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Abstract

Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged
particles in the kinematic range of |η | < 0.8 and 0.15 GeV/c < pT < 10 GeV/c are reported for
pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from√

sNN = 2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract
the correlation between the transverse momentum of primary charged particles and the charged-
particle multiplicity of the corresponding collision. This correlation sharply characterises important
features of the final state of a collision and, therefore, can be used as a stringent test of theoretical
models. The multiplicity distributions as well as the mean and standard deviation derived from the pT
spectra are compared to state-of-the-art model predictions. Providing these fundamental observables
of bulk particle production consistently across a wide range of collision energies and system sizes
can serve as an important input for tuning Monte Carlo event generators.

*See Appendix A for the list of collaboration members
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1 Introduction

In high-energy nucleus–nucleus (AA) collisions, a hot and dense state of deconfined strongly-interacting
matter, commonly denoted as the quark–gluon plasma, is formed [1]. This system undergoes hydro-
dynamic evolution [2–4] and exhibits hadron yields indicating chemical equilibrium [5, 6]. At low
to intermediate transverse momentum (pT), up to about a few GeV/c, charged-particle production is
influenced by the collective expansion (flow) of the system, reflected in the shapes of single-particle
transverse-momentum spectra [7, 8] and multi-particle correlations [2]. It came as a major surprise that
even small collision systems such as proton–proton (pp) and proton–nucleus (pA) collisions at Large
Hadron Collider (LHC) energies exhibit features that can be attributed to collective expansion [9–17].

Multi-particle correlations measured in all collision systems, contain an imprint of the initial state of the
colliding partners, characterised via their quark and gluon degrees of freedom, allowing the extraction of
fundamental properties of the quark–gluon plasma [3, 4, 18]. Hydrodynamic-like (final-state) collective
flow is increasingly part of the modelling of small collision systems [19, 20] in an interplay with initial-
state phenomena (see reviews in Refs. [17, 21]). Such collision systems are usually modelled in the
framework of the colour glass condensate (CGC) [22], where multi-particle production proceeds via the
decay of colour flux tubes that stretch between two colliding hadrons in the longitudinal direction and
are coherent in the transverse direction over a range that is inversely proportional to a saturation scale Qs,
which appears due to the non-linearity of parton evolution at high energies.

In the PYTHIA8 event generator [23], which describes a broad range of observables in pp collisions, the
initial state is determined by parton distribution functions extracted from measurements. With increas-
ing collision energy, the role of multi-parton interactions, i.e., when two or more distinct (hard) parton
interactions occur within a pp collision, becomes more and more important [24]. The respective colour
strings may cut each other or reconnect, which leads to a redistribution of energy from particle pro-
duction to transverse momentum, and, therefore, a smaller number of particles but with higher average
pT. A phenomenon recently implemented in PYTHIA is the interaction between transversely-extended
colour strings, exerting pressure on each other [25]. This produces effects similar to those resulting from
final-state collective dynamics, akin to that of a long-lived quark–gluon medium. Recently, PYTHIA8
was extended with the Angantyr model for heavy-ion collisions [26], which uses a Glauber-based initial-
state modelling with Gribov colour fluctuations to determine the number of pp sub-collisions. In current
PYTHIA8 implementations with the Angantyr model, there is no colour reconnection between individual
pp sub-collisions but between the multiple partonic interactions of the pp sub-collisions.

A broad range of observables is also described successfully in the EPOS family Monte Carlo (MC)
event generators [27]. The initial state is realised in EPOS through a parton-based Gribov-Regge the-
ory [27] which is a multiple scattering framework, recently augmented with the treatment of saturation
effects [28]. While in EPOS3 [29], a full hydrodynamic evolution is included for the final state, in
EPOS LHC [30] a parameterised hydrodynamic component of a small volume with high density of ther-
malised matter is used together with a dilute region, i.e. a core plus corona implementation. In both
PYTHIA8 and EPOS LHC models, the respective parameters are tuned using the Run 1 data at the
LHC [30, 31].

The mean transverse momentum, ⟨pT⟩, of the charged-particle pT spectrum and its correlation with
the charged-particle multiplicity Nch carry essential information on the underlying particle production
mechanism. This has been studied by many experiments at hadron colliders in pp(p) covering centre-
of-mass energies from

√
s = 31 GeV up to 13 TeV [32–41] as well as in Xe–Xe [42] and Pb–Pb [8]

collisions at
√

sNN = 5.44 TeV and 5.02 TeV, respectively. All experiments observed an increase of
⟨pT⟩ with Nch in the central rapidity region, explained in the PYTHIA approach as a consequence of non-
trivial colour reconnections (see discussion in Ref. [43]). While in the CGC approach ⟨pT⟩ is a universal
function of the ratio of the charged-particle multiplicity to the transverse area of the collision [44], in
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the EPOS LHC model it is determined by the collective expansion [30]. For all collision systems, the
⟨pT⟩–Nch correlation is a basic observable for tuning or calibrating the theoretical models [19], a simple
observable which allows extracting fundamental properties of a deconfined quark–gluon medium [4].

As bulk production at the LHC is driven by a complex interplay of soft and hard QCD processes, the
endeavour to find a consistent model description for particle production in all collision systems has not
been concluded yet. At the LHC, a large amount of data was recorded in Run 1 and Run 2, covering
different collision systems from pp to heavy-ion collisions at various centre-of-mass energies, which
allows a detailed study of particle production over a wide range of charged-particle multiplicity. This
Letter presents a measurement of the charged-particle multiplicity distributions and the corresponding
transverse momentum spectra as a function of Nch in pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-
of-mass energies per nucleon pair ranging from

√
sNN = 2.76 TeV up to 13 TeV. From these spectra, the

mean ⟨pT⟩ and standard deviation σ(pT) =
√

⟨(pT −⟨pT⟩)2⟩ within 0.15 GeV/c < pT < 10 GeV/c are
extracted. The comprehensive set of measurements presented in this Letter can serve as a high-precision
input for tuning phenomenological models towards the goal of understanding particle production in the
non-perturbative regime of QCD and its transition to the perturbative regime.

