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Abstract
Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology 
of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antide-
pressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of 
its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepres-
sants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. 
We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and 
their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data 
from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. 
Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we 
aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing 
clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.
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Introduction

The first evidence for an involvement of glutamatergic neu-
roplasticity in depression emerged in preclinical studies of 
the late 1980s and early 1990s, which demonstrated that 
hippocampal long-term potentiation is diminished by ines-
capable stress [1] and that NMDA inhibitors exert effects 
comparable to those of traditional antidepressants [2]. Since 
then, the glutamatergic neuroplasticity hypothesis of depres-
sion has been supported by countless preclinical and clinical 
studies. As a comprehensive summary is out of the scope 
of this article (the avid reader is referred to more focused 

reviews on this topic, see e.g. [3–14]), here we will only 
review the most relevant findings.

A number of magnetic resonance spectroscopy studies, 
investigating Glx (glutamate + glutamine) levels have been 
performed in patients with depression. A meta-analysis of 
these studies identified a moderate reduction in Glx lev-
els in the medial prefrontal cortex of medicated (but not 
unmedicated) patients with depression [15]. Moreover, 
altered expression levels of glutamate receptor genes and 
proteins has been described in animal models (e.g., follow-
ing acute or chronic stress, with and without treatment with 
antidepressants), and depression-like behavioural changes 
have been observed in various glutamate receptor mouse 
mutants (reviewed e.g. in [9, 10, 16]). Altered expression of 
glutamate receptors has also been described in postmortem 
brain samples of patients with depression (see e.g. [17–20]) 
and a more recent study showed that glutamate receptor gene 
expression was particularly affected in women with depres-
sion [21]. Genome-wide association studies have linked 
various glutamate receptor genes (e.g., GRIK5, GRM5, 
GRM8) to depression and, more intriguingly, these stud-
ies have found associations with pathways related to syn-
aptic plasticity [22]. This accumulated evidence led to the 
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(glutamatergic) neuroplasticity hypothesis of depression, 
which has been elaborated in a number of review articles 
(e.g. [3, 23, 24]) and has since been further refined.

In the year 2000 Berman et al. reported rapid antidepres-
sant effects of a single sub-anaesthetic dose of the NMDA 
receptor antagonist ketamine [25]. A follow-up trial by 
Zarate et al. 2006 confirmed the rapid antidepressant effect 
of ketamine and showed sustained antidepressant potential 
for at least one week even in patients that did not respond to 
traditional antidepressants [26]. The antidepressant potential 
of ketamine has been repeatedly confirmed and its mecha-
nism of action (MoA) that goes beyond simple NMDA 
receptor antagonisms has been and remains being explored 
(reviewed e.g. in [12, 27, 28]). Since the discovery of the 
antidepressant efficacy of ketamine, the involvement of the 
glutamatergic system and glutamatergic neuroplasticity 
in depression has become more or less indisputable [12]; 
indeed, glutamatergic neuroplasticity as a mechanistic basis 
for depression seems more plausible and possibly superior 
to the monoaminergic hypothesis.

At the core of the neuroplasticity hypothesis is the idea 
that various pathological stimuli, such as stress or inflam-
mation, trigger signalling cascades that lead to pathological 
changes in glutamatergic signalling, thereby weakening the 
neuronal plasticity of glutamatergic synapses. Specifically, 
under pathological conditions, there is reduced uptake and 
increased release of glutamate by astrocytes. This leads to 
extrasynaptic spillover of glutamate, which causes increased 
activation of metabotropic glutamate receptors and disin-
hibition of GABAergic interneurons (through activation of 
NMDA receptors on these interneurons) at the presynaptic 
site. This results in reduced presynaptic glutamate release, 
leading to reduced activation of synaptic NMDA and AMPA 
receptors, which leads to a reduced activation of a num-
ber of downstream signalling pathways, including protec-
tive signalling cascades e.g. via BDNF. At the postsynaptic 
site, glutamate spillover stimulates extrasynaptic NMDA 
receptors, which inhibit the mTOR pathway thereby also 
reducing BDNF-mediated neuroprotection. Stimulation of 
extrasynaptic NMDA receptors are also the main mechanism 
underlying the glutamatergic involvement of neuroinflam-
mation in depression, by increased release of quinolinic acid 
from activated microglia. The described changes in conse-
quence lead to reduced synaptic plasticity, precipitated in 
the reduction of synaptic AMPA receptors further weaken-
ing glutamatergic signalling, resulting in a long-term struc-
tural reduction in the size of glutamatergic synapses (Fig. 1) 
(also see one of the many focused reviews on this topic, e.g. 
[4–14, 23, 24]). While there is a high degree of consensus 
favouring changes in glutamatergic neuroplasticity as a basis 
for depression, the neuroplasticity hypothesis still remains 
at the level of a hypothetical model pending indisputable 
experimental proof.

