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Kurzfassung
Es ist unmöglich, alle biologischen Prozesse aufzuzählen, in die Proteine involviert

sind, da Proteine praktisch in jedem biologischen Prozess eines lebenden Systems

beteiligt sind. Sie werden als lineare Ketten von mehreren Hunderten von Amino-

säuren (sogenannte Polypeptidketten) in einer bestimmten Reihenfolge an Ribo-

somen synthetisiert. Um funktionsfähig zu sein, mussen diese Ketten in einem für

jedes Protein charakteristischen dreidimensionalen Muster gefaltet sein, das meist

native Struktur genannt wird. In der vorliegenden Arbeit wird das Problem der

Proteinfaltung aus der Sicht des Gleichgewichts der Thermodynamik betrachtet.

Die Dissertation beginnt mit einem kurzen Überblick über die theoretischen

Methoden der Quantenmechanik und Dichtefunktionaltheorie. Aufgrund von quan-

tenmechanischen Berechnungen kann man Modellansätze für die Beschreibung von

großen Systemen entwickeln, die nicht auf der ab initio Ebene der Theorie behandelt

werden können. Die Methoden der Quantenmechanik werden in der vorliegenden

Dissertation zur Beschreibung von konformativen Eigenschaften der kleinen Frag-

mente von Proteinen, aus Alanin und Glyzin bestehenden Polypeptiden, angewandt.

Ein weiterer Schritt in der Arbeit war die Entwicklung eines Formalismus zur

Beschreibung des Spirale↔Spule-Übergangs im Polypeptid. Der helikale Zustand

des Systems hat im Vergleich zu dem Spule-Zustand eine höhere Energie durch

die Gegenwart von Wasserstoffbrückenbindungen im System, aber eine niedrigeren

Entropie aufgrund der eingeschränkten konformativen Freiheit des Polypeptids. Mit

Zunahme der Temperatur wird der Spiral-Zustand durch einen Phasenübergang in

den Spule-Zustand umgewandelt. Man kann diesen Übergang mit den Methoden

der statistischen Mechanik beschreiben. Zur Beschreibung der thermodynamischen

Eigenschaften des Systems, muss man die Zustandssumme konstruieren.

Die Zustandssumme des Systems erlaubt die Energie und Wärmekapazität des

Systems bei verschiedenen Temperaturen zu ermitteln. Diese Aufgabe wurde in der

Dissertation ebenfalls durchgeführt. Die Ergebnisse des statistisch-mechanischen

Modells wurden mit den Ergebnissen der molekularen dynamischen Simulationen

von Alanin-Polypeptiden von unterschiedlicher Länge verglichen. Die gute Übere-
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instimmung der Ergebnisse des theoretischen Modells mit den Ergebnissen der Mo-

lekulardynamik-Simulationen erlaubt die Validierung der Annahmen über das Sys-

tem, die während der Entwicklung der Zustandssumme gemacht wurden und die

Genauigkeit und Anwendbarkeit der Theorie festzustellen.

Die letzte Aufgabe der Arbeit war die Erweiterung des Statistischen Mechanik-

Formalismus zur Beschreibung des Spirale↔Spule-Übergangs in Polypeptiden im

Vakuum auf Proteine. Der entwickelte Formalismus zur Beschreibung der Statistis-

chen Mechanik des Faltung↔Entfaltung-Überganges von Proteinen in Wasser wurde

auf zwei globulare Proteine angewandt. Die Ergebnisse des statistischen Mechanik-

Modells wurden auch mit den Ergebnissen der kalorimetrischen Untersuchungen

dieser Proteine durchgeführt. Vor allem wurden die Abhängigkeiten der Wärmeka-

pazität von der Temperatur unter verschiedenen pH-Werten des Lösungsmittels ver-

glichen.

Zusammenfassend stellt die vorliegende Dissertation eine interdisziplinäre Unter-

suchung dar, die mit der Studie der grundlegenden Freiheitsgrade in Polypeptidket-

ten beginnt, die für konformative Übergänge verantwortlich sind, dann dieses Wissen

für die Beschreibung der Statistischen Mechanik von Spiral↔Spule-Übergängen in

Polypeptiden anwendet und schließlich den theoretische Formalismus für den Fall

von Proteinen in Wasserumgebung verallgemeinert, sowie den Vergleich der Ergeb-

nisse des statistischen Mechanik-Modells mit den experimentellen Messungen der

Abhängigkeiten der Wärmekapazität von der Temperatur für zwei globulare Proteine

durchführt. Der vorgestellte Formalismus basiert auf grundlegenden physikalischen

Eigenschaften des Systems und bietet die Möglichkeit, die Faltung↔Entfaltung-

Übergänge quantitativ zu beschreiben. Die Kombination dieser beiden Tatsachen

ist die große Neuerung des vorgestellten Ansatzes im Vergleich zu den bestehenden

Vorgehensweisen.