This Letter is structured as follows. Section 2 briefly describes the experimental setup. In Section 3, the
data used for this analysis and a detailed description of the analysis procedure are presented. Results are
discussed in Section 4, and a summary is given in Section 5.

2 Experimental setup

The measurements reported in this Letter were obtained with ALICE at the Large Hadron Collider. In
the following, the detectors relevant for this work are discussed briefly. A more detailed description of
the ALICE apparatus in its configurations of LHC Run 1 and Run 2 can be found in Refs. [45, 46].

The present analysis is based on tracking information from the Inner Tracking System (ITS) [47] and the
Time Projection Chamber (TPC) [48]. Both detectors are located within a large solenoidal magnet which
provides a nominal field strength of 0.5 T for all of the data taking periods analysed in this work, except
for the Xe–Xe data taking, where the magnetic field was reduced to 0.2 T in order to extend the kinematic
acceptance of the detector to lower transverse momentum. The ITS is comprised of six cylindrical layers
of silicon detectors with radii between 3.9 cm and 43 cm. Its two innermost layers are equipped with
silicon pixel detectors (SPD), the two intermediate layers consist of silicon drift detectors (SDD), and the
two outermost layers are made of double-sided silicon strip detectors (SSD). The large cylindrical TPC
has an active radial range from about 85 cm to 250 cm and an overall length along the beam direction
of about 500 cm. It covers the full azimuth in the pseudorapidity range |η |< 0.9 and provides track
reconstruction with up to 159 space points along the trajectory of a charged particle as well as particle
identification via the measurement of specific energy loss dE/dx.

The V0 detector, which consists of two scintillator arrays covering the pseudorapidity ranges of 2.8 <
η < 5.1 (V0A) and −3.7 < η <−1.7 (V0C), is used for triggering on hadronic collisions and multiplic-
ity measurements at forward rapidity [8, 49]. Contamination from electromagnetic interactions in Pb–Pb
and Xe–Xe collisions was strongly suppressed using signals from two neutron-Zero-Degree Calorimeters
(ZDC), positioned on both sides of the interaction point at 114.0 m distance, see [46] for details.

3 Analysis procedure

This analysis aims to obtain the correlation between primary charged-particle pT spectra and their cor-
responding event multiplicities Nch, both defined consistently in the kinematic range |η | < 0.8 and
0.15 GeV/c < pT < 10 GeV/c. This kinematic selection ensures optimal momentum resolution and ho-
mogeneous tracking efficiency over the entire range. In addition, the multiplicity distributions for Nch > 0

3



Multiplicity dependence of charged-particle production at the LHC ALICE Collaboration

1

10

210

310

410

510

# 
ev

en
ts

0 20 40 60 80 100

ch
 measN

0

20

40

60

80

100

ch
N

1

10

210

310

410

510

# 
ev

en
ts

ALICE, charged particles

 = 5.02 TeVNNsPb collisions, −p

c < 10 GeV/
T

p < c| < 0.8, 0.15 GeV/η|

Figure 1: Multiplicity correlation matrix for p–Pb collisions at
√

sNN = 5.02 TeV.

events are reported. For each collision, the number of reconstructed tracks selected for the analysis pro-
vides an experimental measure (Nmeas

ch ) for its multiplicity. Due to detector acceptance and reconstruction
efficiency, this measured track multiplicity Nmeas

ch is different from the actual number of primary charged
particles (Nch) produced in the kinematic region under study. Secondary particles from weak decays
or from interactions with the detector material as well as tracks that are smeared into the acceptance
(i.e. from |η | ≥ 0.8 and pT ≤ 0.15 GeV/c, pT ≥ 10 GeV/c) remaining in the sample of selected tracks
further contribute to the measured pT spectra and consequently to the measured track multiplicity. The
event-by-event fluctuations of reconstruction efficiency and contamination effects lead to a rather broad
correlation between Nch and Nmeas

ch that is shown in Fig. 1 for an example data set. As a result, the trans-
verse momentum spectrum associated to a given Nmeas

ch value carries contributions on particle production
from a range of different Nch values. In addition, the finite resolution of the transverse momentum mea-
surement itself results in a (small) smearing of the measured transverse momentum pmeas

T . The correct
correlation between the collision-characteristic Nch value and its corresponding pT distribution can be
extracted by unfolding the measured quantities.

Data sets and event selection The data analysed in this work were collected between 2010 and 2018
during the LHC Run 1 and Run 2 data-taking periods. They comprise pp, p–Pb, Xe–Xe, and Pb–Pb
collisions at centre-of-mass energies per nucleon pair ranging from

√
sNN = 2.76 up to 13 TeV. Hadronic

collisions were selected with two different minimum-bias (MB) interaction triggers. In Run 1, a single
hit in either of V0A or V0C detectors or in the SPD was required (denoted as V0OR) in coincidence
with a crossing of two particle bunches in the LHC at the nominal ALICE interaction point. For the
Run 2 data taking period, a signal in both V0A and V0C was necessary to fulfil the MB trigger condition
(denoted V0AND). Therefore, the former is also sensitive to single diffractive pp events while the latter
almost exclusively selects non-single diffractive interactions. The offline event selection (for details see
Ref. [8, 49]) is optimised to reject beam-induced background and pileup collisions. Events with no
reconstructed vertex and those with poor vertex resolution are rejected. Both the trigger efficiency and
the vertex requirements affect mostly low multiplicity events. To ensure full pseudorapidity coverage of
the tracking detectors (in particular by the inner ITS layers) and therefore avoid a possible asymmetry
in the kinematic selection of the tracks, all collisions are required to have their reconstructed primary
vertex located within |V meas

