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Abstract

The measurements of the inclusive J/ψ yield at midrapidity (|y|< 0.9) and forward rapidity (2.5
< y < 4) in Pb–Pb collisions at

√
sNN = 5.02 TeV with the ALICE detector at the LHC are re-

ported. The inclusive J/ψ production yields and nuclear modification factors, RAA, are measured as
a function of the collision centrality, J/ψ transverse momentum (pT), and rapidity. The J/ψ average
transverse momentum and squared transverse momentum (⟨pT⟩ and ⟨p2

T⟩) are evaluated as a func-
tion of the centrality at midrapidity. Compared to the previous ALICE publications, here the entire
Pb–Pb collisions dataset collected during the LHC Run 2 is used, which improves the precision of
the measurements and extends the pT coverage. The pT-integrated RAA shows a hint of an increasing
trend towards unity from semicentral to central collisions at midrapidity, while it is flat at forward
rapidity. The pT-differential RAA shows a strong suppression at high pT with less suppression at
low pT where it reaches a larger value at midrapidity compared to forward rapidity. The ratio of the
pT-integrated yields of J/ψ to those of D0 mesons is reported for the first time for the central and
semicentral event classes at midrapidity. Model calculations implementing charmonium production
via the coalescence of charm quarks and antiquarks during the fireball evolution (transport models)
or in a statistical approach with thermal weights are in good agreement with the data at low pT. At
higher pT, the data are well described by transport models and a model based on energy loss in the
strongly-interacting medium produced in nuclear collisions at the LHC.

*See Appendix A for the list of collaboration members
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1 Introduction

Quantum chromodynamics (QCD) is the theory describing the strong interaction. Lattice QCD, i.e. the
discrete formulation of QCD, predicts the existence of a state of deconfined matter at high energy density
that is characterised by quark and gluon degrees of freedom [1, 2]. This quark–gluon plasma (QGP) is
created during the early hot and dense stage of heavy-ion collisions at ultra-relativistic energies.

The heavy quarks, charm (c) and beauty (b), are unique probes for this phase of matter [3, 4]. Due to
their large masses, they are produced as quark–antiquark pairs in hard partonic scattering processes in the
early stage of the collision, and they thus experience the full evolution of the system. While the majority
of the produced heavy quarks and antiquarks hadronise independently into open heavy-flavour hadrons,
bound quarkonium states can also be formed [5]. However, it has been predicted that the formation of
bound states should be suppressed due to the mechanism of colour screening where the large density of
colour charges in the QGP hinders the production of bound quarkonia [6, 7]. The degree of suppression
of the various quarkonium states depends on their binding energy along with the medium properties,
such as its temperature. Consequently, the measurements of quarkonium production rates in heavy-ion
collisions have been considered as a potential thermometer of the medium.

The production of J/ψ , the charmonium ground state with quantum numbers JPC = 1−−, has been stud-
ied extensively in heavy-ion collisions over the last several decades. Suppression of the J/ψ yield was
observed in nucleus–nucleus collisions with respect to the expectation from proton–proton collisions at
the SPS (up to centre-of-mass energy per nucleon pair

√
sNN = 17 GeV) [8–10], at RHIC (

√
sNN up

to 200 GeV) [11–14] and at the LHC (
√

sNN = 2.76 TeV [15–18] and 5.02 TeV [19–24]). However,
contrary to the prediction from the colour-screening scenario, the measured suppression does not in-
crease with increasing collision energy from RHIC to LHC despite of an increased energy density of
the produced QGP. At LHC energies, J/ψ production is found to be less suppressed than at the lower
RHIC energies, in particular at low transverse momentum, pT, of the J/ψ [18, 25–27]. In addition,
a significant azimuthal anisotropy in the J/ψ production was observed via the elliptic and triangular
flow measurements reported in Refs. [28, 29]. These observations are explained by an additional J/ψ

production mechanism, referred to as (re)generation in the following, in which copiously produced un-
correlated charm quarks and antiquarks bind into J/ψ mesons [30, 31]. This process can only take place
in a deconfined medium, and its contribution to the measured J/ψ yield increases with the density of cc
pairs and, therefore, with increasing collision energy and decreasing pT [32–34]. With increasing pT,
(re)generation becomes less relevant for J/ψ production and, instead, charmonium dissociation and the
fragmentation of high-energy partons into charmonia become dominant. In the latter case, the suppres-
sion of high-pT J/ψ yields should reflect the energy loss of partons [35], which is mostly of radiative
nature in this kinematic regime.

The formation process of charmonia in heavy-ion collisions is complex and various phenomenological
approaches are considered. In the statistical hadronization scenario, the relative abundances of char-
momium states with respect to other charmed hadrons are determined by thermal weights [30, 32] at the
system chemical freeze-out. In microscopic transport and comover interaction models, charmonia are
continuously produced and broken up during their propagation through the QGP [31, 33, 34, 36]. Fur-
thermore, it is important to consider cold nuclear matter (CNM) effects. In particular, the modification
of the parton distribution functions in nuclei with respect to nucleons [37] has to be taken into account
for the interpretation of the results. These CNM effects were investigated in ALICE especially with
proton–nucleus collisions [38–44].

For a better assessment of the production mechanisms, systematic measurements of the centrality, pT,
and rapidity dependence of J/ψ production are pivotal. In this article, the ALICE results on inclusive
J/ψ production at midrapidity (|y|< 0.9) for 0.15 < pT < 15 GeV/c and forward rapidity (2.5 < y <
4) for 0.3 < pT < 20 GeV/c, from the full Run 2 data sample at the LHC, are reported. Inclusive J/ψ
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measurements contain a prompt J/ψ contribution from direct J/ψ and decay from heavier charmonium
states, and a non-prompt J/ψ contribution from the decay of beauty hadrons. The precision of the
measurements, using the entire Run 2 data sample, improved significantly compared to previous ones [20,
21] and the measurements could be extended up to 15 GeV/c and 20 GeV/c at mid and forward rapidity,
respectively. The pT-differential J/ψ yields in Pb–Pb collisions at

√
sNN = 5.02 TeV are measured in

various centrality classes. At midrapidity, the average transverse momentum ⟨pT⟩ as well as squared
transverse momentum ⟨p2

T⟩ is determined, which provide a quantitative estimation of the evolution of
the pT spectra as a function of centrality. The nuclear modification factor RAA defined, as the ratio of
the yield in Pb–Pb to the corresponding yield in pp collisions scaled by the number of binary nucleon–
nucleon collisions is calculated. The results as a function of pT and collision centrality are compared with
model calculations employing the statistical hadronisation [32], microscopic parton transport [33, 34],
comover [36], and energy loss [35] approaches.

2 Apparatus and data sample

A complete description of the ALICE apparatus and its performance is given in Refs. [45, 46]. The
central barrel detectors, for the dielectron analysis, and the muon spectrometer, for the dimuon analysis,
covering midrapidity and forward rapidity, respectively, were used in the analyses reported in this paper.