From monaminergic drugs to rapid acting 
antidepressants

Following the introduction of tricyclic antidepressants in 
the 1950s and 1960s, the development of substances with 
a novel MoA essentially stagnated for decades. While tet-
racyclic antidepressants, MAO inhibitors, as well as sero-
tonin, norepinephrine, and dopamine reuptake inhibitors 
followed, all these molecules share a MoA primarily based 
on the modulation of monoaminergic signal transduction. 
Specifically, the MoA of these substances is mainly based 
on increasing the concentration of serotonin, but also nor-
epinephrine or dopamine in the synaptic cleft [29, 30]. Of 
note, a substantial proportion of patients (up to about 55% 
in the most stringent assessments" [31]) show treatment 
resistance. However, the term treatment-resistant depres-
sion (TRD) is fundamentally misleading; according to the 
common EMA/FDA definition TRD means "inadequate 
response to two sequential antidepressants of different 
classes at adequate doses and duration" [31]. In effect, 
this means "resistant to traditional antidepressant therapy 
targeting the monoaminergic system." Also common to 
these substances is their latency of several weeks to exert 
an antidepressant effect, although the increase in mono-
aminergic neurotransmission occurs more or less imme-
diately. The duration of this latency of effect has been 
assessed and defined differently over the decades: while 
originally a latency of up to six weeks was assumed, later 
meta-analyses suggested a latency of about two weeks 
until the onset of antidepressant effects (see e.g. [32, 33]). 
The molecular basis for this delayed effect is not fully 
clear, but a multitude of molecular/cellular changes have 
been described and include transcriptomic, proteomic, 
and epigenetic changes as well as activation of transcrip-
tion factors and signalling cascades that promote different 
molecular functions including Cytochrome P450 activity, 
energy metabolism, lipid metabolism, synaptic plasticity 
and neurotransmitter systems, activation of neurotrophins 
(particularly BDNF), immune/inflammatory processes, 
and many more (see e.g. [3, 34–36] for further details).

Regardless of whether the latency is one, two, or 
even six weeks, the long period until clinically relevant 
improvement is achieved, especially when considering the 
dosage adjustment phase, remains unsatisfactory from a 
clinical perspective, and might become distressing for the 
patient. Therefore, the development of novel substances 
with an innovative MoA and rapid onset is one of the 
most important goals in psychopharmacotherapy. With the 
approval of intranasal esketamine (trade name "Spravato") 
in 2019 by both the FDA and EMA, an antidepressant 
with a novel MoA and rapid onset was introduced to the 
market for the first time. Other substances with similar 
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or fundamentally different MoA, meeting the criterion of 
a rapid-acting antidepressant (RAAD) are under active 
development.

Rapid acting antidepressants (RAADs)

RAADs are characterized by a rapid onset of antidepres-
sant effects, i.e., within hours to days and by high efficacy 
after one (or a few) applications [37]. Moreover, RAADs 
show marked efficacy against "treatment-resistant" depres-
sion (TRD [31]) or difficult-to-treat depression (D2TD 
[38]), though it is unclear if this is a genuine effect, as 
most studies (at least for ketamine) were in fact exclusively 
performed in TRD/D2TD patients (i.e. there is no base-
line for the effect in non-TRD patients). However, each of 
these intuitively understandable features remains vaguely 
defined. For example, it is unclear whether there is truly a 

rapid and sustained antidepressant effect ("rapidly effec-
tive") or if the true antidepressant efficacy occurs later, 
with the presence of rapid but transient mood-enhancing 
effects ("rapid-acting"). [31]

It remains unresolved whether RAADs are more effec-
tive than other antidepressants, as there are only few head-
to-head comparisons between RAADs and conventional 
antidepressants. Moreover, the interaction of RAADs 
with co-administered traditional antidepressants is not 
always clear, though for ketamine synergistic effects have 
been described (e.g. [39, 40]). Finally, considering newer 
long-term studies [41], at least for ketamine, it must also 
be questioned whether one or two doses of RAAD are 
truly sufficient, especially since the antidepressant effect 
seems to consolidate only after several doses [42]. Due 
to the heterogeneity of RAADs, these points are likely to 
be assessed differently across different substance classes.