z |< 10 cm along the beam direction with respect to the nominal interaction
point. Table 1 shows an overview of the data sets and their corresponding number of events selected for
this analysis. In order to have comparable results regardless of the trigger setup and event selections,
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Table 1: Overview of the analysed data sets. The definitions of the two MB triggers are explained in the text.
√

sNN (TeV) year MB trigger no. events analysed (M)

pp

2.76 2011 V0OR 48
5.02 2017 V0AND 316

7 2010 V0OR 129
8 2012 V0AND 26
13 2016 V0AND 180

p–Pb
5.02 2016 V0AND 309
8.16 2016 V0AND 15

Xe–Xe 5.44 2017 V0AND 1

Pb–Pb
2.76 2010 V0OR 19
5.02 2015, 2018 V0AND 239

all measurements presented in this Letter are corrected using Monte Carlo simulations such that they
represent collisions with at least one charged particle produced in the kinematic range |η | < 0.8 and
0.15 GeV/c < pT < 10 GeV/c. For this event class, the possible bias originating from Monte Carlo
event generators for very low Nch values (partially originating from diffractive or electromagnetic events)
is minimal.

Track selection A primary charged particle [50] is defined as a charged particle with a mean proper
lifetime τ larger than 1 cm/c, which is either produced directly in the interaction or from decays of parti-
cles with τ smaller than 1 cm/c, excluding particles produced in interactions with the detector material.
Charged-particle trajectories are reconstructed using both the ITS and TPC detectors. In order to select
only tracks with good pT resolution for analysis, a minimal length in the active detector volume as well
as a good agreement of the final track parameterisation with its comprising space points are required.
The contamination of the track sample with weakly decaying particles, secondary particles from inter-
actions of primary particles with the detector material and from pileup events is significantly reduced
by selecting only tracks originating from a location close to the primary interaction vertex. In previous
ALICE publications [8, 42] those selection criteria were studied in great detail and optimised for best
track quality and minimal contamination from secondary particles.

Particle-composition correction The measured data are complemented by Monte Carlo simulations
implementing a realistic GEANT3 [51] model of the ALICE detector and mimicking the experimental
conditions present during the data taking. From these simulations, information about efficiency, sec-
ondary contamination, and smearing of Nch as well as pT is obtained. However, it was found in previous
measurements [52, 53] that the current state-of-the-art MC event generators do not perfectly reproduce
the relative particle abundances, in particular for hyperons. Since the detector response, as well as the
effect of the track selection, vary for the different particle species (e.g. due to different lifetimes), a
purely MC-based correction for efficiency and feed-down contamination of inclusive charged particles
would depend on the accuracy of the relative hadron abundances produced by the respective underly-
ing event generator. To take this effect into account, the particle abundances from the event generator
are re-weighted by means of a data-driven approach that was already employed in other ALICE anal-
yses [8, 42]. This particle-composition correction utilises several ALICE measurements of identified
(π,K,p,Λ) particle pT spectra as a function of multiplicity (in coarse intervals) for a range of collision
systems [9, 53–56] as input and offers Nch- and pT-dependent correction factors for particle abundances.
These data-driven adjustments for the generator bias result in a more accurate description of the detector
performance and are applied prior to the unfolding corrections described in the following.

Event-level unfolding The measurement of the raw charged-particle multiplicity distribution is in-
fluenced by several effects. In the experiment, some collisions that occurred within |Vz|< 10 cm with
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respect to the nominal interaction vertex are not detected by the minimum-bias trigger or discarded by
the subsequent event selection. Due to the experimental vertex-position resolution, a valid collision
event may also be reconstructed outside of |V meas

z |< 10 cm and therefore rejected in the analysis. On
the other hand, the measured and selected sample of events may contain collisions without any primary
charged particle produced within the kinematic range of interest (i.e. events with Nch = 0) or collisions
with a true vertex position located outside |Vz|< 10 cm. In addition, as discussed before, the value of
the measured track multiplicity Nmeas

ch itself is affected by tracking efficiency and track selection as well
as contamination with secondaries and particles smeared into the kinematic acceptance, resulting in a
broad correlation between the actual number of primary charged particles Nch and the measured track
multiplicity Nmeas

ch .

Using the particle-composition corrected MC simulation, the measured track multiplicity distribution can
be corrected for the efficiency, contamination, and smearing effects by means of an iterative unfolding
procedure proposed by D’Agostini [57] and implemented in the RooUnfold [58] software package.

Starting with an initial assumption (prior) for the desired multiplicity distribution, which in this case is
taken from the MC simulation, unfolding weights (posterior probabilities) are calculated by combining
the prior with the detector response and the measured track multiplicity distribution according to Bayes’
theorem. By again applying these posterior probabilities to the measured track multiplicity distribution,
an updated and more accurate guess for the prior is calculated. This procedure is repeated at least three
times and, in order to avoid overfitting, immediately stopped once the χ2/ndf between the resulting
multiplicity distributions of two consecutive iterations drops below unity. In this context, the number
of degrees of freedom refers to the number of data points in the respective distribution. The procedure
is found to be very stable and the resulting unfolded spectrum after convergence is not sensitive to the
choice of a prior.