At midrapidity, the main detectors employed in the analysis are the Time Projection Chamber (TPC) [47]
and the Inner Tracking System (ITS) [48], both immersed in a uniform magnetic field of 0.5 T provided
by a solenoid magnet. The TPC is used for tracking and particle identification. It covers the pseudora-
pidity range |η | < 0.9 for tracks with full radial length and has full coverage in azimuth. It provides
excellent momentum resolution and electron–hadron separation in a wide range of track transverse mo-
mentum. The ITS is a cylindrical six-layer silicon detector, with the innermost layer located at 3.9 cm
from the beam pipe, providing additional space points for tracking that enhance the spatial resolution in
the reconstruction of primary and secondary vertices.

At forward rapidity, the muon spectometer [49, 50] detects muons in the range −4 < η < −2.5. It
consists of a 3 Tm dipole associated with a tracking and a trigger system. A front absorber with a
thickness of 10 interaction lengths is placed before the tracking system in order to filter out hadrons
produced in the interaction. The tracking system consists of five tracking stations, each one made of two
planes of cathode pad chambers. An iron wall with 7.2 interaction length thickness is located between
the tracking and trigger stations in order to stop secondary hadrons escaping the front absorber and low
momentum muons produced predominantly from π and K decays. The trigger system consists of two
stations, each one made of two planes of resistive plate chambers. Finally, a conical absorber around the
beam pipe protects the spectrometer against secondary particles produced by the interaction of primary
particles with large pseudorapidity at the beam pipe. In the analysis at forward rapidity, the determination
of the primary vertex of the collision is provided by the Silicon Pixel Detector (SPD) that constitutes the
two innermost layers of the ITS.

Both analyses, at midrapidity and forward rapidity, use the V0 [51] and Zero Degree Calorimeter (ZDC) [52]
detectors. The V0 detector consists of two scintillator detector arrays and covers the full azimuth in the
pseudorapidity regions −3.7 < η < −1.7 and 2.8 < η < 5.1, respectively. It is used for triggering,
beam–gas background rejection, and characterisation of the event centrality. The ZDC detectors are lo-
cated at a distance of 112.5 m on both sides of the interaction region along the beam direction, and they
detect spectator nucleons emitted at zero degree with respect to the LHC beam axis. They are used to
reject electromagnetic Pb–Pb interactions.

The trigger for minimum-bias (MB) events was provided by the coincidence of signals in the two scintil-
lator arrays of the V0 detector. The dimuon analysis relies on a dimuon trigger which requires, in addition
to the MB trigger, the detection of two opposite-sign tracks in the muon trigger system. The muon trigger
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selects muon candidates with a pT larger than a threshold of ∼ 1 GeV/c. The trigger efficiency reaches
50% at this threshold value and a plateau value of 98% at pT ∼ 2.5 GeV/c [53].

The results presented in this article are based on the data sample collected by ALICE from Pb–Pb col-
lisions at

√
sNN = 5.02 TeV in 2015 and 2018 during Run 2 at the LHC. During the 2018 data taking,

the Pb–Pb dataset for the central barrel was enhanced with central (0–10%) and semicentral (30–50%)
events. In total, the integrated luminosity corresponding to the analysed data sample was about 105 µb−1

and 51 µb−1 for the central and semicentral events, respectively. For the other centrality intervals, the
integrated luminosity of the data sample was 22 µb−1. For the analysis at forward rapidity, the dimuon
triggered sample corresponds to an integrated luminosity of 756 µb−1. At midrapidity, triggered events
containing collisions that overlap within a time window smaller than the readout time of the TPC were
removed to preserve a uniform particle identification performance of the TPC, which is sensitive to the
total charge produced by the ionising tracks in the sensitive volume. Only events with the primary vertex,
reconstructed within ±10 cm from the nominal interaction point in the beam direction, were considered
for further analysis at midrapidity. In the forward analysis, there was no selection on the primary vertex.

3 Analysis details

The primary observable is the pT-differential J/ψ yield per unit of rapidity d2N/(dy dpT). For a given
interval of centrality, rapidity (∆y), and transverse momentum (∆pT), this is obtained as

d2N
dy dpT

=
NJ/ψ

Nev ×BRJ/ψ→l+l− × (A× ε)×∆y×∆pT
, (1)

where NJ/ψ is the number of reconstructed J/ψ mesons, Nev is the number of events corresponding to
the analysed centrality interval, and (A× ε) is the acceptance times efficiency factor. The branching
ratio (BR) corresponds to either the dielectron or the dimuon J/ψ decay channel. Since the analysis at
forward rapidity was based on a sample of dimuon-triggered events, the equivalent Nev was obtained as
the product of the number of dimuon-triggered events times the inverse of the probability of having a
dimuon trigger in a MB triggered event, Fnorm [40, 54]. The number of equivalent Nev was first obtained
for the 0–90% centrality class and was then scaled to the centrality classes considered in the analysis.

The nuclear modification factor, RAA, is obtained as

RAA =
d2N/(dy dpT)

⟨TAA⟩d2σpp/(dy dpT)
, (2)

where ⟨TAA⟩ is the average nuclear overlap function as described in Ref. [55] and given in Table 1 for
the centrality intervals used for the analyses at midrapidity and forward rapidity. The RAA is evaluated as
a function of the average number of participant nucleons, Npart, corresponding to a given centrality class
(as shown in Table 1), and as a function of the J/ψ pT. The differential J/ψ production cross section
in pp collisions, d2σpp/(dy dpT), was measured at both midrapidity and forward rapidity as reported
in Refs. [56] and [57], respectively. At midrapidity, the data sample size does not allow to obtain the
cross section for pT > 10 GeV/c and an extrapolation is applied for the last pT interval (10 < pT < 15
GeV/c), the result of the extrapolation is 6.82 ± 0.91 nb. The details of this approach are described in
Ref. [58, 59], and the corresponding RAA is shown as the open points in Figs. 6, 7 and 9.

The pT-differential J/ψ yields at midrapidity were studied further by extracting the ⟨pT⟩ and ⟨p2
T⟩ in fine

centrality intervals, as described later in this section. For quantitative comparisons of the pT distributions,
the ratio rAA of the J/ψ ⟨p2

T⟩ measured in Pb–Pb collisions to the one obtained in pp collisions at the
same energy is calculated as

rAA =
⟨p2

T⟩PbPb

⟨p2
T⟩pp

. (3)
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Table 1: Average nuclear overlap function ⟨TAA⟩ and the average number of participants ⟨Npart ⟩ in Pb–Pb colli-
sions at

√
sNN = 5.02 TeV for the centrality classes used in the analyses at midrapidity (upper) and forward rapidity

(lower).

