinghua University, Beijing 100084, People's Republic of China
132	⁵⁹ Turkish Accelerator Center Particle Factory Group, (A)Istinue University 34010 Istanbul, Turkey: (B)Near East
134	University Nicosia North Camrus Mersin 10 Turkey
135	⁶⁰ University of Chinese Academy of Sciences, Beijing 1000/9, People's Republic of China
136	⁶¹ University of Groningen NL-97/7 AA Groningen The Netherlands
137	6^2 University of Hamaii Honolulu Hamaii 96892 USA
120	⁶³ University of Jinan Jinan 250022 People's Republic of China
120	⁶⁴ University of Manchester, Orford Boad, Manchester, M13, 9PI, United Kinadom
140	⁶⁵ University of Muenster, Wilhelm-Klemm-Strasse 9, 181/9 Muenster, Cermany
140	⁶⁶ University of Oxford Keble Road Oxford OX13RH United Kingdom
141	⁶⁷ University of Science and Technology Ligonia, Anshan 11/051 Penale's Remultic of China
142	⁶⁸ University of Science and Technology of China Hefei 230026 People's Republic of China
143	⁶⁹ University of South China Henguana (21001 People's Republic of China
144	⁷⁰ University of the Punich Labore 5/1500 Pakistan
145	⁷¹ University of Turin and INFN (A) University of Turin 1-10125 Turin Halu: (B) University of Eastern Piedmont 1-15121
140	Alessandria Halu: (CI)NEN L10125 Turin Halu
147	⁷² Umsala University Bor 516, SE-75120 Umsala Sweden
140	⁷³ Wulan University Wulan 130079 People's Republic of China
149	⁷⁴ Xinunga Normal University Xinunga (61000 People's Republic of China
150	⁷⁵ Vania University Vantai 96/005 People's Republic of China
151	⁷⁶ Yuman University, Kumming 554500, People's Republic of China
152	⁷⁷ Zhejiana University, Hanazhou 310027 People's Republic of China
154	⁷⁸ Zhenazhou University, Zhenazhou 450001, People's Republic of China
154	
155	^a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
156	^b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
157	^c Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
158	^a Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
159	^e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory
160	for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China
161	^J Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan
162	University, Shanghai 200443, People's Republic of China
163	^g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of
164	China
165	^h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
166	¹ Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal
167	University, Guangzhou 510006, China
168	^J Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People's Republic of China
169	^k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
170	¹ Also at the Department of Mathematical Sciences, IBA, Karachi, Pakistan
171	^m Now at Zhejiang Jiaxing Digital City Laboratory Co., Ltd, Jiaxing 314051, People's Republic of China
172	(Dated: May 26, 2023)

$p_{\pi^0} (\text{GeV}/c)$	$\sqrt{s} = 2.2324 \text{ GeV}$	$\sqrt{s} = 2.4000 \text{ GeV}$	$\sqrt{s} = 2.8000 \text{ GeV}$	$\sqrt{s} = 3.0500 \text{ GeV}$	$\sqrt{s} = 3.4000 \text{ GeV}$	$\sqrt{s} = 3.6710 \text{ GeV}$
0.00 - 0.10	1790 ± 171	1875 ± 166	1862 ± 49	6184 ± 363	642 ± 121	1296 ± 108
0.10 - 0.20	7894 ± 427	8144 ± 292	7530 ± 282	28454 ± 647	3150 ± 215	7588 ± 118
0.20 - 0.30	11640 ± 222	13428 ± 249	11952 ± 259	41689 ± 502	4470 ± 171	10986 ± 100
0.30 - 0.40	12659 ± 195	14872 ± 255	12872 ± 211	44503 ± 415	5080 ± 161	12117 ± 257
0.40 - 0.50	9690 ± 150	11416 ± 167	10425 ± 174	35120 ± 335	4071 ± 112	9405 ± 167
0.50 - 0.60	6534 ± 114	7776 ± 128	7082 ± 123	25612 ± 235	2954 ± 49	7125 ± 120
0.60 - 0.70	3735 ± 81	4695 ± 101	4598 ± 101	17164 ± 175	2066 ± 67	4975 ± 105
0.70 - 0.80	2135 ± 60	2764 ± 68	3047 ± 75	10830 ± 154	1440 ± 59	3529 ± 94
0.80 - 0.90	1350 ± 43	1596 ± 49	1871 ± 56	7077 ± 116	923 ± 43	2350 ± 71
0.90 - 1.00	949 ± 33	918 ± 34	1143 ± 42	4548 ± 90	545 ± 32	1591 ± 45
1.00 - 1.10	_	634 ± 28	727 ± 32	2884 ± 64	386 ± 24	981 ± 42
1.10 - 1.20	_	_	367 ± 24	1758 ± 56	273 ± 21	674 ± 36
1.20 - 1.30	_	_	269 ± 17	1010 ± 37	186 ± 17	494 ± 30
1.30 - 1.40	_	_	_	494 ± 28	129 ± 10	351 ± 23
1.40 - 1.50	_	_	_	_	69 ± 11	221 ± 15
1.50 - 1.60	_	_	_	_	32 ± 5	114 ± 12
1.60 - 1.70	-	-	-	-	-	59 ± 11