Fig. 1  Changes in glutamatergic signalling in patients with depres-
sion. A Schematic of a glutamatergic synapse (blue) including 
key signalling mechanisms and molecules. Pathological changes 
described in depression are shown in red. The accumulation of extra-
synaptic glutamate (due to reduced glutamate uptake and increased 
glutamate release in astrocytes) leads to inhibition of presynaptic glu-
tamate release (through increased activation of presynaptic metabo-
tropic glutamate receptors and GABA-A receptors), and thus reduced 
activation of postsynaptic AMPA and NMDA receptors, which in 
turn leads to reduced activation of downstream signalling pathways 
(including via BDNF-mTOR and calcium-activated signalling path-
ways), ultimately reducing neuronal plasticity. Inhibition of BDNF 
on the postsynaptic side also occurs through increased activation of 
extrasynaptic NMDA receptors (due to increased extrasynaptic glu-
tamate and increased synthesis of quinolinic acid in activated micro-

glia). B The described reduction in neuroplasticity lead to a long-term 
reduction in postsynaptic AMPA receptors and thus decreased synap-
tic efficacy, resulting in long-term structural reduction of the synapse. 
For various substances affecting the glutamatergic system, antide-
pressant efficacy has been demonstrated by mitigating, preventing, or 
reversing various shown pathological changes. For example, ketamine 
primarily inhibits extracellular NMDA receptors, thus preventing the 
GABAergic-mediated reduction in glutamate release and inhibition of 
BDNF expression. Additionally, hydroxynorketamine, a metabolite 
of ketamine, enhances synaptic activity by activating AMPA recep-
tors. AMPAkines exert their effects through increased AMPA recep-
tor activity, while inhibitors of metabotropic glutamate receptors aim 
to prevent the inhibition of presynaptic glutamate release. The figure 
was created with Biorender.com
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Substance classes of RAADs

In their review article published in 2018 [43], Witkin et al. 
proposed the following RAAD classes according to their 
MoA: (i) NMDA receptor antagonists, (ii) metabotropic glu-
tamate receptor (mGluR) 2/3 antagonists, (iii) scopolamine, 
(iv) negative allosteric modulators (NAM) of α5 subunit-
containing GABA-A receptors, and (v) psychedelics. Five 
years later, this list should be expanded to include positive 
allosteric modulators (PAM) of AMPA receptors (AMPAki-
nes), GABA PAMs, partial agonists of the µ-opioid receptor 
(mOR-pA), and kappa-opioid receptor antagonists (kOR-A).

In a database search conducted in June 2024 at clinicaltri-
als.gov for currently active, recruiting, and not yet recruit-
ing phase II and III studies on depression (i.e. “Depressive 
Disorder” or “Unipolar Depression” or synonyms), the fol-
lowing presently investigated substances with RAAD poten-
tial were identified: esketamine (Spravato®), NMDAE (an 
NMDA enhancer; not further defined), BI 1569912 and 
NBI-1070770 (negative allosteric modulators of GluN2B), 
esmethadone, ketamine, nitrous oxide  (N2O), Apimostinel, 
D-cycloserine, NRX101 (a fixed combination of D-cyclo-
serine/lurasidone) (all NMDA receptor modulators); 
TS-161 (mGluR2/3 antagonist); aticaprant, navacaprant 
(kOR-A); buprenorphine (mOR-pA); morphine (μ-opioid 
receptor agonist); propofol, HS-10353, Allopregnanolone 
(GABA-PAM); N,N-dimethyltryptamine, LSD, psilocybin, 
and derivatives (psychedelics, i.e. predominantly acting 
as 5-HT2A agonists). While substances acting on a range 
of pharmacological targets are tested for their potential as 
RAADs, here we only focus on RAADs acting on the gluta-
mate system; these include the substances identified in the 
database search, but also those that have been investigated 
in the last years, but are not actively studied at the current 
time (e.g. Arketamine, AXS-05 [Auvelity®], onfasprodil).