Centrality ⟨TAA⟩ (1/mb) ⟨Npart ⟩
0–5% 26.08 ± 0.18 383.40 ± 0.57

5–10% 20.44 ± 0.17 331.20 ± 1.03
10–20% 14.4 ± 0.13 262.00 ± 1.15
20–30% 8.77 ± 0.10 187.90 ± 1.34
30–40% 5.09 ± 0.08 130.80 ± 1.33
40–50% 2.75 ± 0.05 87.14 ± 0.93
50–70% 0.98 ± 0.02 42.65 ± 0.69
70–90% 0.16 ± 0.004 11.34 ± 0.16
0–20% 18.83 ± 0.14 309.7 ± 0.89
20–40% 6.93 ± 0.09 159.4 ± 1.32
40–90% 1.00 ± 0.02 39.03 ± 0.53

3.1 J/ψ raw yield extraction

The J/ψ mesons are reconstructed employing the e+e− decay channel at midrapidity and the µ+µ−

decay channel at forward rapidity. The analysis techniques are discussed in detail in Refs. [18, 20, 21].
Here, only a brief overview is given and differences with respect to previous analyses are highlighted.

Electron candidates for the analysis at midrapidity are tracks reconstructed in both the ITS and TPC in
the pseudorapidity range |η | < 0.9 and with a pT > 1 GeV/c to suppress combinatorial background.
All tracks are required to have at least one hit in the SPD layers and at least 70 out of a maximum
of 159 clusters reconstructed in the TPC. These and other quality criteria that were applied in addition
(see Ref. [20]) ensure good tracking resolution and particle identification. They reduce the background
electrons from the conversion of photons in the detector material or from long lived weakly-decaying
hadrons as well as tracks from pileup collisions, occuring within the readout time of the TPC. Electrons
and positrons are identified using selections on the specific energy loss, dE/dx, in the TPC gaseous
volume. The measured dE/dx is required to be within 3 standard deviations (σ ) relative to the expected
electron specific energy loss corresponding to the track momentum, and more than 3.5σ different from
either the π or proton specific energy loss hypotheses. Electrons from photon conversions surviving
the track quality criteria are rejected using a technique where candidate electrons are paired with other
electrons selected with less strict criteria to enhance the probability of finding the conversion partner, as
described in detail in Ref. [21].

Muon candidates were selected such that the track pseudorapidity is within the geometrical acceptance
of the muon spectrometer, −4 < η < −2.5, and that the reconstructed track matches a track segment
reconstructed in the trigger system. The transverse position of the tracks at the end of the absorber is
required to be 17.6 < Rabs < 89.5 cm in order to reject tracks crossing the thickest part of the absorber.
In addition, a selection was applied on the product of the track momentum and the transverse distance to
the primary vertex in order to reduce the contamination produced by particles that do not originate from
the interaction point.

The number of reconstructed J/ψ mesons, i.e. the raw J/ψ yield, was obtained by constructing the
invariant-mass distribution of all the possible opposite-sign dileptons with rapidity selections of 2.5 <
y < 4 for dimuons and |y| < 0.9 for dielectrons. At midrapidity, the signal extraction was performed
in two steps. First, the combinatorial background was estimated using an event-mixing technique [21]
and subtracted from the invariant-mass distribution. In the second step, the remaining distribution was
fitted with a two-component function, one corresponding to the J/ψ signal and the other to the residual
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background, which mainly arises from correlated semileptonic decays of heavy-flavour hadrons. The
J/ψ signal line shape was obtained from Monte Carlo (MC) simulations of J/ψ mesons decaying in the
dielectron channel embedded in simulated Pb–Pb collisions, as described below, while for the residual
background a second-order polynomial function was employed. The raw J/ψ yield was obtained by
first counting the dielectron pairs in the mass range 2.92 < me+e− < 3.16 GeV/c2 in the combinatorial-
background subtracted invariant-mass distribution, and then subtracting the residual background based
on a two-component fit. Finally, the raw J/ψ-meson yield is corrected for the fraction of J/ψ recon-
structed outside of the counting mass interval, as described in more detail in Section 3.3. This procedure
is illustrated in the left panels of Fig. 1 for the collision centrality interval 0–5% and pT > 0.15 GeV/c.
The upper left panel shows the invariant-mass distributions for the opposite-sign dielectrons constructed
from the same event (black) and mixed events (red). The fitting procedure of the combinatorial back-
ground subtracted invariant-mass distribution discussed above is illustrated in the lower left panel.
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Figure 1: Upper panels: invariant-mass distribution of opposite-sign lepton pairs from the same event (black
points) and mixed events (red histograms) at midrapidity (left) and forward rapidity (right) in Pb–Pb collisions at
√

sNN = 5.02 TeV. Lower panels: invariant-mass distribution after the background subtraction with the event-
mixing technique. The fit curves, shown in red, represent the sum of the signal and background shapes and the
blue curves correspond to the residual background.

At forward rapidity, two different methods were used to extract the number of J/ψ counts. In the first
method, the invariant-mass distributions were fitted with a sum of a signal and a background function,
while in the second method the event-mixing technique was employed, as described in Ref. [18]. The fit
functions corresponding to the signal are either a double-sided Crystal Ball function (CB2) or a pseudo-
Gaussian with a mass-dependent width [60]. In both cases, the J/ψ pole mass and width were free
parameters of the fit, while the non-Gaussian tail parameters were fixed. Two sets of tail parameters were
obtained, one based on MC simulations and one extracted from a large data sample of pp collisions at

√
s

= 13 TeV [61]. The MC simulations were embedded into real MB events in order to properly account for
the effect of the detector occupancy. The ψ(2S) resonance was also included in the fit to the invariant-
mass spectrum, using the same signal function as for the J/ψ with mass and width bound to those of
the J/ψ [61, 62]. The background functions employed in the first method were either a variable-width
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Gaussian [60] or a ratio of a second order to a third order polynomial. The residual background in the
second method was parameterised with a sum of two exponential functions. Finally, two invariant-mass
ranges were considered for the fit procedure: 2.2 < mµ+µ− < 4.5 and 2.4 < mµ+µ− < 4.7 GeV/c2. An
example of the signal extraction fit is shown in the right panel of Fig. 1 before (upper plot) and after (lower
plot) the subtraction of the combinatorial background estimated with the event-mixing technique. For
each pT and centrality interval, several fits were performed with the two different approaches, different
combinations of signal and background functions, signal tail parameters, and fitting ranges. The number
of J/ψ was obtained as the average of the results from the various fitting methods [57]. These various
fitting methods are used to determine the systematic uncertainties on the yield extraction as described in
Section 3.4.

About 9.0×105 and 8.2×104 raw J/ψ counts are measured at forward rapidity and midrapidity, respec-
tively, integrated over all available centrality and pT intervals.