Zusammenfassung
Lebende Organismen führen in jeder Phase ihres Lebens verschiedene Arten von biol-

ogischen Funktionen durch, z.B. DNS-Replikation, Proteinsynthese, Proteinregula-

tion, Wachstumsprozesse, Entwicklungsprozesse, Differenzierungsprozesse, Atmung,

Verdauung, Stoffwechsel, Stofftransport, Sehen und Bewegung. Es ist unmöglich,

alle biologische Prozesse aufzuzählen, bei denen Proteine involviert sind, da dies

praktisch bei jedem biologischen Prozess der Fall ist. Sie werden als lineare Ketten

von mehreren Hunderten von Aminosäuren (sogenannte Polypeptidketten) in einer

bestimmten Reihenfolge an Ribosome synthetisiert. Um funktionsfähig zu sein,

mussen diese Ketten in einem für einzelne Proteine einzigartigen dreidimensionalen

Muster gefaltet sein, das meist native Struktur genannt wird. [1].

Das menschliche Genom kodiert über als 100,000 verschiedenen Proteinen, die

bestimmte Aufgaben ausführen und in mehr als tausend grundlegend unterschiedli-

chen strukturellen Architekturen eingestuft werden können [2]. Eine neu gebildete

Polypeptidkette muss in der Lage sein, schnell den Weg zu seiner nativen Struktur zu

finden. Die Entdeckung, wie dies geschieht, ist eine der größten Herausforderungen

in der modernen Strukturbiologie [1]. Diese Dissertation bietet einen neuen Einblick

in das alte Problem der Proteinfaltung aus der Sicht der statistischen Mechanik.

Unter den gegebenen Bedingungen entspricht meistens der native Zustand eines

Proteins der Struktur mit der niedrigsten freien Energie. Es gibt ein Paar Aus-

nahmen zu dieser Regel, jedoch treten diese nur auf, wenn während der Faltung

kinetisch metastabile Zustände eines Proteins eingenommen werden. [3]. Die offen-

sichtliche Frage ist, wie es einem Protein gelingt, in angemessenen Zeit den ener-

getisch niedrigsten Zustand zu finden. Dies muss ein bemerkenswerter Vorgang sein,

da die Anzahl der möglichen Konformationen einer Polypeptidenkette astronomisch

groß ist. Zum Beispiel hat eine Polypeptidkette mit 100 Aminosäuren (ein kleines

Protein) fast 1030 verschiedene Konformationen, auch wenn wir davon ausgehen,

dass jede Aminosäure nur zwei unterschiedliche Konformationen haben kann. Auch

wenn nur 10−11 s genug wären, um eine Konformation in die andere umzuwan-

deln (die charakteristisch kürzeste Zeit der atomaren Bewegung laut den Gesetzen
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der Physik), würde die Suche nach der energetisch günstigsten Konformation 1012

Jahren dauern. Dies ist eine sehr konservative Abschätzung, doch die meisten Pro-

teine falten innerhalb von einigen Sekunden zu dem nativen Zustand. Die scheinbare

Unvereinbarkeit zwischen diesen Tatsachen ist als Levinthal Paradox bekannt und

die Suche nach einer Lösung für dieses Problem ist seit mehr als 30 Jahren ohne

endgültiges Ergebnis geblieben [4].

Viele Vorschläge wurden vorgelegt, um den Mechanismus der Proteinfaltung zu

erklären [5–8]. Aktuelle experimentelle Studien haben nachgewiesen, dass während

des Faltungsprozesses die Proteine nur eine begrenzte Anzahl von Zwischenkonfor-

mationen erreichen (für einen Überblick siehe z.B. [9]), was eine Erklärung für das

Levinthal Paradox wäre.

In der vorliegenden Arbeit wird das Problem der Proteinfaltung aus der Sicht des

Gleichgewichts der Thermodynamik betrachtet. Die geometrische Anordnung einer

Proteinkonformation in Lösung bei gewöhnlicher Temperatur ist relativ kompliziert,

da sie keine geometrische Symmetrie besitzt, jedoch einen geordneten Zustand im

Sinne der biologischen Aktivität bietet. Der Konformationszustand eines Proteins

kann durch zunehmende Temperatur oder durch Zusatz von geeigneten chemischen

Mitteln zerstört werden, was an dem Verlust der biologischen Aktivität und der

Veränderung der physikalischen Eigenschaften zu sehen ist. Sobald die komplizierte

Struktur mit biologischer Aktivität zerstört ist, wäre anzunehmen, dass die native

Struktur kaum wieder hergestellt werden kann. Dennoch erkannten Pionierforscher

Anson und Mirsky schon im Jahr 1925, dass dies nicht immer der Fall ist. Überzeu-

gende Versuche wurden von Anfinsen [10,11] für Ribonuclease und unabhängig von

Isemura [12] für Takaamylase um 1960 durchgeführt. Nach diesen experimentellen

Befunden kann der Faltungsprozess der Proteine als ein Phasenübergang in einzelnen

Molekülen betrachtet werden [13]. In der Tat definiert man die gefalteten und ent-

falteten Zustände eines Proteins als zwei verschiedene Phasen eines Systems, wenn

das System unter der Variation der Temperatur von einem Phasenzustand in einen

anderen umgewandelt und zurückverwandelt wird. Der Prozess der Proteinfaltung

wird durch die Freisetzung oder Absorption einer bestimmten Menge an Energie

begleitet [14] und entspricht deswegen einem Phasenübergäng erster Ordnung.