TABLE I. Summary of $N_{\pi^0}^{obs}$ in different momentum ranges at different c.m. energies, where the uncertainties are statistical.

TABLE II. Summary of $N_{K_S^0}^{obs}$ in different momentum ranges at different c.m. energies, where the uncertainties are statistical.

p_{K0} (GeV/c)	$\sqrt{s} = 2.2324 \text{ GeV}$	$\sqrt{s} = 2.4000 \text{ GeV}$	$\sqrt{s} = 2.8000 \text{ GeV}$	$\sqrt{s} = 3.0500 \text{ GeV}$	$\sqrt{s} = 3.4000 \text{ GeV}$	$\sqrt{s} = 3.6710 \text{ GeV}$
<u></u>	40 5	20 6	07 4	100 10	0 9	20 5
0.00 - 0.10	48 ± 7	30 ± 6	27 ± 4	108 ± 13	9 ± 3	29 ± 7
0.10 - 0.20	271 ± 19	327 ± 22	258 ± 18	814 ± 38	68 ± 9	212 ± 17
0.20 - 0.30	501 ± 28	584 ± 30	579 ± 30	1739 ± 52	199 ± 18	371 ± 27
0.30 - 0.40	594 ± 31	743 ± 34	765 ± 35	2375 ± 66	285 ± 21	587 ± 33
0.40 - 0.50	552 ± 33	683 ± 35	721 ± 33	2468 ± 69	264 ± 20	596 ± 34
0.50 - 0.60	390 ± 25	511 ± 30	634 ± 33	2075 ± 62	258 ± 21	557 ± 29
0.60 - 0.70	273 ± 21	363 ± 25	416 ± 25	1613 ± 52	219 ± 17	511 ± 28
0.70 - 0.80	146 ± 15	221 ± 17	323 ± 21	1188 ± 42	149 ± 15	384 ± 24
0.80 - 0.90	137 ± 14	121 ± 14	192 ± 17	875 ± 35	120 ± 13	264 ± 21
0.90 - 1.00	_	128 ± 12	97 ± 12	596 ± 30	64 ± 10	222 ± 17
1.00 - 1.10	_	-	77 ± 10	351 ± 22	44 ± 7	145 ± 14
1.10 - 1.20	_	-	30 ± 6	196 ± 17	48 ± 8	100 ± 12
1.20 - 1.30	_	-	_	82 ± 12	17 ± 4	58 ± 9
1.30 - 1.40	_	-	_	_	16 ± 4	40 ± 8
1.40 - 1.50	—	-	-	-	-	31 ± 5

Figure 1 illustrates the coverage of the polar (θ) and azimuthal (ϕ) angles for the π^0 and K_S^0 mesons reconstructed at $\sqrt{s} = 2.8000$ GeV, in which our data have sufficient acceptance in terms of the polar and azimuthal angles and can be reliably reproduced by the signal MC model in reconstruction level.

FIG. 1. Comparisons between data and simulation in terms of the $\cos \theta$ (top) and azimuthal angle (ϕ , bottom) distributions of π^0 (left) and K_S^0 (right) at $\sqrt{s} = 2.8000$ GeV, where θ is the polar angle. The black dots represent experimental data and red histograms stand for the signal MC. The blue dots denote the corresponding PULL distributions.