Track-level unfolding While the one-dimensional multiplicity distributions are straightforward to un-
fold with the iterative D’Agostini method described above, extracting the correlation between pT spectra
and the corresponding multiplicity poses a greater challenge. In principle, this two-dimensional (2D) de-
convolution could be done in the same manner, i.e., by unfolding the distribution of (Nmeas

ch , pmeas
T )-pairs

and thereby extracting the corrected (Nch, pT)-distribution of primary charged particles. However, for the
highly-granular measurement carried out here, this would imply a huge number of possible combinations
and therefore, in practice, require an unreasonably large Monte Carlo event sample to sufficiently pop-
ulate the smearing matrix that represents the detector response. Hence, in this analysis, a new approach
was developed aiming to effectively achieve the 2D unfolding in a simpler way, by splitting it into mul-
tiple one-dimensional unfolding problems. Starting from the raw yield of charged-particle tracks as a
function of measured track transverse momentum pmeas

T and measured track multiplicity Nmeas
ch , this tech-

nique yields the fully corrected transverse momentum spectra of primary charged particles as a function
of their corresponding primary charged particle multiplicity Nch. These fully corrected Nch-dependent
pT spectra are then normalised to the number of Nch > 0 events obtained from the unfolded multiplicity
distributions. In addition, the spectra are divided by the widths ∆pT and ∆Nch of the respective intervals
chosen for analysis. In the present work, for pp, p–Pb and AA collisions with Nch ≤ 100, multiplicity
intervals of ∆Nch = 1 are used, while for the rest of the range in AA collisions intervals of ∆Nch = 9 are
chosen. This choice is driven by optimising the resolution of the unfolding procedure versus computing
time. As the bulk of particles are produced at low transverse momentum, the pT intervals are set to have
decreasing granularity from low to high pT.

In the experiment, event-level as well as track-level effects influence whether a charged particle with
transverse momentum pT from an event of multiplicity Nch is detected with the measured properties
pmeas

T and Nmeas
ch . For the reasons described above, entire collision events, and in consequence all of their

corresponding particles, can either be lost if the event is rejected or incorrectly selected and as a result
contribute to the background contained in the measured track sample. Further, for an event which is
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selected for analysis, the pmeas
T spectrum as well as the measured track multiplicity Nmeas

ch are affected by
tracking efficiency, transverse momentum resolution, and contamination from secondaries or particles
smeared into the kinematic acceptance of the measurement. While the event-level effects change the pT-
integrated detector response and are intrinsically multiplicity dependent, the track-level detector response
mainly depends on the transverse momentum of the respective particle. However, there is still a small pT
dependence of contamination and efficiency related to the event selection as the trigger may bias toward
specific types of events (e.g., by selectively rejecting diffractive collisions which may have a transverse
momentum shape different from that of non-diffractive events with the same multiplicity). On the other
hand, also the tracking efficiency and contamination are (slightly) multiplicity dependent, as for instance
the particle composition of the event changes with multiplicity, which is relevant in particular for AA
collisions.

The basic idea behind the novel procedure employed in this analysis is that the multiplicity dimension
(which is mostly affected by event-level effects) and the pT dimension (which is dominated by track-level
effects) can be treated in two separate, sequential unfolding stages. In a first step, the Nmeas

ch dependent
raw track yield in each pmeas

T interval is unfolded separately using the event-level efficiencies and contam-
ination as well as the (pT integrated) multiplicity smearing matrix of primary charged particles, which
contains the probability for a primary charged particle from a collision with true multiplicity Nch to be
found in an event with measured track multiplicity Nmeas

ch . As a result of this deconvolution, the mea-
sured tracks are reassigned to the true multiplicities Nch and corrected for track losses related to the event
selection and contamination from background events. In a second step, the pmeas

T dependent track yield
is unfolded individually in each Nch interval using the corresponding pT dependent tracking efficiencies
and pmeas

T dependent contamination, as well as the (multiplicity-integrated) transverse momentum smear-
ing matrix of primary charged particles. Note that since the measured track distributions in each of the
individually unfolded pmeas

T or Nch intervals are different, unique posterior probabilities (i.e., unfolding
weights) are obtained in each of these cases. For all of the pmeas

T intervals, the pmeas
T integrated Nch dis-

tribution of measured primary charged particles taken from the MC simulation is used as the initial prior
for the unfolding, while for all the Nch intervals the Nch integrated pT distribution of measured primary
charged particles is used.

To validate the self-consistency of this sequential unfolding approach, it is applied to a MC sample
which includes the transport of particles through the detector and the results are then compared with
its underlying generator-level expectation. In Fig. 2 this closure test is shown for the mean and standard
deviation of the unfolded Nch dependent transverse momentum spectra simulated for pp, p–Pb and Pb–Pb
collisions at

√
sNN = 5.02 TeV using the PYTHIA8, EPOS LHC and HIJING [59] event generators,

respectively. Note that these are the particle-composition corrected simulations. The ratios in the bottom
panels show a very good agreement between the unfolded and generated distributions over the whole
range of multiplicities. The non-closure is mostly well below 1% and the remaining relative differences
are used as an estimate for the systematic uncertainty of the method. The closure test was validated by
cross-checking the largest data set, i.e. pp collisions at

√
s = 13 TeV, with EPOS LHC as an alternative

MC generator.

In the top panel of Fig. 3, the evolution of spectral shapes with multiplicity obtained with this unfolding
procedure is shown for pp collisions at

√
s = 5.02 TeV. This double-differential measurement not only

allows characteristic properties of the spectra, e.g. ⟨pT⟩, and σ(pT), to be extracted but also allows a di-
rect comparison of the spectral shape produced in collisions with different multiplicities. The bottom left
panel of Fig. 3 shows the ratio of multiplicity-dependent self normalised pT distributions Pprim(pT|Nch)
to the multiplicity-integrated self normalised pT distribution Pprim(pT) of primary charged particles. A
hardening of the spectra with multiplicity is apparent, which continuously increases with Nch, a trend
observed earlier in coarser multiplicity intervals [41] and with different event selection methods [60]. In
the bottom right panel of Fig. 3 the self normalised multiplicity distribution of primary charged particles
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Figure 2: The Nch dependence of the mean (left panel) and standard deviation (right panel) of the pT distributions
for (particle-composition corrected) Monte Carlo events in pp, p–Pb and Pb–Pb collisions at

√
sNN = 5.02 TeV.