Zuvor gab es verschiedene Versuche, um den Faltungs ↔ Entfaltungsprozess in

Polypeptidketten und Proteinen zu beschreiben. Die bahnbrechende Arbeit über die

statistische Mechanik-Beschreibung von dem α-Spirale↔Spule Übergang in Polypep-

tidenketten wurde um 1960 von Zimm und Bragg [15] vorgeschlagen (siehe Abb. 1).
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Ein wesentlicher Fortschritt im Verständnis des Proteinfaltung-Prozesses wurde in

den letzten 50 Jahren erreicht. Einen guten Überblick dieses Feldes bietet der kur-

zlich veröfenntichte Überblicksartikel von Dill [16]. Alle theoretischen Arbeiten über

die Proteinfaltung können in drei Klassen eingeteilt werden: “rein” theoretische, em-

pirische und rechnerische. Trotz der enormen Steigerung der Rechenleistung in den

letzten Jahrzehnten erlaubt die Komplexität der Proteinfaltung nicht das Problem

der Proteinfaltung rechnerisch zu lösen. Die “rein” theoretischen Untersuchungen

des Proteinfaltungsprozesses haben meist mit wesentlich vereinfachten grobkörni-

gen Modellen von Proteinen zu tun. Daher können die Ergebnisse dieser theoretis-

chen Arbeiten für das Verständnis der grundlegenden physikalischen Prinzipien der

Faltungs- und Entfaltungsübergänge genutzt werden, aber nicht für die Vorhersage

der Eigenschaften eines bestimmten Protein-Moleküls. Die meisten der empirischen

Ansätze basieren auf den experimentell bekannten Eigenschaften von Proteinen und

deren Komponenten. Die allgemeine Vorstellung der empirischen Ansätze ist, mit

Hilfe eines entworfenen Modells, das auf einer ausreichend großen Reihe von bekan-

nten experimentellen Daten basiert, die Eigenschaften von anderen, ähnlichen Pro-

teinen vorherzusagen. Jedoch sind die Anwendbarkeit und Genauigkeit der em-

pirischen Modelle für ein bestimmtes System oft die Engpässe dieser Ansätze.

Die vorliegende Dissertation beschreibt, wie man die Vorteile der oben genan-

nten theoretischen Methoden kombinieren kann, um ein theoretisches Modell für die

Beschreibung der Konformationsänderungen in Proteinen und deren Fragmenten,

d.h. Polypeptiden zu konstruieren.

Die Dissertation beginnt mit einem kurzen Überblick über die theoretischen

Methoden der Quantenmechanik und Dichtefunktionaltheorie. Aufgrund von quan-

tenmechanischen Berechnungen kann man Modellansätze für die Beschreibung von

großen Systemen entwickeln, die nicht auf der ab initio Ebene der Theorie be-

handelt werden können. Zum Beispiel können quantenmechanische Berechnungen

für die Bestimmung der Parameter der molekularen Mechanik-Kraftfelder verwen-

det werden wie z.B. CHARMM, AMBER, u.a. [18, 19]. Die Methoden der Quan-

tenmechanik werden in der vorliegenden Dissertation zur Beschreibung von kon-

formativen Eigenschaften der kleinen Fragmente von Proteinen, aus Alanin und

Glyzin bestehende Polypeptiden, angewandt. Diese Polypeptide bestehen aus bis

zu 60 Atomen, wodurch man sie auf der ab initio Ebene der Theorie mit ho-

her Genauigkeit betrachten kann. Methoden der Quantenmechanik sind rechner-

isch sehr anspruchsvoll und daher ist es fast unmöglich, sie mit einem hohen Maß
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Figure 1: Beispiele finite komplexer molekularer Systeme mit Phasenübergängen.
Abbildung wird aus [17] entnommen.

an Genauigkeit für ganze Proteine anzuwenden. Um diesem Problem zu begeg-

nen, ist es aber möglich, die potentielle Energie-Landschaften der Aminosäuren

in kleinen Polypeptiden zu untersuchen und dann die Ergebnisse der ab initio

Berechnungen auf größere Systeme anzuwenden. In der vorliegenden Arbeit wird

die potentielle Energie der Aminosäuren als Funktionen der Diederwinkel φ, ψ

und ω anhand der dichtefunktionalen Theorie berechnet. Die Diederwinkel φ, ψ

und ω sind Verdrehwinkel entlang der Polypeptidkette. Die Berechnungen zeigten,

dass die Potentialenergieoberfläche als Funktion der Diederwinkel φ und ψ eines

Polypeptids mehrere Minima mit entsprechenden Übergangsbarrieren von ∼0,1 eV

hat. Die Freiheitsgrade, die den Winkeln φ und ψ entsprechen, sind deutlich

“weicher” als alle anderen Freiheitsgrade in der Polypeptidkette, da die Energie,

die für eine merkliche Variation der Geometrie des Systems notwendig ist, ent-

lang von diesen Freiheitsgraden nur ∼ 0,1 eV beträgt, während die Variation der

Geometrie des Systems auf alle anderen, “steiferen” Freiheitsgrade des Polypep-

tids die Energien von ∼ 1 eV erfordert. Diese Tatsache ermöglicht es, die Be-

wegung des Systems in weiche und steife Freiheitsgraden zu trennen. In der Tat
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kann das Polypeptid bei Raumtemperatur wegen der thermischen Bewegung der