To provide the p_t acceptance information of the inclusively reconstructed π^0 and K_S^0 mesons to the future phenomenology study, the two-dimensional distributions of the momentum (p) and transverse momentum (p_t) of π^0 and K_S^0 at MC truth and reconstruction level at $\sqrt{s} = 2.8000$ GeV are given in Fig. 2.

FIG. 2. Two-dimensional distributions of the momentum (p) and transverse momentum (p_t) of π^0 (left) and K_S^0 (right) in MC truth (top) and reconstruction level (bottom) at $\sqrt{s} = 2.8000$ GeV. These plots are extracted from the signal MC samples produced by the LUARLW model. The event lost in the low- p_t region after reconstruction is caused by the limited acceptance of the BESIII detector in the small polar angle region and will be compensated by the correction factor f_h of the corresponding momentum bin in the analysis.

$p_{\pi 0} (\text{GeV}/c)$	$\sqrt{s} = 2.2324 \text{ GeV}$	$\sqrt{s} = 2.4000 \text{ GeV}$	$\sqrt{s} = 2.8000 \text{ GeV}$	$\sqrt{s} = 3.0500 \text{ GeV}$	$\sqrt{s} = 3.4000 \text{ GeV}$	$\sqrt{s} = 3.6710 \text{ GeV}$
0.00 - 0.10	$2.366 \pm 0.034 \pm 0.140$	$2.349 \pm 0.034 \pm 0.190$	$2.382 \pm 0.039 \pm 0.134$	$2.389 \pm 0.042 \pm 0.275$	$2.609 \pm 0.048 \pm 0.294$	$2.555 \pm 0.051 \pm 0.048$
0.10 - 0.20	$2.328 \pm 0.016 \pm 0.106$	$2.403 \pm 0.018 \pm 0.064$	$2.454 \pm 0.019 \pm 0.032$	$2.577 \pm 0.021 \pm 0.162$	$2.776 \pm 0.023 \pm 0.016$	$2.708 \pm 0.023 \pm 0.189$
0.20 - 0.30	$2.160 \pm 0.010 \pm 0.057$	$2.197 \pm 0.011 \pm 0.025$	$2.280 \pm 0.012 \pm 0.011$	$2.372 \pm 0.012 \pm 0.012$	$2.561 \pm 0.014 \pm 0.006$	$2.497 \pm 0.013 \pm 0.067$
0.30 - 0.40	$1.818 \pm 0.007 \pm 0.039$	$1.866 \pm 0.007 \pm 0.013$	$1.964 \pm 0.007 \pm 0.023$	$2.030 \pm 0.008 \pm 0.059$	$2.215 \pm 0.009 \pm 0.104$	$2.188 \pm 0.010 \pm 0.050$