Results propagated through a full GEANT model of ALICE and corrected with the sequential 2D unfolding (closed
circles) procedure described in the text are compared with the generator-level (open squares) distributions and their
ratios are shown in the bottom panels.

for fixed transverse momentum Pprim(Nch|pT) divided by the pT-integrated Nch distribution Pprim(Nch)
is shown as a function of Nch. As expected, it is evident that high pT particles are produced mostly in
high-multiplicity events.

Systematic uncertainties The accuracy of the corrections applied in this work depends on how well
the measured track properties are reproduced by the MC simulations. The systematic uncertainties re-
lated to a possible disagreement were estimated by varying the track-selection criteria in reasonable
ranges. A detailed list of those track quality criteria and their variations can be found in previous ALICE
publications [8, 42]. In order to estimate the systematic uncertainty related to the particle-composition
correction, the yields of identified particles are varied within their respective systematic uncertainties and
the extrapolation of those spectra to pT = 0.15 GeV/c is performed with different functions. In addition,
an uncertainty for the accuracy of the unfolding procedure is assigned that is quantified by the level of
agreement between the unfolded simulated measurement and the expected distributions produced by the
generator (MC closure test). For each variation, the fully corrected results are calculated and their de-
viation to the nominal result is considered an uncertainty. Therefore, any effect of the variations on the
performance of the analysis procedure is included in the respective systematic uncertainty. To obtain the
overall systematic uncertainties, all individual contributions are assumed to be fully uncorrelated and are
added in quadrature.

The systematic uncertainties of multiplicity distributions are around 2–5% at low Nch, but increase to-
wards higher multiplicities up to 10–20%, depending on the collision system and energy. While for pp
and p–Pb collisions the track quality requirements are the most relevant contributions, in AA collisions
the systematic uncertainty related to the particle-composition correction is the most prominent one. The
systematic uncertainty of the mean transverse momentum of the unfolded spectra is largely dominated
by the contributions from track-selection variations, yet the total systematic uncertainties in most of the
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Figure 3: Top panel: the correlation of primary charged particle pT spectra with multiplicity per Nch > 0 event
for pp collisions at

√
s = 5.02 TeV. Bottom panels: the corresponding relative change of pT (left) and Nch (right)

distributions with respect to the inclusive ones. In the left panel, each of the curves represents a single Nch value,
ranging from Nch = 1 (blue) to Nch = 55 (red). In the right panel, the colours represent the pT intervals used in this
analysis from the lowest in blue to the highest one in red.

reported Nch range are around 1%. At the lowest and highest multiplicities the contribution from the
closure tests increases to up to 2%. The contribution from the particle-composition correction is around
0.5%. The systematic uncertainties of the standard deviation of the spectra σ(pT) are dominated by the
track quality requirements and are below 2% on average. At very low and very high Nch, the systematic
uncertainties go up to 3–5% due to the MC closure test contribution.

4 Results and discussion

Multiplicity distributions as well as the mean and standard deviation of charged-particle pT spectra as
a function of Nch are presented in comparison with model predictions. Table 2 summarises the mean
and standard deviation of both the multiplicity distributions and Nch-integrated pT spectra for pp, p–Pb,
Xe–Xe, and Pb–Pb collisions at the various centre-of-mass energies per nucleon pair.

The left panel of Fig. 4 shows the probability density of charged-particle multiplicity Nch for pp (top),
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Table 2: Global characteristics of the analysed data sets with corresponding systematic uncertainties. Both the Nch

and the pT spectra are consistently defined in the kinematic range |η | < 0.8 and 0.15 GeV/c < pT < 10 GeV/c
and only events with Nch > 0 are considered.

√
sNN (TeV) ⟨Nch⟩ σ(Nch) ⟨pT⟩incl (MeV/c) σ(pT)incl (MeV/c)

pp

2.76 7.18±0.24 6.05±0.17 589.7±2.6 483±4
5.02 8.21±0.10 7.20±0.08 612.2±2.7 520.2±1.0

7 8.86±0.12 7.88±0.11 627.1±1.6 541.3±2.1
8 9.05±0.22 8.11±0.18 631±5 547±4
13 10.31±0.09 9.48±0.07 654.0±1.0 582.4±0.9

p–Pb
5.02 25.51±0.25 19.79±0.20 711.9±1.3 619.8±1.1
8.16 29.56±0.26 23.13±0.23 741.5±1.4 657.0±1.3

Xe–Xe 5.44 458±10 514±13 717.4±1.8 568.4±1.4

Pb–Pb
2.76 573±9 667±12 687.3±1.3 528.0±1.7
5.02 682±13 819±16 724.1±1.1 564.9±1.0

p–Pb (middle), and AA (bottom) collisions at different energies per nucleon pair. For all collision sys-
tems, the distributions reach a maximum around Nch ≈ 2 and then fall steeply off over several orders
of magnitude. In the pp and p–Pb systems, the slope of the decay with Nch decreases with increasing
collision energy. This can be attributed to the larger momentum transfer in the initial hard scattering
which results in larger multiplicities. The right panel of Fig. 4 presents the data after scaling the prob-
ability density and the charged-particle multiplicity with the average number of charged particles ⟨Nch⟩
according to the Koba–Nielsen–Olesen (KNO) [61] scaling. Figure 5 shows the corresponding ratios of
the KNO-scaled multiplicity distributions at various centre-of-mass energies per nucleon pair relative to√

s = 13 TeV,
√

sNN = 8.16 TeV and
√

sNN = 5.02 TeV for pp, p–Pb and Pb–Pb collisions, respectively.
KNO scaling apparently holds in pp and AA collisions within 20%, and in p–Pb collisions within 10%.