Atome verschiedene Konformationen erreichen. Die Übergangsbarrieren zwischen

den verschiedenen konformativen Zuständen eines Polypeptids können dann als

Funktionen der Winkel φ und ψ berechnet werden, da alle anderen Freiheitsgrade

als gefroren betrachtet werden können. In der vorliegenden Arbeit wurden die

Übergangsbarrieren zwischen den verschiedenen Konformationen von Alanin- und

Glyzin-Polypeptiden auf der ab initio Ebene der Theorie berechnet. Mit Hilfe der

Arhnieus-Gleichung wurden die charakteristischen Zeiten für die Übergänge zwis-

chen Konformationen abgeschätzt und mit den Ergebnissen quantenmechanischer

Molekulardynamik-Simulationen verglichen. Eine gute Übereinstimmung zwischen

den Ergebnissen des einfachen Arhenius-Formalismusses und dem rechenintensiven

Ansatz der quantenmechanischen Molekulardynamik unterstützt die Idee, dass die

Konformationsänderungen in Polypeptiden nur durch die weichen Freiheitsgrade im

System beschrieben werden können, während alle anderen Freiheitsgrade als einge-

froren betrachtet werden können.

Ein weiterer Schritt in der Arbeit war es, nicht nur die Übergänge zwischen zwei

verschiedenen Konformationen eines Polypeptids zu beschreiben, sondern auch einen

Formalismus zur Beschreibung des Spiralen↔Spulen-Übergangs in dem Polypeptid

zu entwickeln. Der helikale Zustand des Systems hat im Vergleich zu dem Spule-

Zustand eine höhere Energie durch die Gegenwart von Wasserstoffbrückenbindungen

im System, aber eine niedrigere Entropie aufgrund der eingeschränkten konforma-

tiven Freiheit des Polypeptids. Mit der Zunahme der Temperatur wird der Spiral-

Zustand durch einen Phasenübergang in den Spule-Zustand umgewandelt. Man

kann diesen Übergang mit den Methoden der statistischen Mechanik beschreiben.

Zur Beschreibung der thermodynamischen Eigenschaften des Systems muss man

die Zustandssumme konstruieren. Durch die Zustandssumme des Systems kann

man danach alle thermodynamischen Eigenschaften des Systems herleiten. Die Zu-

standssumme ist die Summe über alle möglichen Konformationszustände des Sys-

tems mit den entsprechenden statistischen Gewichten. Natürlich ist die Anzahl

der verschiedenen möglichen Konformationen eines Polypeptids enorm groß und es

ist unmöglich, die Summe über alle solche Zustände durchzuführen. Die meisten

erlaubten Konformationen eines Polypeptids haben aber eine hohe Energie im Ver-

gleich zu den statistisch signifikanten Konformationen. Diese Tatsache erlaubt es,

den Beitrag der energetisch ungünstigten Konformationen auf die Zustandssumme,

wegzulassen und die Summierung nur über eine beschränkte Anzahl von Konfor-
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mationen, nämlich der Spule-Konformation, der Spiral-Konformation und Konfor-

mationen, in denen zwei Spule-Regionen eines Polypeptids durch ein Fragment in

der Spiral-Konformation getrennt sind, durchzuführen. In der Dissertation werden

alle eingeführten Annahmen über das System und den Zustandssummen-Aufbau-

Formalismus besprochen. Es stellte sich heraus, dass für das Erstellen der Zus-

tandssumme eines Polypeptids nur das Wissen über die Potentialenergieoberfläche

einer Aminosäure in Spule- und Spiral-Konformationen als Funktionen der Dieder-

winkel φ und ψ notwendig ist. Diese Potentialergieoberflächen wurden numerisch

berechnet und die Zustandssumme eines Polypeptids konstruiert.

Die Zustandssumme des Systems erlaubt es, die Energie und Wärmekapazität

des Systems bei verschiedenen Temperaturen zu bewerten. Diese Aufgabe wurde in

der Dissertation ebenfalls durchgeführt. Die Ergebnisse des Statistischen-Mechanik-

Modells wurden mit den Ergebnissen der molekulardynamischen Simulationen von

Alanin-Polypeptid von unterschiedlicher Länge verglichen. Vor allem wurden die

Abhängigkeiten der Gesamtenergie und Wärmekapazität des Systems von der Tem-

peratur für aus 21, 30, 40, 50 und 100 Aminosäuren bestehenden Alanin Polypepti-

den verglichen. Die gute Übereinstimmung der Ergebnisse des theoretischen Modells

mit den Ergebnissen der Molekulardynamik-Simulationen erlaubt die Validierung

der Annahmen über das System, die während der Entwicklung der Zustandssumme

gemacht wurden und die Genauigkeit und Anwendbarkeit der Theorie festzustellen.