3.2 J/ψ ⟨pT⟩ and ⟨p2
T⟩ extraction

At midrapidity, a quantitative study of the J/ψ pT spectrum in fine centrality intervals is conducted by
extracting the J/ψ mean pT, ⟨pT⟩J/ψ , and mean pT squared, ⟨p2

T⟩J/ψ . For a given centrality interval, these
quantities are obtained based on a fit to the mass dependent ⟨pT⟩ and ⟨p2

T⟩ distributions after efficiency
correction, using a function defined as:

X(me+e−) = f (me+e−)×XJ/ψ +(1− f (me+e−))×Xbkg(me+e−) (4)

where X stands for either the ⟨pT⟩ or ⟨p2
T⟩, and f is the invariant-mass dependent fraction of J/ψ signal

determined in the signal-extraction procedure explained above. The invariant-mass dependent back-
ground component Xbkg(me+e−)

is determined from the event-mixing procedure plus a second order poly-
nomial function for the residual background. Examples of these fits for the ⟨pT⟩ observable are shown
in Fig. 2.
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Figure 2: J/ψ ⟨pT⟩ extraction in Pb–Pb collisions at
√

sNN = 5.02 TeV at midrapidity for the 0–5% (left panel)
and the 70–90% (right panel) centrality interval. The data points correspond to opposite-sign e+e− pairs from the
same event, the blue line to the e+e− pairs from mixed events, and the red line is the combined fit that includes the
mixed events and residual background which is described by the polynomial function.

3.3 Acceptance and efficiency correction

The acceptance times reconstruction efficiency factor (A× ε), which enters into Eq. 1, was computed
employing both MC and data-driven methods. At midrapidity, this factor includes the kinematic ac-
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ceptance, track-reconstruction and particle-identification efficiencies, and the fraction of J/ψ with an
invariant mass in the signal counting range. With the exception of the particle identification, obtained
with a data-driven method, the corrections were obtained using a MC simulation of J/ψ embedded in
simulated Pb–Pb collisions. The Pb–Pb collisions were generated using the HIJING 1.0 model [63],
while the J/ψ were generated using a cocktail of prompt J/ψ with a kinematic distribution tuned to ex-
isting measurements and non-prompt J/ψ from beauty hadrons forced to decay into channels containing
J/ψ , using PYTHIA 6.4 [64]. The e+e− decay of the embedded J/ψ was handled using PHOTOS [65].
Both the prompt J/ψ and the beauty hadrons forced to decay into non-prompt J/ψ were assumed to be
unpolarised, in agreement with existing measurements, which indicate small or no polarisation [66, 67].
All generated particles were transported through the ALICE detector setup using GEANT3 [68], taking
into account the time dependence of detector conditions during the 2015 and 2018 data-taking periods.
For the determination of the particle-identification efficiency, a clean sample of electrons from photon
conversions, passing similar quality selection criteria as primary electrons in the TPC, is used to compute
differential maps in pseudorapidity, azimuthal angle ϕ and momentum p for the single-electron selection
efficiency. These were then propagated to the J/ψ dielectron pairs using the phase-space distribution of
the J/ψ decay simulated in the above mentioned MC simulations. The total (A×ε) for the pT-integrated
J/ψ yields is about 6.5% in the 0–10% centrality interval, and it slightly increases towards more periph-
eral collisions. As a function of pT, the (A× ε) has a non-monotonic behaviour, with a minimum value
of 5.6% around pT = 2 GeV/c, and a maximum of about 9% towards zero and high pT.

At forward rapidity, the acceptance and reconstruction efficiency values were determined using simu-
lated J/ψ mesons forced to decay via the dimuon channel, embedded into real events. The J/ψ pT- and
y-differential distributions used in the simulation were adjusted to measurements via an iterative proce-
dure, and separately for all centrality intervals employed in this analysis. The J/ψ were assumed to be
unpolarised, in agreement with the small polarisation, compatible with zero, measured in Pb–Pb colli-
sions for 2 < pT < 10 GeV/c [67]. As in the analysis at midrapidity, the simulations take into account the
time dependence of the detector conditions, such as the status of the tracking chambers and the residual
detector element misalignment. The trigger-chamber efficiency was determined from data and used as
input in the simulations. The (A× ε) reaches a minimum of 11% at pT ≈ 2 GeV/c and increases up to
13% at low pT and up to 46% at high pT in the 0–20% centrality interval. It increases towards peripheral
collisions by a few percent [46].

3.4 Systematic uncertainties

The considered sources of systematic uncertainty for the analysis at midrapidity include central-barrel
tracking, electron identification, signal extraction, and the kinematics of the J/ψ injected in the MC
simulations. For the analysis at forward rapidity, the main systematic uncertainties originate from the
signal extraction, the muon tracking and trigger efficiencies, and the kinematics of the J/ψ used in the
embedded MC simulations. In addition, for the RAA, uncertainties on the pp reference and the nuclear
overlap function are included in both analyses [55]. The uncertainty on the J/ψ decay branching ratio
and the evaluated systematic uncertainties are summarised in Table 2 and Table 3 for the analysis at
midrapidity and forward rapidity, respectively.

At midrapidity, the tracking uncertainty is the largest source of systematic uncertainty and it is domi-
nated by the ITS–TPC track matching. This was determined based on the difference in the matching
efficiency observed for single tracks between data and MC simulations. The systematic uncertainty due
to the electron identification takes into account the residual miscalibration of the TPC particle identifi-
cation (PID) response and also the statistical uncertainty of the clean electron sample used to compute
the identification efficiency. For its estimation, the PID selection criteria (both electron inclusion and
hadron rejection) are varied, each time obtaining a new set of raw yields and corresponding PID effi-
ciencies. The assigned systematic uncertainty is taken as the standard deviation of the distribution of the
corrected results obtained in this procedure. The systematic uncertainty of the signal extraction includes
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one component from the J/ψ signal shape obtained from MC simulations and one component related
to the description of the dielectron background. The former was determined by varying the mass range
in which the signal is counted and recomputing each time the corresponding signal fraction correction,
while the latter was determined by repeating the fit to the invariant-mass distribution in different mass
ranges. The standard deviation of the corrected yield distribution was then taken as the systematic uncer-
tainty. Since the J/ψ efficiency depends on pT, the average efficiency computed over wide pT intervals
depends in turn on the underlying J/ψ pT distribution used in the MC simulations. The corresponding
uncertainty was minimised by iteratively tuning the injected pT spectrum to match the corrected spec-
trum measured in this analysis. A systematic uncertainty which takes into account possible variations
of the pT spectrum, statistically compatible with the finally measured pT spectrum, was assigned and it
is typically below 1%. The total systematic uncertainty on the J/ψ corrected yield varies in the range
6–10% in different pT and centrality intervals. The systematic uncertainties, which are dominated by
the tracking uncertainties, are correlated over centrality and pT to a very large extent. The systematic
uncertainties for ⟨pT⟩ and ⟨p2

T⟩ are evaluated via similar procedures as for the pT integrated yields. The
uncertainties from signal extraction and track selection criteria range, respectively, from 0.2 to 1.2%
and from 0.5 to 1.3%. The electron identification and ITS–TPC matching systematic uncertainties are
calculated by propagating the pT-differential systematic uncertainties to the ⟨pT⟩ based on the measured
pT-differential spectrum.