RAADs targeting the NMDA receptor

Without a doubt, the majority of RAADs investigated at the 
moment target the glutamate system. Most likely, this can be 
attributed to the fact that the RAAD potential of ketamine 
has already been postulated more than 30 years ago and that 
the S-enantiomer of ketamine (i.e. esketamine) is approved 
as an intranasal formulation for the treatment of TRD, thus 
being the first approved RAAD.

As the potential of (es)ketamine to act as a RAAD has 
been repeatedly documented and review (reviewed e.g. 
in [12, 27, 28]) and given that esketamine is an already 
approved antidepressant, we will focus here on glutamater-
gic drugs beyond ketamine. Yet, we would like to high-
light some important aspects regarding the antidepressant 

efficacy of ketamine that will become important when 
discussing these other drugs.

Ketamine, as well as esketamine, act as non-competitive 
antagonists of the NMDA receptor on inhibitory, GABAer-
gic interneurons in the hippocampus. This inhibition leads 
to a reduced release of GABA thereby leading to reduced 
inhibition of the excitatory neuron. In consequence, there 
is an increased release of glutamate, leading to activation 
of postsynaptic AMPA receptors. This, along with direct 
NMDA inhibition, results in the inhibition of intracellu-
lar signalling cascades (CaMKIII deactivation) leading to 
increased BDNF release [27]. A hallmark study showed 
that ketamine rapidly activates mTOR, thereby lead-
ing to the formation of new synapses [44]. Both effects 
result in increased neuronal plasticity, which counteracts 
the reduced, stress-related neuroplasticity (see above) in 
depression [45]. However, mere NMDA blockade alone 
does not sufficiently explain the antidepressant effect of 
(es)ketamine, as other NMDA antagonists like meman-
tine do not show a comparable effect [46]. In fact, it has 
been shown that some of these NMDA receptor inhibi-
tion-independent effects might be caused by ketamine 
metabolites acting as AMPA receptor activators [47]. Of 
note, also differences in pharmacokinetics and affinity to 
different NMDA receptor subpopulations have been dis-
cussed to explain the distinct clinical effects of ketamine 
and memantine [48].

One of the main side effects of ketamine and esketa-
mine is dissociation. It is still unclear whether dissociation 
and the antidepressant effect are interlinked – being part of 
the same MoA – or if they are distinct phenomena. A com-
mon belief is that dissociation correlates with the antide-
pressant effect of (es)ketamine. However, data from three 
independent studies contradict this assertion [49–51]. In 
this context, it is important to distinguish between short-
term euphoric and long-term antidepressant effects. While 
the intensity of dissociation may correlate with a better 
antidepressant response after one day [49] (although one 
study found that very strong dissociation [CADSS > 15] 
was associated with worse response [50]), no significant 
correlation was found between dissociation and the anti-
depressant effect of (es)ketamine after day 3, day 7, or 
day 28. This suggests that the acute antidepressant effect 
(up to 24 h after infusion) of (es)ketamine could be due to 
an acute "trip" (which could correspond to acute NMDA 
antagonization). However, the long-term antidepressant 
effect does not correlate with dissociation and might rather 
be due to neuroplastic, AMPA, or BDNF-induced phenom-
ena. As a result, the search for other substances acting on 
the glutamate system that demonstrate the antidepressant 
efficacy of (es)ketamine without the side effect of dissocia-
tion is in full swing.
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Arketamine

In addition to esketamine, the R-enantiomer of ketamine (i.e. 
arketamine), has been investigated as a potential antidepres-
sant based on preclinical studies [52]. This was accompanied 
by high hopes for at least equally good antidepressant effi-
cacy, with fewer side effects, especially with regard to disso-
ciation. A pilot open-label phase II study on 7 TRD patients 
showed a rapidly occurring and significant antidepressant 
effect [53]. However, another small, double-blind crossover 
study by the same research group [54] showed no significant 
difference from placebo. At the beginning of 2023, atai Life 
Sciences announced that a phase IIa study (ClinicalTrials.
gov ID NCT05414422), which compared two dosages of 
arketamine against placebo in TRD patients, was negative 
with respect to the primary endpoint (statistically signifi-
cant MADRS reduction 24 h after infusion). Currently, it is 
unclear whether the development of arketamine as an anti-
depressant will continue.