Um die Ergebnisse des theoretischen Modells und der Molekulardynamik-Simula-

tionen zu vergleichen, ist es notwendig, eine effiziente Analyse der Ergebnisse der

Molekulardynamik-Simulation durchzuführen. Diese Aufgabe wurde auch in der vor-

liegenden Arbeit erfüllt. Verschiedene Möglichkeiten, die Abhängigkeit der Wärme-

kapazität von der Temperatur aus Molekulardynamik-Simulationen herzuleiten, wer-

den diskutiert und der effizienteste vorgeschlagen. Diese Dissertation berichtet über

das Ergebnis der molekulardynamischen Simulationen, nicht nur für das Alanin

Polypeptid, sondern auch für Valin- und Leucin-Polypeptide. In Valin- und Leucin-

Polypeptiden ist es auch möglich, den Spirale↔Spule-Übergäng mit dem Anstieg

der Temperatur zu beobachten. Allerdings unterscheiden sich die Eigenschaften

dieses Übergangs von denen für das Alaninpolypeptid. Zum Beispiel kann man im

Valin-Polypeptid zwei verschiedene Phasenübergänge sehen. Der Phasenübergang

bei niedrigeren Temperaturen tritt wegen der Änderung der Konformationen von

Valinradikalen auf, während der Phasenübergang bei höheren Temperaturen dem

Spirale↔Spule-Übergang entspricht.
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Die letzte Aufgabe der Arbeit umfasst die Erweiterung des Statistischen-Mecha-

nik-Formalismusses zur Beschreibung von dem Spirale↔Spule-Übergang in Polypep-

tiden im Vakuum auf Proteine. Proteine erfüllen ihre Funktionen in Wasser und es

gibt kaum Informationen über die thermodynamischen Eigenschaften von Proteinen

in der Gasphase. Daher braucht man eine Theorie zur Beschreibung der thermody-

namischen Eigenschaften von Proteinen in einer Wasserumgebung. Es ist wichtig

zu erwähnen, dass für das Entwickeln der Zustandssumme eines Proteins in einer

Wasserumgebung ähnliche Ideen, wie die für Polypeptide in der Gasphase verwen-

det werden können, insbesondere die Annahme, dass es nicht nötig ist, die Sum-

mierung über alle möglichen Konformationen eines Moleküls durchzuführen, son-

dern nur die statistisch signifikanten. Bei Polypeptidenketten im Vakuum, wird der

Faltungsprozess durch das Zusammenspiel der konformativen Freiheit der Polypep-

tidenkette und durch die gebildeten Wasserstoffbrücken in dem System angetrieben.

Die Faltung von Proteinen in einer Wasserumgebung wird in erster Linie durch

die hydrophoben und hydrophilen Wechselwirkungen innerhalb des Systems an-

getrieben. Trotz eines erheblichen Unterschiedes zwischen dem Spirale↔Spule-

Übergang in Polypeptiden im Vakuum und dem Falten↔Entfalten von Proteinen

in einer Wasserumgebung kann man die gleichen Potentialenergieoberflächen für die

konformative Entropie der Aminosäuren in gefalteten und entfalteten Zuständen

für die Beschreibung dieser Prozesse verwenden, da die sekundäre Struktur in dem

nativen Zustand des Proteins in erster Linie durch Wasserstoffbrücken stabilisiert

ist und daher die ähnliche Steifigkeit wie die Spiral-Struktur der Polypeptide hat.

In der Dissertation wird die Zustandssumme eines Proteins in der Gasphase durch

die Potentialenergieoberflächen für einzelnen Aminosäuren in gefalteten und entfal-

teten Konformationen konstruiert. Danach wird die Wechselwirkung des Proteins

mit dem Lösungsmittel berücksichtigt, was zu der Konstruktion der Zustandssumme

eines Proteins in Wasserumgebung führt. Der entwickelte Formalismus zur Beschrei-

bung der statistischen Mechanik des Faltung↔Entfaltung-Überganges von Proteinen

in wässriger Lösung wird auf zwei globulare Proteine angewandt. Es wurde ein

Vergleich der Ergebnisse des statistischen Mechanik-Modells mit den Ergebnissen

der kalorimetrischen Untersuchungen dieser Proteine durchgeführt. Vor allem wur-

den die Abhängigkeiten der Wärmekapazität von der Temperatur unter verschiede-

nen pH-Werten des Lösungsmittels verglichen. Der Vergleich ergab, dass das en-

twickelte statistische Mechanik-Modell in der Lage ist, verschiedene Eigenheiten der

Temperatur-Abhängigkeit der Wärmekapazität für beide Proteine erstaunlich gut zu
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reproduzieren, nämlich die Temperaturen von Hitze- und Kälte-Denaturierung, die

charakteristische Temperaturreichweite dieser Übergänge, die maximale Wärmeka-

pazitäten der Proteine bei Hitze- und Kälte-Denaturierung für verschiedene Werte

des pH-Werts des Lösungsmittels.

Zusammenfassend stellt die vorliegende Dissertation eine interdisziplinäre Un-

tersuchung dar, die mit der Studie der grundlegenden Freiheitsgrade in Polypep-

tidketten beginnt, welche für konformative Übergänge verantwortlich sind. An-

schließend wird dieses Wissen für die Beschreibung der statistischen Mechanik vom

Spirale↔Spule-Übergang in Polypeptiden angewendet. Schließlich wird der theo-

retische Formalismus für den Fall von Proteinen in Wasserumgebung verallgemeinert

und ein Vergleich der Ergebnisse des statistischen Mechanik-Modells mit den exper-

imentellen Messungen zur Abhängigkeit der Wärmekapazität von der Temperatur

für zwei globulare Proteine durchgeführt. Der vorgestellte Formalismus basiert auf

grundlegenden physikalischen Eigenschaften des Systems und bietet die Möglichkeit,

die Faltung↔Entfaltung-Übergänge quantitativ zu beschreiben. Die Kombination

dieser beiden Tatsachen ist die wesentliche Neuerung des vorgestellten Ansatzes im

Vergleich zu den bestehenden verfahren.