In the analysis at forward rapidity, the systematic uncertainty corresponding to the signal extraction was
determined using several variations of the fit to the invariant-mass spectra, including the fit method, the
signal and background functions, and the fitted mass range. This uncertainty varies in the range 1.5–
10.7% depending on the pT interval and centrality class. The systematic uncertainty on (A× ε) depends
on the uncertainty on the pT and y distributions of the simulated J/ψ , and on the tracking, trigger, and
matching efficiency. The first two were evaluated by varying the pT and y spectrum for each centrality
interval, taking into account the correlations between the pT and y distributions. The systematic uncer-
tainty was estimated as the largest difference between the nominal (A× ε) and the one estimated from
the variations. It ranges between 0.2% and 4.1%. The systematic uncertainty on the muon tracking ef-
ficiency was estimated based on the difference between the single-muon tracking efficiency obtained in
data and MC with a method that uses the redundancy of the tracking information in each station. The
corresponding uncertainty for dimuons was evaluated to be 3% and constant over pT. An additional
systematic uncertainty is ascribed to the loss of tracking efficiency due to occupancy effects in the most
central events and was estimated to range between 0.5 and 1%, increasing towards more central events.
The systematic uncertainty on the trigger efficiency has two components, one due to the intrinsic effi-
ciency of the trigger chambers and another one due to the trigger response. The first component was
estimated from the uncertainties on the single-muon trigger efficiency measured from data and used in
the simulations. The second component was evaluated by comparing the pT dependence of the trigger re-
sponse function of the single muon between data and MC. The two sources were added in quadrature and
the obtained uncertainty ranges between 1.5 and 2%. Finally, a 1% systematic uncertainty is assigned,
related to the choice of the χ2 selection used to define the matching between the tracks reconstructed
in the tracking system and the track segments reconstructed in the trigger system. The uncertainty on
Fnorm was estimated by using two methods. First, the opposite-sign dimuon trigger condition was ap-
plied when analysing recorded MB events and, second, the counting rate of the dimuon and MB triggers
were compared. The estimated uncertainty on Fnorm was obtained by comparing the two methods and it
amounts to 0.7%.

The systematic uncertainties on ⟨TAA⟩ were obtained as described in Ref. [55] and the values are listed
in Table 1 for both analyses, at midrapidity and forward rapidity. The systematic uncertainty on the
definition of the centrality interval was estimated using variations of ±1% of the V0 signal amplitude
corresponding to 90% of the hadronic Pb–Pb cross section and redefining correspondingly the centrality
intervals. The systematic uncertainty of the centrality limit depends on the width of the centrality classes
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and it ranges from 1 to 6% and from 0 to 2.8%, as shown in Tables 2 and 3 for the analyses at midrapidity
and forward rapidity, respectively.

The systematic uncertainties on the J/ψ reference cross section in pp collisions at
√

s = 5.02 TeV as
obtained in Refs. [57, 69] are provided in Table 2 and Table 3. The correlations of the systematic uncer-
tainties over centrality and pT depend on the mid and forward rapidity analysis and they are indicated in
Table 2 and 3.

Table 2: Systematic uncertainties on the pT-integrated (0.15 < pT < 15 GeV/c) measurement at midrapidity for
different centrality intervals. The individual contributions and the total uncertainties are given in percentage. It is
considered that all the uncertainties are correlated over centrality and pT to a very large extent.

Centrality (%) 0–5 5–10 10–20 20–30 30–40 40–50 50–70 70–90
Signal extraction 2.5 2.7 1.9 6.6 2.5 1.0 1.8 2.5

MC input 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Tracking 10.1 10.1 8.5 8.5 8.0 8.0 7.9 7.9

PID 1.6 1.3 1.4 1.4 1.1 1.2 1.1 1.3
Centrality limit 1.0 1.0 1.0 1.0 1.0 1.0 5.7 6.0

Total 10.6 10.5 8.8 10.8 9.0 8.2 10.0 10.3
TAA(only on RAA) 0.7 0.8 0.9 1.2 1.6 1.7 2.0 2.3

pp reference (only on RAA) 5.8
Branching ratio (only on yield) 0.5

Table 3: Systematic uncertainties on the pT-differential measurement at forward rapidity for various centrality
intervals. The individual contributions are given in percentage. When a range is given, it corresponds to the
minimum and maximum values obtained in the pT interval. Values marked with an asterisk correspond to the
uncertainties correlated over pT. These uncertainties are considered as global ones for RAA and added in quadrature
to the uncorrelated uncertainties for the yields.

Centrality (%) 0–20% 20–40% 40–90%
Fnorm 0.7*

Signal extraction 1.5–5.8 1.9–4.5 1.6–10.7
MC input 1.8–4.1 0.2–2.1 0.9–1.8

Tracking efficiency 3.0 + 1.0* 3.0 + 0.5* 3.0
Trigger efficiency 1.5–2.0 + 1.0* 1.5–2.0 + 0.5* 1.5–2.0

Matching efficiency 1.0 1.0 1.0
Centrality limit – 0.8* 2.8*

TAA (only on RAA) 0.8* 1.3* 2.0*
pp reference (only on RAA) 3.5–5.6 + 1.9*

Branching ratio (only on yield) 0.5*

4 Results

4.1 Inclusive J/ψ yields

The fully corrected inclusive J/ψ pT-differential yields, d2N/(dydpT), were obtained according to Eq.1
in centrality intervals in Pb–Pb collisions at

√
sNN = 5.02 TeV at midrapidity (|y|< 0.9) and at forward

rapidity (2.5 < y < 4). Figure 3 shows the J/ψ yields obtained at midrapidity for the 0–10% and 30–
50% centrality intervals, while Fig. 4 shows the yields measured at forward rapidity in the 0–20%, 20–
40% and 40–90% centrality intervals. For all of the results, the statistical and systematic uncertainties
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are indicated by the vertical error bars and the open boxes around the data points, respectively. These
results are compared with calculations performed using the statistical hadronisation model (SHMc) by
Andronic et al. [32], and two microscopic transport models by Rapp et al. [70] and Zhuang et al. [33].
The physics assumptions in these model calculations are discussed in more detail in the next section.
The lower panels of the Figs. 3 and 4 depict the ratio between the experimental data and the different
model calculations, with the width of the bands representing the model uncertainties. These uncertainties
are due to uncertainties on input parameters, mainly the total charm-quark production cross section
and CNM effects. The filled boxes around unity represent the uncertainties of the measured results,
shown as the quadratic sum of statistical and systematic uncertainties. Both transport models describe
the pT-differential yields in central and semicentral collisions, while they overestimate them at forward
rapidity in peripheral collisions. The SHMc calculations coupled with a hydrodynamics inspired freeze-
out parameterisation are in good agreement with the data in the low-pT region, but underestimate the
measurements at higher pT.
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Figure 3: J/ψ pT-differential production yields in Pb–Pb collisions at
√