0.40 - 0.50	$1.743 \pm 0.006 \pm 0.006$	$1.799 \pm 0.007 \pm 0.006$	$1.887 \pm 0.007 \pm 0.052$	$1.941 \pm 0.008 \pm 0.055$	$2.080 \pm 0.009 \pm 0.087$	$2.096 \pm 0.009 \pm 0.044$
0.50 - 0.60	$1.741 \pm 0.008 \pm 0.010$	$1.770 \pm 0.007 \pm 0.021$	$1.849 \pm 0.008 \pm 0.051$	$1.907 \pm 0.008 \pm 0.014$	$1.961 \pm 0.009 \pm 0.023$	$2.028 \pm 0.010 \pm 0.029$
0.60 - 0.70	$1.741 \pm 0.009 \pm 0.018$	$1.788 \pm 0.009 \pm 0.014$	$1.821 \pm 0.009 \pm 0.117$	$1.872 \pm 0.005 \pm 0.078$	$1.874 \pm 0.010 \pm 0.084$	$1.964 \pm 0.011 \pm 0.035$
0.70 - 0.80	$1.813 \pm 0.012 \pm 0.004$	$1.815 \pm 0.011 \pm 0.041$	$1.856 \pm 0.010 \pm 0.146$	$1.882 \pm 0.011 \pm 0.171$	$1.786 \pm 0.011 \pm 0.211$	$1.912 \pm 0.013 \pm 0.128$
0.80 - 0.90	$1.985 \pm 0.016 \pm 0.101$	$1.923 \pm 0.014 \pm 0.061$	$1.916 \pm 0.013 \pm 0.179$	$1.934 \pm 0.013 \pm 0.189$	$1.795 \pm 0.012 \pm 0.252$	$1.918 \pm 0.014 \pm 0.166$
0.90 - 1.00	$2.295 \pm 0.022 \pm 0.262$	$2.124 \pm 0.020 \pm 0.278$	$2.031 \pm 0.016 \pm 0.210$	$1.987 \pm 0.015 \pm 0.276$	$1.812 \pm 0.014 \pm 0.306$	$1.906 \pm 0.016 \pm 0.274$
1.00 - 1.10	_	$2.454 \pm 0.027 \pm 0.523$	$2.138 \pm 0.021 \pm 0.223$	$2.042 \pm 0.017 \pm 0.359$	$1.855 \pm 0.016 \pm 0.322$	$1.926 \pm 0.017 \pm 0.451$
1.10 - 1.20	_	_	$2.354 \pm 0.026 \pm 0.410$	$2.168 \pm 0.024 \pm 0.365$	$1.967 \pm 0.022 \pm 0.284$	$1.951 \pm 0.019 \pm 0.415$
1.20 - 1.30	_	_	$2.637 \pm 0.039 \pm 1.292$	$2.458 \pm 0.033 \pm 0.587$	$2.092 \pm 0.023 \pm 0.465$	$2.069 \pm 0.023 \pm 0.491$
1.30 - 1.40	_	_	_	$2.451 \pm 0.042 \pm 1.015$	$2.223 \pm 0.028 \pm 0.517$	$2.064 \pm 0.024 \pm 0.669$
1.40 - 1.50	_	_	_	_	$2.457 \pm 0.039 \pm 0.724$	$2.241 \pm 0.030 \pm 0.903$
1.50 - 1.60	_	_	_	—	$2.846 \pm 0.058 \pm 1.100$	$2.478 \pm 0.039 \pm 0.758$
1.60 - 1.70	_	_	-	-	-	$2.788 \pm 0.036 \pm 1.758$