Die “transparente” physikalische Natur des entwickelten Formalismusses ermög-

licht seine Anwendung auf eine Vielzahl von Systemen und Prozessen. Zum Beispiel

kann er für die Untersuchung des Einflusses der Mutationen von Proteinen auf ihre

Stabilität verwendet werden. Diese Aufgabe ist von primärer Bedeutung für das

“Design” von neuartigen Proteinen und Medikamenten in der Medizin. Er kann

ferner für weitere Einblicke in das Problem der Protein-Aggregation und die Bildung

von Amyloiden angewendet werden. Das Problem von Protein-Aggregation ist eng

mit verschiedenen Krankheiten wie Alzheimer und Rinderwahnsinn assoziiert. Mit

gewissen Modifikationen kann die vorgelegte theoretische Methode zur Beschreibung

des Protein-Kristallisierungsprozesses angewendet werden, der für die Bestimmung

der Struktur von Proteinen mit Röntgenstrahlen wichtig ist. Es gibt viele andere

sehr interessante und wichtige Anwendungen der Ideen aus dieser Dissertation, wie

z.B. Schmelzen von DNS, Kohlestoff-Nanoröhren und Fullerene-Wachstum (siehe

Abb. 1).
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Abstract

Living organisms are performing various kinds of biological functions at every stage

of their lives. For example, DNA replication, protein synthesis and its regulation,

growth, development, differentiation, respiration, digestion, metabolism, material

transport, vision, movement and so on. It is impossible to enumerate them all

one by one. Proteins are involved in virtually every biological process in a living

system. They are synthesized on ribosomes as linear chains of typically several

hundred amino-acid residues in a specific order from information encoded within the

cellular DNA. In order to function, it is necessary for these chains to fold into the

unique, native, three-dimensional structures that are characteristic of the individual

proteins [1].

There are nearly 100 000 different protein sequences encoded in the human

genome. Each one of them has a specific fold, and there are likely to be more

than a thousand fundamentally distinct structural architectures into which these

sequences can be classified [2]. A newly formed polypeptide sequence must be able

to find the way to its correct fold quickly. The discovery of how this happens is

one of the greatest challenges in the modern structural biology [1]. The aim of this

thesis is to provide novel insights into the problem of protein folding by considering

this problem from the point of view of statistical mechanics.

An established principle of folding states that the native state corresponds to

the structure with the lowest free energy under a given set of conditions. There are

some exceptions to this rule, but they happen when metastable states are trapped

kinetically during folding [3]. The obvious question is, therefore, how does a protein

find its lowest energy structure within a reasonable time? For example, a chain of 100

amino acid residues (a small protein) has nearly 1030 distinct conformations, even

if we assume that any given residue can only adopt one of two possible conformers.

If only 10−11s were required to convert one conformation to another (the shortest

time that would be compatible with the required movements of atoms according to

the laws of physics) a systematic search of all possible conformations to find one of
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the lowest energies would take 1012 years. This is a very conservative estimate, yet

most proteins manage to reach their native state within a second. The apparent

incompatibility between these facts is known as the Levinthal paradox, and the

search for a solution to this problem has dominated for more than 30 years [4].

Many suggestions have been put forward to explain the mechanism of protein

folding [5–8]. Recent experimental studies have revealed that the in the course of

folding, proteins attain only a limited number of intermediate conformations (See

e.g. review [9]), thus providing a resolution of Levnthal’s paradox.

In the present work, the problem of protein folding is addressed from the point

of view of equilibrium thermodynamics. The conformation of a globular protein

in solution at common temperatures is quite complicated without any geometrical

symmetry, but it is an ordered state in the sense of its biological activity. This

complicated conformation of a single protein molecule is destroyed upon increasing

the temperature or by the addition of appropriate chemical agents, as is revealed by

the loss of its activity and change of the physical properties, and so on. Once the

complicated native structures having biological activity are lost, it would be natural

to suppose that the native structure could hardly be restored. Nevertheless, pioneers,

such as Anson and Mirsky, recognized as early as in 1925 that this was not always

the case. Convincing beautiful experiments were carried out by Anfinsen [10, 11]

for ribonuclease and independently by Isemura [12] for takaamylase around 1960.

According to these experimental findings, the process of protein folding can be

understood as a phase transition in a single molecule [13]. Indeed, if one defines the

folded and unfolded states of a protein as two distinct phases of a system, then under

the variation of temperature the system is transformed from one phase state into

another and vice versa. The process of protein folding is accompanied by the release

or absorption of a certain amount of energy [14], corresponding to the first-oder-type

phase transitions in the bulk.