In Fig. 6 the mean and standard deviation of the pT spectra are compared for pp, p–Pb and Pb–Pb col-
lisions at the same centre-of-mass energy per nucleon pair of

√
sNN = 5.02 TeV. All three collision

systems have similar values at Nch = 1 and then coincide until Pb–Pb deviates at Nch ≈ 5 and p–Pb devi-
ates at Nch ≈ 25 from the trend observed in pp. This observation is consistent with an earlier comparison
of the ⟨pT⟩–Nch correlation for the three systems at different centre-of-mass energies [62]. Figure 7
shows the mean (left) and standard deviation (right) of the transverse momentum spectra as a function of
the charged-particle multiplicity Nch for pp (top), p–Pb (middle), and AA (bottom) collisions at differ-
ent centre-of-mass energies per nucleon pair. For all collision systems, a clear ordering of ⟨pT⟩ as well
as σ(pT) with collision energy is observed, which can be attributed to the larger momentum transfers
involved at higher

√
sNN . For pp collisions at all centre-of-mass energies, the average transverse mo-

mentum increases monotonically with an almost linear trend up to Nch ≈ 16 and beyond that continues
with an again almost linear dependence on Nch but reduced slope. In p–Pb collisions, a similar multi-
plicity dependence is observed up to Nch ≈ 25. At higher multiplicities, the increase in ⟨pT⟩ is slower
than in pp collisions. In both pp and p–Pb, σ(pT) follows a similar trend as ⟨pT⟩. On the other hand, for
AA collisions one observes an increase of ⟨pT⟩ with multiplicity up to about one third of the measured
range, followed by a constant trend for the rest of the Nch range. The σ(pT) increases for Nch ≲ 100
to a maximum and decreases afterwards. This is unique to large collision systems and is presumably a
consequence of flow and jet quenching [8]. The high Nch resolution of this measurement makes it pos-
sible to spot differences between the spectral evolution with multiplicity in Xe–Xe and Pb–Pb collisions
at

√
sNN = 5.44 TeV and

√
sNN = 5.02 TeV, respectively. The observed difference in the trends might

be a result of the slightly deformed Xe nuclei [63]. In Fig. 8 both the mean (left) and standard devia-
tion (right) of the pT spectra as a function of Nch are summarised for all data sets (top panels) and then
shown as a function of relative multiplicity Nch/⟨Nch⟩ (middle panels) as well as divided by their respec-
tive multiplicity-integrated values (bottom panels). In the latter scaling, the overall energy-dependent

10
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increase of average kinematic energy and number of produced particles are accounted for. As a result,
the values for each collision system align almost perfectly for ⟨pT⟩/⟨pT⟩incl and σ(pT)/σ(pT)incl.
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Figure 4: Probability density of charged-particle multiplicity Nch (left) and the corresponding KNO-scaled dis-
tributions (right) for pp (top), p–Pb (middle), and AA (bottom) collisions at different centre-of-mass energies per
nucleon pair. Statistical and systematic uncertainties are shown as bars and semi-transparent bands, respectively.
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Figure 5: Ratios of the KNO-scaled multiplicity distributions at various centre-of-mass energies per nucleon pair
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√
s = 13 TeV for pp collisions (top panel) and relative to

√
sNN = 8.16 TeV and

√
sNN = 5.02 TeV for

p–Pb and Pb–Pb collisions, respectively (left and right bottom panels). Statistical and systematic uncertainties are
shown as bars and semi-transparent bands, respectively.

13



Multiplicity dependence of charged-particle production at the LHC ALICE Collaboration

0 20 40 60 80 100

chN

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95)c
 (

G
eV

/
〉 

T
p 〈

Pb−Pb

Pb−p

pp

 = 5.02 TeVNNsALICE, charged particles, 

c < 10 GeV/
T

p < c| < 0.8, 0.15 GeV/η|

0 20 40 60 80 100

chN

0.3

0.4

0.5

0.6

0.7

0.8

0.9)c
) 

(G
eV

/
T

p(σ

Pb−Pb

Pb−p

pp

 = 5.02 TeVNNsALICE, charged particles, 

c < 10 GeV/
T

p < c| < 0.8, 0.15 GeV/η|

Figure 6: Mean (left) and standard deviation (right) of the charged-particle transverse momentum spectra as a
function of the charged-particle multiplicity for pp, p–Pb, and Pb–Pb collisions at a centre-of-mass energy per
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Figure 7: Mean (left) and standard deviation (right) of the charged-particle transverse momentum spectra as a
function of the charged-particle multiplicity for pp (top), p–Pb (middle), and AA (bottom) collisions at different
centre-of-mass energies per nucleon pair. Statistical and systematic uncertainties are shown as bars and semi-
transparent bands, respectively.
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Figure 8: Mean (left) and standard deviation (right) of the charged-particle transverse momentum spectra as a
function of the charged-particle multiplicity (top) and relative multiplicity Nch/⟨Nch⟩ (middle, bottom) for pp,
p–Pb, Xe–Xe and Pb–Pb collisions at various centre-of-mass energies per nucleon pair. The bottom panels show
both quantities relative to their multiplicity-inclusive value. Statistical and systematic uncertainties are shown as
bars and semi-transparent bands, respectively.
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Figure 9: Relative standard deviation of the charged-particle transverse momentum spectra as a function of the
absolute (left) and relative (right) charged-particle multiplicity for pp, p–Pb, Xe–Xe and Pb–Pb collisions at various
centre-of-mass energies per nucleon pair. Statistical and systematic uncertainties are shown as bars and semi-
transparent bands, respectively.

The left panel of Fig. 9 shows the relative standard deviation of the spectra σ(pT)/⟨pT⟩ as a function of
Nch (left) and as a function of Nch/⟨Nch⟩ (right). For pp collisions, this relative width of the pT spectra
increases with multiplicity. The same trend is also observed for the larger collision systems. However,
after around Nch ≈ 20 both for p–Pb and AA collisions, the standard deviation rises at the same rate as the
mean, resulting in a flattening of the σ(pT)/⟨pT⟩ ratio. After this plateau, the spectra in AA collisions
become narrower relative to their mean values. The right panel of Fig. 9 shows the relative standard
deviation of the spectra σ(pT)/⟨pT⟩ as a function of the relative multiplicity Nch/⟨Nch⟩. The plateau
observed in p–Pb collisions starts at the relative multiplicity Nch/⟨Nch⟩ ≈ 1, while the decrease observed
in AA collision already begins at lower relative multiplicities of around Nch/⟨Nch⟩ ≈ 0.2.