TABLE III. Summary of f_{π^0} for different momentum ranges at different c.m. energies, where the first uncertainty is statistical and second is systematical due to the signal simulation model.

TABLE IV. Summary of $f_{K_S^0}$ for different momentum ranges at different c.m. energies, where the first uncertainty is statistical and second is systematical due to the signal simulation model.

$p_{K_S^0}$ (GeV/c)	$\sqrt{s} = 2.2324 \text{ GeV}$	$\sqrt{s} = 2.4000 \text{ GeV}$	$\sqrt{s} = 2.8000 \text{ GeV}$	$\sqrt{s} = 3.0500 \text{ GeV}$	$\sqrt{s} = 3.4000 \text{ GeV}$	$\sqrt{s} = 3.6710 \text{ GeV}$
0.00 - 0.10	$4.207 \pm 0.108 \pm 0.300$	$3.952 \pm 0.108 \pm 0.143$	$3.938 \pm 0.096 \pm 0.184$	$4.200 \pm 0.101 \pm 0.213$	$4.482 \pm 0.136 \pm 0.973$	$4.093 \pm 0.095 \pm 0.110$
0.10 - 0.20	$3.228 \pm 0.038 \pm 0.198$	$3.264 \pm 0.038 \pm 0.211$	$3.117 \pm 0.035 \pm 0.225$	$3.183 \pm 0.034 \pm 0.163$	$3.564 \pm 0.051 \pm 0.807$	$3.353 \pm 0.038 \pm 0.226$
0.20 - 0.30	$2.903 \pm 0.038 \pm 0.047$	$3.026 \pm 0.030 \pm 0.192$	$2.933 \pm 0.026 \pm 0.055$	$2.922 \pm 0.027 \pm 0.261$	$3.278 \pm 0.034 \pm 0.559$	$3.174 \pm 0.029 \pm 0.366$
0.30 - 0.40	$2.888 \pm 0.034 \pm 0.221$	$2.925 \pm 0.030 \pm 0.355$	$2.828 \pm 0.023 \pm 0.014$	$2.836 \pm 0.024 \pm 0.209$	$3.150 \pm 0.033 \pm 0.530$	$2.917 \pm 0.030 \pm 0.452$
0.40 - 0.50	$2.871 \pm 0.051 \pm 0.390$	$2.951 \pm 0.047 \pm 0.263$	$2.876 \pm 0.030 \pm 0.072$	$2.751 \pm 0.027 \pm 0.034$	$3.005 \pm 0.042 \pm 0.406$	$2.910 \pm 0.036 \pm 0.466$
0.50 - 0.60	$3.271 \pm 0.071 \pm 0.007$	$3.106 \pm 0.045 \pm 0.298$	$2.897 \pm 0.041 \pm 0.368$	$2.758 \pm 0.047 \pm 0.133$	$3.071 \pm 0.040 \pm 0.287$	$2.814 \pm 0.055 \pm 0.408$
0.60 - 0.70	$3.326 \pm 0.073 \pm 0.477$	$3.333 \pm 0.086 \pm 0.127$	$2.906 \pm 0.051 \pm 0.072$	$2.777 \pm 0.051 \pm 0.230$	$2.989 \pm 0.054 \pm 0.175$	$2.977 \pm 0.048 \pm 0.448$
0.70 - 0.80	$4.239 \pm 0.121 \pm 0.057$	$3.744 \pm 0.106 \pm 0.256$	$3.193 \pm 0.056 \pm 0.307$	$2.886 \pm 0.050 \pm 0.007$	$3.047 \pm 0.050 \pm 0.170$	$2.950 \pm 0.048 \pm 0.272$
0.80 - 0.90	$5.604 \pm 0.174 \pm 0.076$	$3.998 \pm 0.126 \pm 0.353$	$3.222 \pm 0.076 \pm 0.163$	$3.205 \pm 0.071 \pm 0.140$	$2.947 \pm 0.059 \pm 0.011$	$2.971 \pm 0.048 \pm 0.344$
0.90 - 1.00	_	$5.324 \pm 0.192 \pm 0.504$	$4.054 \pm 0.112 \pm 0.371$	$3.152 \pm 0.076 \pm 0.137$	$3.038 \pm 0.078 \pm 0.276$	$2.897 \pm 0.058 \pm 0.104$
1.00 - 1.10	_	_	$4.505 \pm 0.170 \pm 0.405$	$3.689 \pm 0.115 \pm 0.605$	$3.271 \pm 0.084 \pm 0.602$	$2.849 \pm 0.068 \pm 0.000$
1.10 - 1.20	_	_	$5.132 \pm 0.252 \pm 0.456$	$4.171 \pm 0.157 \pm 1.024$	$3.618 \pm 0.110 \pm 0.867$	$3.014 \pm 0.074 \pm 0.158$
1.20 - 1.30	_	_	-	$4.643 \pm 0.281 \pm 1.979$	$3.665 \pm 0.183 \pm 0.290$	$3.150 \pm 0.094 \pm 0.119$
1.30 - 1.40	_	_	-	-	$3.713 \pm 0.261 \pm 0.617$	$3.483 \pm 0.124 \pm 0.692$
1.40 - 1.50	_	-	-	_	_	$3.996 \pm 0.266 \pm 1.155$

182

TABLE V. Summary of normalized differential cross sections of the $e^+e^- \rightarrow \pi^0 + X$ process at different momentum ranges, where the first uncertainties are statistical and the second are systematic, respectively. Systematic uncertainties are regarded as uncorrelated between different momentum ranges except 2% of that due to the reconstruction of the photons.