Previously, there were various attempts to describe the folding↔unfolding tran-

sitions in polypeptides and proteins. One of the pioneering works devoted to the

statistical mechanics description of α-helix↔random coil transition in polypeptides

was made around 1960s by Zimm and Bragg [15]. A substantial progress in under-

standing of the protein folding process has been achieved during the last 50 years.

One can find the current status of the art in the field in a recent review by K. Dill [16]

and references therein. All the theoretical works about the protein folding can be

approximately divided into three classes: “purely” theoretical, empirical, and com-
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putational. Despite the tremendous increase of the computer power during the last

decades, the complexity of the protein folding does not allow to solve the problem of

protein folding computationally, however a significant progress in the prediction of

proteins native structure, understanding the potential energy landscapes of polypep-

tids and proteins, etc. has been achieved. The common problem for the ”purely”

theoretical studies is that they deal with a significantly simplified coarse-grained

models of proteins. Therefore, the results of these theoretical works can be used

for the understanding of the fundamental physical principles driving the folding and

unfolding transitions, but not for the predictions of the properties of a particular

protein molecule. Most of the empirical approaches are based on the experimen-

tally known properties of proteins and their constituents. The general idea of the

empirical approaches is to refine a certain proposed model on a sufficiently large set

of known experimental data and to try to predict the properties of other similar

proteins beyond the dataset used for the parametrization. However, the range of

applicability and accuracy of the empirical models for a particular system are often

the bottlenecks of these approaches.

The present thesis describes a way of how one can combine the advantages of the

aforementioned theoretical methods and construct a theoretical model based on the

fundamental physical principles for the description of the conformational transitions

in proteins and their fragments, i.e. polypeptides.

The work starts with a brief overview of the theoretical methods of quantum

mechanics, and Density Functional Theory in particular. On the basis of quantum

mechanical calculations one can develop model approaches for the description of

large systems which can not be treated on the ab initio level of theory. For instance,

quantum mechanical calculations can be used for the determination of the parame-

ters of the molecular mechanics forcefields such as CHARMM, AMBER, etc. [18,19].

In the present work the methods of quantum mechanics are applied to the descrip-

tion of conformational properties of small fragments of proteins, alanine and glycine

polypeptides. These polypeptides consist of up two 60 atoms and therefore it is

possible to treat them on the ab initio level of theory with high accuracy. Methods

of quantum mechanics are computationally demanding therefore it is almost impos-

sible to apply them with a reasonable level of accuracy for the whole proteins. To

overcome this difficulty, it is possible to investigate the potential energy landscapes

of the amino acids in small polypeptides and then apply the results of the ab initio

calculations to larger systems. In the present thesis, the potential energy surfaces
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as functions of dihedral angles φ, ψ and ω were calculated using density functional

theory. Dihedral angles φ, ψ and ω are twisting angles along polypeptide’s backbone

chain. The calculations showed that the potential energy surface of a polypeptide

as a function of dihedral angles φ and ψ has several minima, with corresponding

transition barriers between minima of the height of ∼ 0.1 eV. The twisting degrees

of freedom corresponding to angles φ and ψ are significantly ”softer” than all other

degrees of freedom in a polypeptide, since the energy needed for a noticeable vari-

ation of the system’s geometry is only ∼ 0.1 eV for these soft degrees of freedom,

while variation of the system’s geometry corresponding to all other ”stiff” degrees

of freedom of the polypeptide requires the energy of ∼1 eV. This fact allows one to

separate the motion of the system in soft and stiff degrees of freedom. Indeed, at

room temperature, the polypeptide can attain different conformational states due

to the thermal motion of atoms. The transition barriers between various conforma-

tional state of a polypeptide can be calculated only as functions of angles φ and ψ,

since all other degrees of freedom can be considered as frozen. In the present work

the transition barriers between different conformational states of alanine and glycine

polypeptides were calculated on the ab initio level of theory. Using the Arhnieus

equation, the characteristic times for the transitions between conformations were

estimated and compared with the results of quantum mechanical molecular dynam-

ics simulations. A good correspondence between the results obtained using simple

Arhenius formalism and much more computationally demanding approach of quan-

tum molecular dynamics supports the idea that the conformational transitions in

polypeptides can be described using only soft degrees of freedom in the system,

treating all other degrees of freedom as frozen.

The further step in the work was to describe not only the transitions between

two distinct conformations of a polypeptide, but to develop a formalism for the

description of helix↔random coil transition in polypeptides. The helical state of

the system has higher energy due to the presence of hydrogen bonds in the system

but lower entropy due to the restricted conformational freedom of polypeptide’s

backbone chain in comparison to the random coil state. With the increase of tem-

perature the system undergoes helix↔random coil phase transition. This transition

can be described using the methods of statistical mechanics. For the description of

thermodynamical properties of the system, one needs to construct the partition func-

tion. Indeed, knowing the partition function of the system one can describe all its

thermodynamic characteristics. The partition function is the sum over all possible
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conformational states of the system with the corresponding statistical weights. Of

course, the number of various possible conformations of a polypeptide is enormously

large and it is impossible to perform the summation over all of them. However, most

of the possible conformations of a polypeptide have high energy in comparison to

the very limited set of statistically significant conformations. This fact allows one to

omit the contribution of the energetically unfavorable conformations to the partition

function and to perform the summation only over a restricted set of conformations,

namely random coil conformation, helix conformation, and conformations, where

two random coil regions of a polypeptide are separated by a fragment in the helix

conformation. In the thesis all the introduced assumptions about the system and

the formalism of the construction of the partition function are discussed in detail.