Hydroxynorketamine

In a seminal report, Zanos et al. [47] showed that hydrox-
ynorketamine (HNK) the metabolite of ketamine is essen-
tial for the antidepressant activity of ketamine. They could 
further show that delivery of HNK in mice was sufficient 
to exert antidepressant-like effects, not by inhibition of 
NMDA receptors, but by activation of AMPA receptors 
[47]. The antidepressant-like effects in preclinical models 
has been repeatedly confirmed (see e.g. [55–57]). However, 
two independent clinical trials, one in patients with suicidal 
depression [58] and one in TRD patients [59], showed an 
inverse relationship of HNK levels post ketamine infusion 
with clinical outcome (i.e. lower HNK levels correlated with 
increased symptom improvement). In fact, clinical trials in 
relation to depression have not progressed beyond phase I 
(ClinicalTrials.gov ID NCT04711005), though HNK is cur-
rently in a phase II trial for neuropathic pain (ClinicalTrials.
gov ID NCT05864053). Thus, it is unclear whether HNK 
will be further pursued for its antidepressant potential.

AXS‑05 (Auvelity®; bupropion/dextromethorphan 
fixed combination)

Dextromethorphan (DXM) is sold over-the-counter as a 
cough suppressant and does not cross the blood–brain barrier 
at typical dosages for this use. However, at sufficiently high 
blood levels (e.g., from misuse), DXM can be detected in 
the cerebrospinal fluid. In the brain DXM acts as an NMDA 
receptor antagonist, a sigma-1 receptor agonist, and a mono-
amine reuptake inhibitor [60]. To achieve sufficient levels, 
DXM is combined with an inhibitor of CYP2D6, the DXM 
metabolizing enzyme, such as quinidine or bupropion. While 

several studies on DXM in bipolar depression were negative 
[60] – likely due to the lack of combination with a CYP2D6 
inhibitor – a small open-label study with TRD patients was 
positive [61]. This led to a clinical trial program by Axsome 
Therapeutics with a fixed combination of 45 mg DXM and 
105 mg bupropion (AXS-05). Two controlled studies with 
AXS-05, ASCEND (against bupropion alone [62]) and 
GEMINI (against placebo [63]), were positive. In GEMINI, 
there was a significant separation of drug vs placebo regard-
ing MADRS difference and remission after one or two weeks 
respectively. In the AXS-05 treated group of patients, 40% 
reached remission after six weeks (MADRS < 10). Whether 
the onset of action after one week justifies the label "rap-
idly effective" is more of a theoretical question; however, 
compared to conventional antidepressants, this timeframe is 
considerably shorter. The side effect profile of AXS-05 was 
generally comparable to that of other NMDA antagonists, 
but with generally fewer adverse effects, particularly regard-
ing dissociation. Based on these two studies, AXS-05 was 
approved by the FDA in 2022 and is available in the USA 
under the trade name "Auvelity." If and when Auvelity® 
will be available in Europe is currently unclear; given the 
EMA requirements on fixed combination products [64] and 
the described differences between the FDA and EMA for 
initial therapy approval for fixed combination products [65], 
the approval for Auvelity® in Europe might be a long shot. 
Other variations of DXM combinations, such as deuterated 
DXM (AVP-786) or a combination with quinidine (Nue-
dexta), are also in clinical development [66].

Esmethadon (REL‑1017)

Esmethadone (also: Dextromethadone; as investigational 
drug by Relmada Therapeutics: REL-1017) is the S-enanti-
omer of methadone and, unlike methadone, has only a very 
low and probably irrelevant affinity for opioid receptors. 
Instead, esmethadone acts as an NMDA receptor antago-
nist, blocking the MK-801 binding site of the receptor with 
relatively high affinity. As with other RAADs, the effect 
of esmethadone in preclinical models seems to depend on 
mTOR and to be mediated by BDNF (reviewed in [67]). 
Increased circulating BDNF levels following esmethadone 
treatment were also found in phase I study (i.e. performed 
in healthy subjects) [68]. Surprisingly few preliminary data 
have been published on esmethadone, even though Relmada 
Therapeutics has launched an extensive study program (Reli-
ance-II and -OLS; Relight). The first clinical trial, a placebo-
controlled phase II study in patients with at least moderate 
depression, was published in 2022 [69]. In addition to good 
tolerability, a superiority of both tested esmethadone dosages 
(25 or 50 mg/day orally) in terms of reduction of MADRS 
was shown by the fourth day, with comparatively high effect 
sizes (d = 0.8 and 0.9, respectively). The effect lasted for a 