sNN = 5.02 TeV at midrapidity in the
0–10% (left panel) and 30–50% (right panel) centrality intervals. The statistical and systematic uncertainties are
indicated, respectively, by the vertical error bars and the open boxes. The horizontal bars indicate the pT intervals.
Data are compared to model calculations from Refs. [32, 33, 70]. The ratios between data and models are shown in
the lower panels. The filled boxes around unity depict the quadratic sum of statistical and systematic uncertainties
from the measurement, while the bands indicate model uncertainties.
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Figure 4: J/ψ pT-differential production yields in Pb–Pb collisions at
√

sNN = 5.02 TeV at forward rapidity in
the 0–20%, 20–40%, and 40–90% centrality intervals. The statistical and systematic uncertainties are indicated,
respectively, by the vertical error bars and the open boxes. The horizontal bars indicate the pT intervals. Data are
compared to model calculations from Refs. [32, 33, 70]. The ratio between data and models is shown in the lower
panels. The filled boxes around unity depict the quadratic sum of statistical and systematic uncertainties from the
measurement, while the bands indicate model uncertainties.

4.2 The J/ψ nuclear modification factor RAA

The nuclear modification factor RAA was obtained using the measured yields, according to Eq. 2. Fig-
ure 5 shows the pT-integrated J/ψ RAA as a function of Npart in Pb–Pb collisions at

√
sNN = 5.02 TeV,

obtained in the current analysis at midrapidity in comparison to the results at forward rapidity, previ-
ously reported by the ALICE Collaboration in Ref. [19]. Global uncertainties represented the centrality-
correlated uncertainties, shown as filled boxes around unity, and are largely uncorrelated between the
forward and midrapidity analyses. Both results exclude low-pT J/ψ , with a selection of pT > 0.15 GeV/c
and pT > 0.3 GeV/c at midrapidity and forward rapidity, respectively, in order to reject J/ψ produced
via photoproduction processes [71–73], which contribute significantly to the J/ψ yield in particular in
peripheral collisions [74, 75]. The RAA is compatible with unity in the most peripheral collisions, while
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a suppression of the J/ψ production in Pb–Pb collisions with respect to binary scaled pp collisions is
observed in semicentral and central collisions, in particular at forward rapidity. At midrapidity, RAA
exhibits a slightly increasing trend from approximately ⟨Npart⟩ = 100 towards the most central collisions,
with slightly larger RAA values at midrapidity than at forward rapidity, which confirms previous obser-
vations reported by ALICE [21]. The results at midrapidity are larger than those measured at forward
rapidity, with a significance of the difference of 2.2σ when considering the data points in the central-
ity range 0–10%. The larger RAA in central collisions at midrapidity is expected in phenomenological
models due to the larger dσcc/dy at midrapidity which leads to larger fraction of J/ψ produced via
(re)generation [32, 33, 76].
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Figure 5: Inclusive J/ψ nuclear modification factor at midrapidity and forward rapidity [19], integrated over pT,
as a function of the number of participants in Pb–Pb collisions at

√
sNN = 5.02 TeV. The statistical and systematic

uncertainties are indicated, respectively, by the vertical error bars and the open boxes around the data points. The
filled boxes around unity show the global uncertainties.

The pT-differential RAA results are shown in Fig. 6 for midrapidity (left panel) and forward rapidity
(right panel) in various centrality intervals. The main feature of these measurements is that the RAA
values are relatively large at low pT (pT < 5 GeV/c), in contrast with the strong suppression in the
pT > 5 GeV/c range, for central and semicentral collisions. A weaker pT dependence of the RAA values is
observed from central to peripheral collisions, up to a constant RAA, within uncertainties, in the 40–90%
centrality interval at forward rapidity. Such a behaviour in the data can be qualitatively understood by
the dominance of hot nuclear matter effects for central and semicentral collisions, acting on top of the
CNM ones, which were discussed in Refs. [39, 44]. In the low-pT region and in particular in central
and semicentral collisions, where the density of charm quarks is larger, the coalescence of charm quark
pairs has an important contribution counterbalancing the impact of quarkonium suppression in the QGP.
At higher pT, the J/ψ production is dominated by effects such as dissociation and energy loss, which
are expected to be stronger in the most central collisions. A comparison of the J/ψ pT-differential RAA
in the most central Pb–Pb collisions at

√
sNN = 5.02 TeV between midrapidity and forward rapidity is

shown in Fig. 7. Neglecting the slight difference in centrality intervals, the RAA is higher at midrapidity
with respect to forward rapidity at low pT (pT < 3 GeV/c) with a 2.7σ significance, highlighting the
strong dependence of RAA on the local charm quark density, further supporting the picture of quarkonium
production via coalescing charm quarks. The two measurements converge to similar values at higher pT
suggesting a weaker dependence on rapidity for the suppression effects.

The measurements presented so far are discussed in the rest of this section in comparison to calculations
which employ different approaches in modelling the collision fireball and the hot medium effects having
an impact on J/ψ production in Pb–Pb collisions.

The statistical hadronisation model by Andronic et al. [32] assumes that all charm quarks are produced
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Figure 6: Inclusive J/ψ pT-differential RAA in Pb–Pb collisions at
√

sNN = 5.02 TeV in various centrality
intervals. The left panel shows the comparison of RAA measured in central (0–10%) and semicentral (30–50%)
collisions at midrapidity. For the data point in the pT bin 10 < pT < 15 GeV/c an open symbol is used to highlight
the usage of pp reference from the extrapolation approach. The right panel shows the measured RAA in three
centrality classes, 0–20%, 20–40%, and 40–90%, at forward rapidity. The statistical and systematic uncertainties
are indicated, respectively, by the vertical error bars and the open boxes around the data points. The filled boxes
around unity show the global uncertainties.
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Figure 7: Inclusive J/ψ RAA as a function of pT in Pb–Pb collisions at
√

sNN = 5.02 TeV at midrapidity and
forward rapidity, in the 0–10% centrality class and 0–20% centrality class, respectively.For the data point in the
pT bin 10 < pT < 15 GeV/c an open symbol is used to highlight the usage of pp reference from the extrapolation
approach. The statistical and systematic uncertainties are indicated, respectively, by the vertical error bars and the
open boxes around the data points. The filled boxes around unity show the global uncertainties.

during the initial hard partonic interactions and then thermalize in the QGP. The relative yields of the
charmed hadrons are then determined solely by the equilibrium thermodynamical parameters at the
chemical freeze-out, which are fixed from fits to the yields of light-flavoured hadrons. A recent ex-
tension of the model [30, 32] implements a hydro-inspired freeze-out hypersurface which allows the
calculation of pT-differential yields in addition to the integrated ones.