Figures 10 and 11 compare measured results for pp and p–Pb collisions with predictions from PYTHIA8
(solid lines) and EPOS LHC (dashed lines). Here, the PYTHIA8.306 event generator is used with the
Monash-2013 tune [31] for pp collisions and with the Angantyr model [26] for p–Pb collisions. The
top left panel represents the ratio of models over measurements for the multiplicity distributions, the top
right panel for the respective KNO-scaled multiplicity distributions and the bottom left and right panel
show the ratios for ⟨pT⟩ and σ(pT), respectively.

In pp collisions, the overall shapes of the multiplicity distribution and KNO-scaled distribution shown in
the upper panels of Fig. 10 are better described by EPOS LHC, while PYTHIA8 falls sharply off above
Nch/⟨Nch⟩ ≈ 4. Both models agree with the experimental distributions within 25% with larger deviations
at highest multiplicities. For ⟨pT⟩ and σ(pT) shown in the bottom panels of Fig. 10, PYTHIA8 under-
predicts the experimental data on ⟨pT⟩ at the lowest values of Nch by up to 4%. The Nch dependent ⟨pT⟩
values produced by PYTHIA8 increase faster than the measurements with an almost linear dependence
up to Nch ≈ 20, after which the ratio shows a flat multiplicity dependence with an offset from unity vary-
ing from 0.5% at

√
s = 5.02 TeV up to 4% at the highest centre-of-mass energy. EPOS LHC is further

off at low multiplicities by up to 5% and increases slower than the measurements, underestimating them
by up to 6% around Nch ≈ 9. At higher multiplicities, the increase is faster with a linearly rising ratio up
to Nch ≈ 20−30, reaching a plateau which describes the measurements within ±2%. The experimental
data on σ(pT) is reproduced by both models within 10% at charged-particle multiplicities Nch > 10, with
larger deviations at the lowest multiplicities.
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Figure 10: Ratio of model predictions to data for pp collisions at various energies. The upper panels show it for
the multiplicity distributions (left) and their KNO-scaling form (right), the bottom panels represent ⟨pT⟩ (left) and
σ(pT) (right). The semi-transparent bands indicate the relative systematic uncertainties of the data.

Results from model calculations in comparison with measurements from p–Pb collisions are shown in
Fig. 11. PYTHIA8/Angantyr predicts the charged-particle multiplicity distribution within 30% (Fig. 11,
top left) over the whole multiplicity range. EPOS LHC agrees within 20% for Nch < 70 but fails to
describe the measurement at higher multiplicities. The KNO-scaled multiplicity distributions shown in
the top right panel of Fig. 11 are described by both models within 20% up to a relative multiplicity of
2.5. Beyond that, both models exhibit increasing deviations from the measurement. PYTHIA8/Angantyr
underpredicts ⟨pT⟩ by about 5% at low multiplicities (Fig. 11, bottom left), Nch < 20, with the deviation
increasing as a function of multiplicity, reaching about 25% at Nch = 110. This might result from the
missing colour reconnection between the sub-collisions in the model. It is expected that high string
density effects, as the recently-introduced shoving mechanism [64], will lead to an increase of ⟨pT⟩ as a
function of the multiplicity. EPOS LHC reproduces the ⟨pT⟩ and σ(pT) measurement within 10%.

Figure 12 shows a comparison of the measured ⟨pT⟩ as a function of Nch for pp, p–Pb and Pb–Pb col-
lisions at the same centre-of-mass energy per nucleon pair,

√
sNN = 5.02 TeV, with results from three

different model calculations: PYTHIA8 (left panel; Angantyr for p–Pb and Pb–Pb), EPOS3 (middle
panel), and hydrodynamics with CGC initial conditions [20] (right panel). As shown before, PYTHIA8
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Figure 11: Ratio of model predictions to data for p–Pb collisions at various energies. The upper panels show it for
the multiplicity distributions (left) and their KNO-scaling form (right), the bottom panels represent ⟨pT⟩ (left) and
σ(pT) (right). The semi-transparent bands indicate the relative systematic uncertainties of the data.

describes the pp measurements very well over the entire multiplicity range, even at the highest mul-
tiplicities. However, it significantly underpredicts the p–Pb measurements above Nch > 10, where the
deviation increases with multiplicity. In Pb–Pb collisions, the ⟨pT⟩ is systematically underpredicted
by PYTHIA8/Angantyr by around 8% on average. Again, this points to the missing treatment of high
string density effects which are not included in the PYTHIA8/Angantyr model, yet [26]. The EPOS3
model overpredicts the ⟨pT⟩ in all systems up to Nch ≈ 10− 20, and underpredicts p–Pb and Pb–Pb
measurements at higher multiplicities, less than PYTHIA8/Angantyr, but also cannot reproduce the ⟨pT⟩
evolution with Nch. The hydrodynamical model calculations do not describe the measurements well,
except for Pb–Pb collisions at the highest multiplicities of Nch > 1000.