 European Archives of Psychiatry and Clinical Neuroscience

week after the last dose was administered, over a dosing 
period of one week. The data from the currently ongoing 
phase III trials (ClinicalTrials.gov IDs NCT06011577 and 
NCT04855747) are eagerly awaited.

Nitrous oxide  (N2O, laughing gas)

As its colloquial name “laughing gas” suggests, nitrous 
oxide has an acute (albeit short-term) mood-enhancing 
(euphoric) effect even in healthy individuals. Therefore, 
nitrous oxide has been increasingly misused, especially 
among adolescents and young adults [70]. Nitrous oxide 
is a non-competitive antagonist at the NMDA receptor but 
also acts on other molecular targets, particularly by exerting 
opioidergic effects and by inhibition of AMPA and kainate 
receptors [71, 72].

An initial blinded, placebo-controlled crossover trial with 
20 TRD patients found a significant effect of a 50%/50% 
nitrous oxide/oxygen mixture on the Hamilton Depression 
Scale (HAMD) after two and 24 h compared to placebo 
[73]. The HAMD items that showed the best response were 
depressed mood, guilt, psychic anxiety, and, interestingly, 
suicidal ideation. Three patients fully remitted (7 or more 
points reduction in the HDRS-21 score) after nitrous oxide 
treatment. In a later phase II study the same research group 
was able to confirm the efficacy of nitrous oxide and further 
found that 25% nitrous oxide also worked comparably well 
but with fewer side effects [74]. This study also revealed 
that the effects of nitrous oxide treatment (both 50% and 
25%) lasted for at least two weeks. In another randomized 
control trial in TRD patients from China, the two week-long 
efficacy could not be confirmed; however, this study also 
found nitrous oxide to be effective after two and 24 h [75]. 
In a Canadian randomized controlled trial on bipolar disor-
der patients with current TRD a single-treatment with 25% 
nitrous oxide was only superior in the MADRS response rate 
in comparison to the control group (intravenous midazolam) 
after 2 h; another 2 h later (i.e. 4 h after treatment) and 
beyond, both treatment arms showed comparable response 
[76]. Yet, a small meta-analysis including this and the pre-
vious three studies (i.e. [73–76]) showed significant benefit 
of nitrous oxide treatment at 24 h post-treatment, but no 
significant effect after one week of treatment [72].

A Brazilian study examined the effect of repeated (twice 
weekly, over four weeks) nitrous oxide inhalations and 
found remarkable improvement in non-TRD patients [77]. 
A recently published systematic review also concluded a 
potential benefit of nitrous oxide treatment in depression and 
identified ten more ongoing studies for different indications 
(3 for depression, 3 for TRD, and 2 for bipolar disorder, one 
for PTSD and one for OCD) [78].

Since the studies published so far include relatively 
few patients, evaluating nitrous oxide as a RAAD is still 

premature. However, it is a well-controllable substance with 
a manageable side effect profile, and further studies are 
certainly justified and are ongoing (ClinicalTrials.gov IDs 
NCT05357040 and NCT03869736) or planned (ClinicalTri-
als.gov IDs NCT06382389 and NCT05710887).

D‑cycloserine

D-cycloserine acts as a partial agonist at the co-agonistic 
glycine-binding site of the NMDA receptor. However, at 
high doses, D-cycloserine acts as an NMDA antagonist. 
D-cycloserine has been investigated as a cognitive enhancer 
in schizophrenia or as an enhancer of psychotherapy effects 
[79], and a preliminary study showed positive effects in TRD 
[80]. NRX-101, a fixed-dose combination of D-cycloserine 
with the second-generation antipsychotic lurasidone, is 
being studied for efficacy in bipolar depression and suicidal 
ideation in mood disorders. At least one of these studies 
uses a sequential protocol with an initial ketamine infu-
sion followed by oral NRX-101 therapy for continuation of 
treatment. If this strategy proves successful as supported by 
the results from this first trial [81], this would significantly 
facilitate efforts of both patients and practitioners. Results 
from another trial (ClinicalTrials.gov ID NCT03395392) are 
not yet published and an additional trial (NCT03396068) is 
ongoing.