The microscopic transport model of Zhuang et al. [33, 77] implements a real time evolution of the
J/ψ , ψ(2S) and χc production using a Boltzmann-type rate equation that includes both dissociation
and coalescence terms. The dissociation term includes contributions from the temperature dependent
colour screening effect and scatterings with thermal partons, i.e. gluon dissociation. The (re)generation
of charmonia is implemented by exploiting the detailed balance of the gluon dissociation process. The

14



Inclusive J/ψ production in Pb–Pb collisions at
√

sNN = 5.02 TeV ALICE Collaboration

space–time evolution of the fireball is described using the equations for (2+1)D ideal hydrodynamics.
This model includes also the production of non-prompt J/ψ , with the precursor beauty quarks being
propagated through the QGP using the Langevin equation.

Similarly to the previously described model, the transport model proposed by Rapp et al. [76, 78–81],
is also based on a kinetic rate equation to compute the time evolution of charmonium (J/ψ , ψ(2S),
and χc) yields. The dissociation term of the rate equation employs an inelastic parton scattering cross
section of charmonia in the QGP, computed using next-to-leading order perturbative QCD Feynman
diagrams, and also includes the effect of in-medium reduced binding energy. The (re)generation rate
depends on the charmonium dissociation temperature, which is extracted from lattice QCD calculations,
and equilibrium limits computed based on the thermal model. The space–time evolution of heavy-ion
collisions is simulated by a cylindrically expanding fireball model with the regenerated charmonium
pT-spectra being calculated in a thermal blast-wave approximation at a temperature and flow velocity
reflecting the average production time of each charmonium state [82].

All of the models described above consider the initial state of the nuclear collisions by making assump-
tions on the total charm quark density produced during the hard partonic collisions and modified by
the CNM effects. The two transport models obtain the total charm density based on the measured total
charm cross section in pp collisions [83] multiplied by the number of binary nucleon–nucleon colli-
sions. The CNM effects are introduced via different approaches. The microscopic transport model of
Rapp et al. [78, 79] estimates CNM effects using fits of the measured p–A data, while the transport
model of Zhuang et al. [80, 81] uses the nuclear parton distribution functions and their uncertainties
from EPS09 [84]. The SHMc extracts the total charm cross section from the ALICE measurements of D
meson production in Pb–Pb collisions [85]. The large uncertainty on the estimation of CNM effects is
inherited by these model calculations.

At large pT, the fragmentation of high-energy partons may become the main mechanism for J/ψ produc-
tion. In that case, energy loss of partons due to multiple scattering in the QGP leads to J/ψ suppression
at high pT. In the model by Arleo et al. [35] , the quenching of large-pT particles (pT > 10 GeV/c) is
assumed to be mostly due to radiative parton energy loss. In this approach, the pT dependence of RAA
is fully predicted from the model proposed by Baier et al. [86, 87], which employed a medium-induced
gluon spectrum. The RAA value is computed from the mean energy loss, which is extracted from a fit to
the charged hadron RAA, measured in various collision systems, the average fragmentation function, and
the colour coupling factor of the parton. At forward rapidity, the mean energy loss is further corrected
for the charged-hadron multiplicity difference between midrapidity and forward rapidity. The model un-
certainties arise from the uncertainties on these inputs. This model does not include the production of
non-prompt J/ψ , but the RAA variation, when accounting for this contribution, is expected to lie within
the theoretical uncertainties.

The pT-integrated nuclear modification factor measured in Pb–Pb collisions at
√

sNN = 5.02 TeV at
midrapidity is shown in Fig. 8 in comparison with results from the SHMc and the two transport-model
calculations. The calculations are shown as coloured bands, illustrating the uncertainties on the initial
effects, mainly CNM effects, described above. Within the model uncertainties, all three predictions agree
with the data. One can note though that the data lie on the upper edge of the transport-model calculations,
while they are in good agreement with the central values from the SHMc calculations for semicentral and
central collisions.

Figures 9 and 10 show the pT-differential RAA measurements for various centrality intervals at midra-
pidity and forward rapidity, respectively, in comparison with the available model calculations. With the
exception of the energy-loss calculations, available only for pT > 10 GeV/c, all of the models cover the
full pT range in which these measurements were performed. The SHMc model calculations are in good
agreement with the data at low pT at both midrapidity and forward rapidity. However, the RAA is under-
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estimated for pT > 5 GeV/c in all centrality intervals in both rapidity ranges. This might be attributed
to physical sources missing in this approach, such as the contributions from surviving primordial J/ψ

or non-prompt J/ψ from beauty-hadron decays, but also to an underestimated amount of radial flow ac-
quired by the charm quarks during the system evolution. A similar conclusion can also be drawn from
the comparison of the pT-differential yields in Pb–Pb collisions shown in Fig. 3 where the measured
spectrum is harder than the one from the SHMc calculations. The two transport models are in better
quantitative agreement with data than the SHMc model. Both of the transport models provide a good
description of the RAA at both low and high pT. However, the model calculations in the low-pT region,
where J/ψ production is dominated by coalescence in these models, do not describe the detailed shape
of the pT dependence of RAA, in particular in semicentral collisions, which points to a still not perfectly
understood dynamics of charm-quark coalescence.

The energy-loss calculations by Arleo et al [35], performed in all studied centrality ranges for pT >
10 GeV/c, are in good agreement with the measurements, which, based on the model assumptions, sug-
gests that the dominant mechanism in this kinematic regime is indeed energy loss, similar to that of the
other hadrons measured at LHC energies.
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Figure 8: Inclusive J/ψ RAA at midrapidity, integrated over pT, as a function of Npart in Pb–Pb collisions at
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sNN = 5.02 TeV and compared to model calculations from Refs. [32, 33, 70].
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Figure 10: Transverse-momentum dependence of the J/ψ RAA at forward rapidity in the 0–20%, 20–40% and
40–90% centrality intervals. The data are compared with model calculations from Refs. [32, 33, 35, 70]

4.3 The inclusive J/ψ ⟨pT⟩ and ⟨p2
T⟩

Observables that allow for a more differential study of the J/ψ pT spectrum with respect to the centrality
of the collisions are the J/ψ ⟨pT⟩ and ⟨p2

T⟩. The latter is typically quantified using the rAA, defined
in Eq.3, which is related to the broadening or narrowing of the J/ψ pT spectrum relative to that in pp
collisions. The ⟨pT⟩ and the rAA measured at midrapidity are shown in Fig. 11 in the left and right
panels, respectively, as a function of ⟨Npart⟩. Similar measurements were done at the forward rapidity as
well [20]. These results are compared with similar measurements in heavy-ion collisions at RHIC [11,
26, 88] and SPS [89] energies. The ⟨pT⟩ results are also compared with the value reported by the ALICE
Collaboration in pp collisions at midrapidity at

√
s = 5.02 TeV [69], showing a good agreement with the

value measured in the most peripheral Pb–Pb collisions. The data show that for a given Npart, the J/ψ

⟨pT⟩ grows with increasing collision energy. However, while the data indicate no centrality dependence
of the ⟨pT⟩ at the SPS and RHIC energies, a monotonically decreasing trend from the most peripheral to
the most central collisions is observed in the ALICE measurements, which reflects the gradual increase
of the low pT (re)generation component. The rAA results support the observations for the ⟨pT⟩, showing
a decrease from unity towards central collisions for the ALICE measurements. The RHIC results are
compatible with unity over the whole covered centrality range, while the SPS data indicate a strong
increase from peripheral to central collisions, suggesting that CNM effects such as the Cronin effect
[90] have an impact on the J/ψ pT shape.