In the CGC approach, the average transverse momentum is a universal function of the ratio of charged-
particle multiplicity and transverse area of a collision [44]. The transverse area ST(Nch) is derived from
the interaction radius R( 3

√
dNg/dy) as a function of gluon multiplicity dNg/dy. This interaction radius

was calculated within the CGC framework for pp collisions at a reference energy of
√

s = 7 TeV =W0,pp
and for p–Pb collisions at

√
sNN = 5.02 TeV =W0,p–Pb [65]. Parameterisations of these interaction radii

proposed in Ref. [22] are used to calculate the interaction area. Following the arguments in Ref. [44],
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bands, respectively.

the ⟨pT⟩ vs. Nch measurements presented in this Letter are scaled for each collision energy W =
√

sNN
for the respective collision system (pp, p–Pb) with a factor of (W/W0)

λ/(λ+2). Here, the exponent λ

characterises the saturation scale and was determined in Ref. [44] to be λ = 0.22 as the best fit to the
transverse momentum distributions measured with ALICE. In order to approximate the gluon density
corresponding to a measured final state multiplicity, a proportionality factor γ , defined by the equation
dNg/dy = γNch, is needed. Here, the naive value γ = 3/2 1

∆η
motivated by the ratio of the number of

charged particles to all particles, as done in Ref. [22], is used. A weak dependence of the results on γ was
observed. Figure 13 shows the ⟨pT⟩ as a function of (W/W0)

λ/(λ+2)
√

Nch/ST for pp and p–Pb collisions
at various collision energies (left), and the ratio of those curves to the 13 TeV result (right), which has
the highest reach in this scaling observable. The disagreement from the scaling is significant given the
measurement’s uncertainties, but still within about 10% over the entire range. At comparable values of
the scaling variable, the ratio shows a distinct energy ordering, and all ratios exhibit a noticeable peak.
In a more recent study [66], the determination of the exponent λ was revisited and it was found that
the differential cross sections are better described when using λ ≈ 0.32 instead of λ = 0.22. However,
with this updated value for the characteristic exponent λ , the geometrical scaling of the data presented
in this Letter agrees only within ±15%. In general, the scaling results are found to be very sensitive to
the value of λ and the best agreement is actually found for λ = 0, which effectively removes the energy
scaling term (W/W0)

λ/(λ+2) proposed in Ref. [44]. An approximate geometrical scaling of ⟨pT⟩ was
also observed in AA collisions as discussed in Ref. [67].

5 Summary and conclusions

A comprehensive study of inclusive charged-particle production at the LHC is presented, spanning a
wide range of collision energies in pp, p–Pb, Xe–Xe and Pb–Pb collisions. Multiplicity distributions are
compared across centre-of-mass energies for all collision systems, and, in addition, shown in the KNO-
scaling form. The KNO scaling is observed to hold within about 20%, not only for pp collisions, but
also for p–Pb and AA collisions. Transverse momentum spectra are measured as a function of charged-
particle multiplicity in narrow Nch intervals. The mean and standard deviation of these pT spectra as
a function of Nch are compared with PYTHIA8 (Angantyr), EPOS LHC, EPOS3, and hydrodynamical
model predictions. For pp collisions, the spectral shape evolution with multiplicity is described fairly
well by PYTHIA8 and EPOS LHC for all centre-of-mass energies, while EPOS3 and the hydrodynamical
model fail to predict this observable. In general, for p–Pb and AA collisions there is a large tension with
the data for all considered models, except for EPOS LHC which offers the best model prediction for
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for pp and p–Pb collisions at various energies (left) and the ratio of all data sets to that in pp collisions at 13 TeV
(right). The reference energy W0 corresponds to

√
s = 7 TeV for pp and

√
sNN = 5.02 TeV for p–Pb collisions.

Statistical and systematic uncertainties are shown as bars and semi-transparent bands, respectively.

p–Pb collisions. The geometric scaling of ⟨pT⟩ proposed within the colour glass condensate framework
is found to hold in first order, with deviations at the level of 10%.

Since the study of charged-particle production as a function of multiplicity plays a key role in under-
standing the properties of strongly-interacting matter created in collision systems of different sizes and
energy densities, in the future, this rich high-precision set of multidimensional measurements can help to
improve the theoretical modelling of the complex interplay of hard and soft QCD processes that govern
particle production at LHC energies.
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Torres 7, P. Lu 96,117, J.R. Luhder 135, M. Lunardon 27, G. Luparello 56, Y.G. Ma 39, A. Maevskaya140,
M. Mager 32, T. Mahmoud42, A. Maire 126, M.V. Makariev 36, M. Malaev 140, G. Malfattore 25,
N.M. Malik 90, Q.W. Malik19, S.K. Malik 90, L. Malinina VII,141, D. Mal’Kevich 140, D. Mallick 79,
N. Mallick 47, G. Mandaglio 30,52, V. Manko 140, F. Manso 124, V. Manzari 49, Y. Mao 6,
G.V. Margagliotti 23, A. Margotti 50, A. Marı́n 96, C. Markert 107, P. Martinengo 32, J.L. Martinez113,
M.I. Martı́nez 44, G. Martı́nez Garcı́a 102, S. Masciocchi 96, M. Masera 24, A. Masoni 51,
L. Massacrier 128, A. Mastroserio 129,49, O. Matonoha 74, P.F.T. Matuoka109, A. Matyja 106,
C. Mayer 106, A.L. Mazuecos 32, F. Mazzaschi 24, M. Mazzilli 32, J.E. Mdhluli 120, A.F. Mechler63,
Y. Melikyan 43,140, A. Menchaca-Rocha 66, E. Meninno 101,28, A.S. Menon 113, M. Meres 12,
S. Mhlanga112,67, Y. Miake122, L. Micheletti 55, L.C. Migliorin125, D.L. Mihaylov 94, K. Mikhaylov 141,140,
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S. Perrin 127, Y. Pestov140, V. Petrácek 35, V. Petrov 140, M. Petrovici 45, R.P. Pezzi 102,65, S. Piano 56,
M. Pikna 12, P. Pillot 102, O. Pinazza 50,32, L. Pinsky113, C. Pinto 94, S. Pisano 48, M. Płoskoń 73,
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A. Schröter 38, J. Schukraft 32, K. Schwarz96, K. Schweda 96, G. Scioli 25, E. Scomparin 55,
J.E. Seger 14, Y. Sekiguchi121, D. Sekihata 121, I. Selyuzhenkov 96,140, S. Senyukov 126, J.J. Seo 57,
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23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
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