Other molecules targeting the NMDA receptor

Numerous other molecules that target the NMDA receptor 
have been investigated as potential antidepressants in animal 
models or in Phase I/II human studies (overview in [66]). 
However, very few have demonstrated a convincing, rapid, 
and sustained antidepressant effect. Potentially this is because 
these substances interact differently with the NMDA receptor 
in terms of site and mechanism; it is also possible that the 
non-competitive NMDA antagonism of (es)ketamine (which, 
unlike other substances, can only bind to the receptor in its 
open state) is just one aspect of a complicated MoA involving 
multiple molecular targets. Among the substances that also 
inhibit the NMDA receptor and were effective in pilot studies 
but then failed in confirmatory studies are the low-trapping 
NMDA receptor antagonist lanicemine (AZD6765) [82]. The 
GluN2B subunit-selective antagonist traxoprodil (CP-101,606) 
was also successful in a pilot study [83] but further develop-
ment was stopped due to QTc prolongation. Other GluN2B 
antagonists like EVT-101 or rislenemdaz (MK-0657, CERC-
301) are currently not being developed further due to regula-
tory holds or negative data respectively [66, 84]. The well-tol-
erated [85], negative allosteric GluN2B modulator onfasprodil 
(MIJ-821) was tested by Novartis as a RAAD for TRD and 
depression with suicidal ideation. While a Phase II study in 
TRD was positive (ClinicalTrials.gov ID NCT03756129), the 
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study in patients with suicidal ideation (NCT04722666) was 
prematurely terminated without providing further information. 
Another Phase II trial is completed (NCT05454410), but no 
results have been published yet.

4-Chlorokynurenine (AV-101) a small molecule prodrug 
of 7-chlorokynurenic acid, which acts as a full antagonist 
at the glycine-binding site of the NMDA receptor. This 
drug joins the long list of substances that were effective in 
preclinical models but not in clinical studies. After a failed 
Phase II study [86], it is unlikely to be pursued further – at 
least for the indication of depression.

Rapastinel (development name: GLYX-13) binds as a 
NMDA receptor PAM at a site other than the NMDA or 
glycine-binding site and exhibits complex pharmacology. 
Unlike the other mentioned substances, rapastinel enhances 
glutamate-dependent activation of the NMDA receptor in 
the medial prefrontal cortex [87] and may also increase syn-
aptic plasticity. A pilot study showed a rapid antidepressant 
effect of rapastinel [88] in patients who had not responded 
to another antidepressant. However, three Phase III studies 
conducted by Allergan (summarized in [89]) were negative. 
Thus, rapastinel is not being developed further, though other 
substances with a similar MoA, like apimostinel (GATE-
202, NRX-1074) or zelquistinel (GATE-251, AGN-241751) 
continue to be investigated.

Metabotropic glutamate receptor 
antagonists

In addition to NMDA receptors, other types of glutamate 
receptors have been suggested as potential RAAD targets, 
including the metabotropic glutamate receptors (mGluRs). 
The eight mGluRs (mGluR1-8) are G-protein-coupled gluta-
mate receptors [90]. mGluR2 and 3 belong to Class II of the 
mGluRs and inhibit adenylate cyclase. They reduce NMDA 
activity and protect against glutamatergic excitotoxicity; 
their inhibition has led to very rapid, ketamine-like anti-
depressant effects in preclinical studies [91]. The mGlu2/3 
antagonist TS-161 is safe and sufficiently bioavailable [92] 
and is currently under clinical investigation (ClinicalTrials.
gov ID NCT04821271). However, a larger study with the 
mGlu2/3-NAM Decoglurant was negative [93], which has 
been attributed to factors other than the MoA.

Other mGluRs (e.g. mGluR5) have also shown promising 
potential in preclinical studies without any positive clinical 
studies (reviewed in [94, 95]).