$p_{\pi^0} (\text{GeV}/c)$	$\sqrt{s} = 2.2324 \text{ GeV}$	$\sqrt{s} = 2.4000 \text{ GeV}$	$\sqrt{s} = 2.8000 \text{ GeV}$	$\sqrt{s} = 3.0500 \text{ GeV}$	$\sqrt{s} = 3.4000 \text{ GeV}$	$\sqrt{s} = 3.6710 \text{ GeV}$
0.00 - 0.10	$0.522 \pm 0.051 \pm 0.121$	$0.467 \pm 0.042 \pm 0.065$	$0.543 \pm 0.017 \pm 0.127$	$0.535 \pm 0.033 \pm 0.099$	$0.534 \pm 0.101 \pm 0.258$	$0.482 \pm 0.041 \pm 0.141$
0.10 - 0.20	$2.263 \pm 0.124 \pm 0.213$	$2.075 \pm 0.076 \pm 0.211$	$2.261 \pm 0.087 \pm 0.390$	$2.656 \pm 0.065 \pm 0.203$	$2.789 \pm 0.193 \pm 0.306$	$2.987 \pm 0.054 \pm 0.577$
0.20 - 0.30	$3.097 \pm 0.062 \pm 0.240$	$3.128 \pm 0.061 \pm 0.098$	$3.334 \pm 0.075 \pm 0.188$	$3.581 \pm 0.048 \pm 0.282$	$3.651 \pm 0.142 \pm 0.242$	$3.988 \pm 0.045 \pm 0.437$
0.30 - 0.40	$2.834 \pm 0.046 \pm 0.087$	$2.943 \pm 0.052 \pm 0.169$	$3.093 \pm 0.053 \pm 0.103$	$3.272 \pm 0.034 \pm 0.119$	$3.588 \pm 0.116 \pm 0.190$	$3.854 \pm 0.085 \pm 0.211$
0.40 - 0.50	$2.081 \pm 0.034 \pm 0.046$	$2.178 \pm 0.034 \pm 0.048$	$2.407 \pm 0.042 \pm 0.086$	$2.468 \pm 0.026 \pm 0.086$	$2.700 \pm 0.077 \pm 0.150$	$2.866 \pm 0.054 \pm 0.087$
0.50 - 0.60	$1.401 \pm 0.026 \pm 0.032$	$1.460 \pm 0.025 \pm 0.036$	$1.603 \pm 0.029 \pm 0.057$	$1.769 \pm 0.018 \pm 0.039$	$1.847 \pm 0.033 \pm 0.070$	$2.101 \pm 0.038 \pm 0.064$
0.60 - 0.70	$0.801 \pm 0.018 \pm 0.023$	$0.890 \pm 0.020 \pm 0.025$	$1.024 \pm 0.023 \pm 0.070$	$1.164 \pm 0.013 \pm 0.054$	$1.234 \pm 0.041 \pm 0.062$	$1.420 \pm 0.032 \pm 0.045$
0.70 - 0.80	$0.477 \pm 0.014 \pm 0.014$	$0.532 \pm 0.014 \pm 0.019$	$0.692 \pm 0.018 \pm 0.063$	$0.738 \pm 0.011 \pm 0.069$	$0.820 \pm 0.035 \pm 0.100$	$0.981 \pm 0.027 \pm 0.071$
0.80 - 0.90	$0.330 \pm 0.011 \pm 0.026$	$0.326 \pm 0.010 \pm 0.015$	$0.439 \pm 0.014 \pm 0.043$	$0.496 \pm 0.009 \pm 0.050$	$0.528 \pm 0.025 \pm 0.076$	$0.655 \pm 0.020 \pm 0.062$
0.90 - 1.00	$0.268 \pm 0.010 \pm 0.032$	$0.207 \pm 0.008 \pm 0.029$	$0.284 \pm 0.011 \pm 0.031$	$0.327 \pm 0.007 \pm 0.046$	$0.315 \pm 0.019 \pm 0.054$	$0.441 \pm 0.013 \pm 0.065$
1.00 - 1.10	_	$0.165 \pm 0.007 \pm 0.036$	$0.190 \pm 0.009 \pm 0.024$	$0.213 \pm 0.005 \pm 0.038$	$0.228 \pm 0.014 \pm 0.043$	$0.275 \pm 0.012 \pm 0.065$
1.10 - 1.20	_	_	$0.106 \pm 0.007 \pm 0.019$	$0.138 \pm 0.005 \pm 0.024$	$0.171 \pm 0.013 \pm 0.026$	$0.191 \pm 0.010 \pm 0.041$
1.20 - 1.30	_	_	$0.087 \pm 0.006 \pm 0.043$	$0.090 \pm 0.004 \pm 0.022$	$0.124 \pm 0.011 \pm 0.028$	$0.149 \pm 0.009 \pm 0.036$
1.30 - 1.40	_	_	_	$0.044 \pm 0.003 \pm 0.018$	$0.091 \pm 0.007 \pm 0.023$	$0.105 \pm 0.007 \pm 0.035$
1.40 - 1.50	_	_	_	_	$0.054 \pm 0.009 \pm 0.016$	$0.072 \pm 0.005 \pm 0.030$
1.50 - 1.60	_	_	_	_	$0.029 \pm 0.005 \pm 0.011$	$0.041 \pm 0.004 \pm 0.013$
1.60 - 1.70	_	—	—	—	—	$0.024 \pm 0.005 \pm 0.015$