The ⟨pT⟩ and ⟨p2
T⟩ results are also compared with the aforementioned transport model calculations, which

show a good agreement with the trends observed in data as demonstrated in Fig. 12. Although overall
in good quantitative agreement, the calculations by Rapp et al. overestimate the J/ψ ⟨pT⟩ for the most
central collisions, while the ⟨p2

T⟩ results are slightly underestimated by both models in the semicentral

17



Inclusive J/ψ production in Pb–Pb collisions at
√

sNN = 5.02 TeV ALICE Collaboration

and peripheral range (50 < Npart < 150).
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Figure 11: Left panel: Inclusive J/ψ ⟨pT⟩ as a function of the mean number of participants in Pb–Pb collisions at
√

sNN = 5.02 TeV at midrapidity. Right panel: Inclusive J/ψ rAA as a function of centrality at
√

sNN = 5.02 TeV
and compared with measurements at lower energies from RHIC [11, 88, 91] and the SPS [89]. The statistical and
systematic uncertainties are indicated, respectively, by the vertical error bars and the open boxes around the data
points. The filled box around unity on the right panel shows the global uncertainty.
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Figure 12: Inclusive J/ψ ⟨pT⟩ as a function of the mean number of participants in Pb–Pb collisions at
√

sNN = 5.02 TeV at midrapidity (left panel), and J/ψ rAA as a function of centrality (right panel). The re-
sults are compared with transport model calculations [33, 70]

4.4 The J/ψ to D0 yield ratio

A long awaited measurement which helps understanding the details of the J/ψ production in heavy-ion
collisions is the ratio between the J/ψ and the D0 yields, both measured in the same collision system.
Such a measurement provides a tight constraint to models because some of the model parameters and
most model uncertainties related to the cc cross section cancel in the ratio. This ratio is sensitive to the
hadronisation mechanisms of the different charm hadrons. While a model independent measurement of
the cc production density in heavy-ion collisions is not available, it is still useful to compare the J/ψ

yield with the recently published ALICE measurements of the D0 yield down to zero pT [85].

Figure 13 shows the measured pT-integrated J/ψ to D0 yield ratio in central (0–10%) and semicen-
tral (30–50%) collisions. The largest source of systematic uncertainty for both measurements comes
from tracking efficiency and it is considered correlated between the D0 and J/ψ measurements, and
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consequently cancels in the ratio. Without this uncertainty, the numerical values of the J/ψ yields are
0.12±0.005 (stat.) ±0.012 (syst.) and 0.016±0.0008 (stat.) ±0.0004 (syst.) for (0–10%) and (30–50%)
centrality intervals, respectively. The statistical (systematical) uncertainty of the ratio is the quadratic
sum of the statistical (systematical) uncertainties of the two measurements. The results suggest a higher
value for this ratio in central compared to semicentral collisions. This is supported by the SHMc calcu-
lations [32], which suggests both the J/ψ and D0 are produced via the coalescence of charm quarks at
the phase boundary, the ratio being determined by the charm fugacity. The SHMc model gives a good
description of the data. The model uncertainty from the SHMc model is due to uncertainties on the charm
fugacity parameter, which is fitted to the ALICE D0 data [85].
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Figure 13: Inclusive J/ψ to D0 yield [85] ratio at
√

sNN = 5.02 TeV at midrapidity for the 0–10% and 30–
50% centrality intervals. Vertical lines and open boxes represent the statistical and systematical uncertainties,
respectively. The measurements are compared with SHMc model predictions [32].

5 Conclusions

The J/ψ pT-differential yields and nuclear modification factors RAA measured from pT = 0.15 GeV/c
up to 15 GeV/c in the 0–10% and 30–50% centrality ranges at midrapidity and from pT = 0.3 GeV/c up
to pT = 20 GeV/c in the 0–20%, 20–40% and 40–90% centrality ranges at forward rapidity, and the cen-
trality dependent J/ψ ⟨pT⟩ and rAA measured at midrapidity, are reported and discussed in comparison
with model calculations.

The centrality dependent pT-integrated RAA in peripheral collisions shows similar values at both midra-
pidity and forward rapidity, while a hint of an increasing trend of the RAA is observed at midrapidity
towards central collisions. When looking at the pT-differential RAA, relatively large values are observed
at low pT, which are compatible with unity for pT < 3 GeV/c in the 0–10% centrality interval at |y|< 0.9,
while a strong nuclear suppression is seen at higher pT in central and semicentral collisions. In addition,
RAA is higher at midrapidity than at forward rapidity for pT < 3 GeV/c in the most central collisions. A
weaker pT dependence of the RAA values is observed for more peripheral collisions. Such a behaviour,
for the central and semicentral collisions, can be explained by a large contribution from (re)generation to
the J/ψ yields. This is supported by the statistical hadronisation model and by two microscopic transport
model calculations when compared to the data. However, the large model uncertainties, which are mainly
due to the assumptions on the collision initial conditions, prevent from drawing a clear conclusion on the
phenomenology of the J/ψ production in heavy-ion collisions at LHC energies. The J/ψ nuclear modi-
fication factor at high pT is well described by the transport models and also by a J/ψ energy loss model,
while it is largely underestimated in the hydro-inspired freeze-out approach implemented together with
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the SHMc model. For most central events, the RAA converge to similar values at high pT at mid and
forward rapidity suggesting a weaker dependence on rapidity for the suppression effects. The centrality
dependent J/ψ ⟨pT⟩ and rAA measurements are compared with similar results at lower energies from
RHIC [11, 88, 91] and SPS [89], with the centrality trends showing an opposite behaviour between the
LHC and the lower energy results. This behaviour is compatible with a strong contribution from the re-
generation component which tends to soften the pT distributions. The two microscopic transport models
describe the data within the uncertainties.

The ratio of inclusive pT-integrated J/ψ to D0 yields measured by ALICE at midrapidity in Pb–Pb
collisions is presented for the first time in the 0–10% and 30–50% centrality ranges. The data shows
a larger value of this ratio in 0–10% compared to 30–50% collisions, which is in good agreement with
the expectation from the SHMc model that fixes the charm fugacity parameter based on the D0 yields
measured by ALICE.

The large improvements in experimental accuracy expected for the LHC Run 3 and 4 for charmonium
measurements and more in general for heavy-quark production, the improved measurements of total
charm quark cross section and CNM effects are critical to constrain the phenomenological model cal-
culations, will allow to settle the longstanding questions regarding the mechanisms behind charmonium
production in heavy-ion collisions.
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