AMPAkines (AMPA‑PAMs)

The MoA of (es)ketamine, as well as mGlu2/3 antagonists, 
converges on the activation of AMPA receptors [27, 91, 
96], leading to increased BDNF release, TrkB activation, 

and enhanced neuronal plasticity. The involvement of 
AMPA receptors in depression is well documented and 
was extensively discussed in a previous review article by us 
[9]. Hence, the hypothesis that direct activation of AMPA 
receptors using AMPAkines could have an antidepressant 
effect is plausible [9, 97]. However, despite the solid pre-
clinical evidence, only few clinical studies with AMPAkines 
have been performed. A small randomized, double-blind, 
placebo-controlled trial in patients with depression using 
the AMPAkine Org 26,576 did not reveal significant ben-
efit of this drug compared to placebo [98]. One currently 
investigated compound is NBI-1065845/TAK-653 (Clinical-
Trials.gov ID NCT05203341) [96], which has shown target 
engagement in initial studies and exhibits the properties of 
a psychostimulant [99]. Another AMPAkine, tulrampator 
(S-47445, CX-1632), was tested in a relatively large phase 
II study for efficacy in treatment-resistant depression (TRD) 
(NCT02805439); the results were negative and are unpub-
lished but available online (https:// clini caltr ials. servi er. com/ 
wp- conte nt/ uploa ds/ CL2- 47445- 014- synop sis- report. pdf).

Whether the strategy of directly stimulating AMPA recep-
tors or the BDNF pathway will prove worthwhile remains 
to be seen and requires further and larger clinical study pro-
grams. In this context, it also makes sense to consider the 
pharmacological modulation of AMPA receptor auxiliary 
subunits. These auxiliary subunits (including the TARP, 
Cornichon, and CKAMP proteins) interact directly with 
AMPA receptors and modulate several of their properties 
including receptor trafficking and receptor kinetics [100]. 
Disturbed AMPA receptor trafficking is also a key mecha-
nism underlying glutamatergic mechanisms of depression 
and is also relevant in the context of the antidepressant effi-
cacy of ketamine [101]. Therefore, it is not surprising that 
at least in preclinical models, the efficacy of ketamine has 
been linked to the AMPA auxiliary subunit TARP-γ8 and 
its interaction with PSD-95 [102]. However, though various 
negative and positive modulators of AMPA receptor auxil-
iary subunits have been identified and developed, specific 
studies on a potential antidepressant activity have yet to be 
conducted.

Other potential RAADs interacting 
with the glutamatergic system

Beyond the above-described substances other substances 
that more indirectly interact with the glutamatergic systems 
have been classified as potential RAADs. The most prom-
ising of these substances that are the subject of a number 
of completed and still ongoing clinical trials are psilocy-
bin (and other 5-HT2A partial agonists, i.e. psychedelics) 
[103–105], and the muscarinic cholinergic receptor antago-
nist scopolamine [106, 107]. Similarly to ketamine, the rapid 

https://clinicaltrials.servier.com/wp-content/uploads/CL2-47445-014-synopsis-report.pdf
https://clinicaltrials.servier.com/wp-content/uploads/CL2-47445-014-synopsis-report.pdf
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antidepressant activity of both psilocybin and scopolamine 
has been assigned to changes in neural plasticity, involving 
increased glutamate release leading to elevated mTOR and 
BDNF activity and other downstream mechanism that pro-
mote synaptic plasticity [14, 107–110].

Summary and conclusions

Ketamine and esketamine are well implemented gluta-
matergic RAADs in clinical practice and esketamine has 
been approved for use in TRD or for emergency treatment. 
In the USA, the dextromethorphan/bupropion combina-
tion is already on the market; another drug with NMDA 
receptor antagonistic effects and rapid antidepressant onset. 
Esmethadone is the next substance with potential for market 
introduction. Whether nitrous oxide, given its problematic 
administration and potential for abuse, will ever receive FDA 
or EMA approval remains to be seen. All other substances 
that target the glutamatergic system and have been studied in 
clinical trials have not led to convincing results both in term 
of onset of action and efficacy. Perhaps this is because modu-
lation of isolated glutamatergic targets might not suffice to 
achieve antidepressant efficacy. Possibly other molecular 
effects, such as those present in (es)ketamine, must also be 
involved. Therefore, whether it will be possible to develop 
glutamatergic substances with a lower side effect profile 
(especially in terms of dissociation) and/or better efficacy 
than (es)ketamine remains an exciting question.
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