TABLE VI. Summary of normalized differential cross sections of the $e^+e^- \rightarrow K_S^0 + X$ process at different momentum ranges, where the first uncertainties are statistical and the second are systematic, respectively. Systematic uncertainties are regarded as uncorrelated between different momentum ranges.

$p_{\kappa 0} (\text{GeV}/c)$	$\sqrt{s} = 2.2324 \text{ GeV}$	$\sqrt{s} = 2.4000 \text{ GeV}$	$\sqrt{s} = 2.8000 \text{ GeV}$	$\sqrt{s} = 3.0500 {\rm GeV}$	$\sqrt{s} = 3.4000 \text{ GeV}$	$\sqrt{s} = 3.6710 \text{ GeV}$
N						
0.00 - 0.10	$0.025 \pm 0.004 \pm 0.003$	$0.013 \pm 0.002 \pm 0.001$	$0.013 \pm 0.002 \pm 0.001$	$0.016 \pm 0.002 \pm 0.002$	$0.013 \pm 0.005 \pm 0.003$	$0.017 \pm 0.004 \pm 0.001$
0.10 - 0.20	$0.108 \pm 0.007 \pm 0.010$	$0.113 \pm 0.008 \pm 0.010$	$0.098 \pm 0.007 \pm 0.009$	$0.094 \pm 0.004 \pm 0.007$	$0.077 \pm 0.011 \pm 0.019$	$0.103 \pm 0.008 \pm 0.010$
0.20 - 0.30	$0.179 \pm 0.009 \pm 0.009$	$0.187 \pm 0.010 \pm 0.014$	$0.208 \pm 0.011 \pm 0.015$	$0.184 \pm 0.006 \pm 0.019$	$0.208 \pm 0.019 \pm 0.041$	$0.171 \pm 0.012 \pm 0.021$
0.30 - 0.40	$0.211 \pm 0.010 \pm 0.018$	$0.230 \pm 0.011 \pm 0.029$	$0.265 \pm 0.012 \pm 0.007$	$0.244 \pm 0.007 \pm 0.021$	$0.286 \pm 0.021 \pm 0.049$	$0.249 \pm 0.014 \pm 0.041$
0.40 - 0.50	$0.195 \pm 0.010 \pm 0.027$	$0.214 \pm 0.011 \pm 0.020$	$0.254 \pm 0.012 \pm 0.009$	$0.246 \pm 0.007 \pm 0.009$	$0.253 \pm 0.019 \pm 0.036$	$0.252 \pm 0.015 \pm 0.042$
0.50 - 0.60	$0.157 \pm 0.010 \pm 0.005$	$0.168 \pm 0.010 \pm 0.017$	$0.225 \pm 0.012 \pm 0.029$	$0.207 \pm 0.007 \pm 0.011$	$0.252 \pm 0.021 \pm 0.025$	$0.228 \pm 0.012 \pm 0.036$
0.60 - 0.70	$0.112 \pm 0.008 \pm 0.017$	$0.128 \pm 0.009 \pm 0.007$	$0.148 \pm 0.009 \pm 0.006$	$0.162 \pm 0.006 \pm 0.014$	$0.209 \pm 0.017 \pm 0.019$	$0.221 \pm 0.012 \pm 0.034$
0.70 - 0.80	$0.076 \pm 0.008 \pm 0.004$	$0.088 \pm 0.007 \pm 0.007$	$0.126 \pm 0.009 \pm 0.013$	$0.124 \pm 0.005 \pm 0.006$	$0.145 \pm 0.015 \pm 0.011$	$0.165 \pm 0.010 \pm 0.015$
0.80 - 0.90	$0.095 \pm 0.010 \pm 0.006$	$0.051 \pm 0.006 \pm 0.005$	$0.076 \pm 0.007 \pm 0.005$	$0.102 \pm 0.005 \pm 0.006$	$0.113 \pm 0.012 \pm 0.005$	$0.114 \pm 0.009 \pm 0.015$
0.90 - 1.00	-	$0.072 \pm 0.007 \pm 0.008$	$0.048 \pm 0.006 \pm 0.005$	$0.068 \pm 0.004 \pm 0.005$	$0.062 \pm 0.010 \pm 0.007$	$0.093 \pm 0.007 \pm 0.005$
1.00 - 1.10	-	-	$0.043 \pm 0.006 \pm 0.005$	$0.047 \pm 0.003 \pm 0.008$	$0.046 \pm 0.008 \pm 0.009$	$0.060 \pm 0.006 \pm 0.003$
1.10 - 1.20	-	_	$0.019 \pm 0.004 \pm 0.002$	$0.030 \pm 0.003 \pm 0.007$	$0.055 \pm 0.009 \pm 0.014$	$0.044 \pm 0.005 \pm 0.003$
1.20 - 1.30	-	_	_	$0.014 \pm 0.002 \pm 0.006$	$0.020 \pm 0.005 \pm 0.003$	$0.026 \pm 0.004 \pm 0.002$
1.30 - 1.40	-	_	_	-	$0.019 \pm 0.005 \pm 0.004$	$0.020 \pm 0.004 \pm 0.004$
1.40 - 1.50	-	-	-	-	-	$0.018 \pm 0.003 \pm 0.005$

V. NORMALIZED DIFFERENTIAL CROSS SECTIONS AS FUNCTION OF z

183

In the main text, the normalized differential cross sections of the $e^+e^- \rightarrow \pi^0/K_S^0 + X$ process are given as function of hadron momentum. According to the relation $z \equiv 2\sqrt{p_h^2c^2 + M_h^2c^4}/\sqrt{s}$, these cross sections could be converted to be z-dependent by using:

$$\frac{1}{\sigma(e^+e^- \to \text{hadrons})} \frac{\mathrm{d}\sigma(e^+e^- \to h + X)}{\mathrm{d}z_h} = \frac{\sqrt{s}}{2} \sqrt{1 + \frac{M_h^2 c^2}{p_h^2}} \frac{1}{\sigma(e^+e^- \to \text{hadrons})} \frac{\mathrm{d}\sigma(e^+e^- \to h + X)}{\mathrm{d}p_h} \tag{1}$$

With the binning scheme adopted in this analysis, there is migration of the signal events between different z bins due to the initial-state radiation which reduces the nominal \sqrt{s} . An MC-based study shows that the migration is generally small and below 20% for all the z bins at $\sqrt{s} = 2.8000$ GeV. This migration will be reliably corrected by the f_h factor extracted from the signal MC sample.

The z-dependent cross sections are shown in Fig. 3 and Fig. 4 for the $e^+e^- \rightarrow \pi^0 + X$ and $e^+e^- \rightarrow K_S^0 + X$ processes, respectively.

FIG. 3. Normalized differential cross sections of the $e^+e^- \rightarrow \pi^0 + X$ process as function of z. The points with error bars are the measured values, where the uncertainties are the quadrature sum of the corresponding statistical and systematic uncertainties. The bands or curves in red, green, blue, magenta, and orange denote the NNFF, MAPFF, AKRS, ARS and DSS calculations, respectively, where only the former two cover $\pm 1\sigma$ limits.

FIG. 4. Normalized differential cross sections of the $e^+e^- \rightarrow K_S^0 + X$ process as function of z. The points with error bars are the measured values, where the uncertainties are the quadrature sum of the corresponding statistical and systematic uncertainties. The red band shows the theoretical calculation from NNFF with $\pm 1\sigma$ limits, and the orange curve denotes the prediction of DSS.