It turned out that for the construction of the partition function of a polypeptide

it is necessary to know only the potential energy surfaces of an amino acid in ran-

dom coil and helix conformations as functions of dihedral angles φ and ψ. These

potential energy surfaces were calculated numerically and the partition function of

a polypeptide was constructed.

Knowing the partition function of the system one can evaluate its energy and

heat capacity under different temperatures. This task was performed in this work as

well. The results of the developed statistical mechanics model were compared with

the results of molecular dynamic simulations of alanine poylpeptides. In particular,

the dependencies on temperature of the total energy of the system and heat capacity

were compared for alanine polypeptides consisting of 21, 30, 40, 50 and 100 amino

acids. The good correspondence of the results of the theoretical model with the

results of molecular dynamics simulations allowed to validate the assumptions made

about the system and to establish the accuracy range of the theory.

In order to perform the comparison of the results of theoretical model and the

molecular dynamics simulations it is necessary to perform the efficient analysis of

the results of molecular dynamics simulations. This task was also addressed in

the present work. In particular, different ways to obtain dependence of the heat

capacity on temperature from molecular dynamics simulations are discussed and

the most efficient one is proposed. The present thesis reports the result of molec-

ular dynamic simulations for not only alanine polypeptides by also for valine and

leucine polypeptides. In valine and leucine polypeptides, it is also possible to ob-

serve the helix↔random coil transitions with the increase of temperature. However,

the properties of this transition can be different from those for alanine polypeptides.
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For instance, in valine polypeptides one can observe two distinct phase transitions.

The phase transition at lower temperatures is assosiated with the conformations of

valine radicals, while the phase transition at higher temperatures is the standard

helix↔ coil transition. All the peculiarities of transitions for alanine, leucine and

valine polypeptides are thoroughly analyzed in the corresponding chapters of this

work.

The final part of the thesis is devoted to the extension of the statistical mechan-

ics formalism developed for the description of helix↔coil transition in polypeptides

in vacuo to proteins. Proteins perform their functions in water environment. The

information on thermodynamic properties of proteins in the gas phase is practically

absent. Therefore, one has to develop a formalism for the description of thermody-

namic properties of proteins in water environment. It is important to mention, that

for the construction of the partition function of a protein in water environment one

can use similar ideas as for polypeptides in the gas phase, in particular, the idea that

it is not necessary to perform the summation over all possible conformational states

of a molecule but to distinguish the most statistically significant ones. For the case

of single-domain globular proteins one can distinguish the following conformations:

completely folded, completely unfolded and partially folded conformations. In the

partially folded conformation a certain part of the amino acids of a protein is in the

folded state and form the folded hydrophobic core, while all other amino acids can in-

dependently from each other attain a native-like folded conformation. In contrast to

the case of polypeptides in vacuo, where the folding is driven by the interplay of the

conformational freedom of polypeptides’ backbone chain and the amount of formed

hydrogen bonds in the system, the folding of proteins in water environment is driven

primarily by the hydrophobic and hydrophilic interactions within the system. De-

spite the substantial difference between the helix↔coil transition in polypeptides in

vacuo and folding↔unfolding of proteins in water environment one can use the same

potential energy surfaces for the description of the conformational entropy of the

amino acids in folded and unfolded states, since the secondary structure in the native

state of the protein is stabilized primarily by hydrogen bonds and, therefore, has the

similar rigidity as the helix structure of polypeptides. In the thesis a way of how one

can construct the partition function of a protein in the gas phase using the potential

energy surfaces calculated for amino acids in the folded and unfolded conformations

and how one can account for the interactions of the protein with solvent and con-

struct the partition function of a protein in water environment is discussed. The
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developed formalism for the statistical mechanics description of folding↔unfolding

transition of proteins in water environment is applied to two globular proteins and

the comparison of the results of the statistical mechanics model with the results of

the calorimetric studies of these proteins is performed. In particular, the dependen-

cies of the heat capacity on temperature under different values of pH of the solvent

were compared. The comparison showed that the developed statistical mechanics

model is capable of well reproducing various peculiarities of the heat capacity on

temperature dependencies for both proteins, namely the temperatures of heat and

cold denaturations, the characteristic temperature ranges of these transitions, the

maximum heat capacities of the proteins at cold and heat denaturations, etc. for

variuos values of pH of the solvent.

In summary, the current thesis presents a work that starts with the investiga-

tion of the fundamental degrees of freedom in polypeptides that are responsible for

the conformational transitions. Then this knowledge is applied for the statistical

mechanics description of helix↔coil transitions in polypeptides. Finally, the theo-

retical formalism is generalized for the case of proteins in water environment and

the comparison of the results of the statistical mechanics model with the exper-

imental measurements of the heat capacity on temperature dependencies for two

globular proteins is performed. The presented formalism is based on fundamen-

tal physical properties of the system and provides the possibility to describe the

folding↔unfolding transitions quantitatively. The combination of these two facts is

the major novelty of the presented approach in comparison to the existing ones.

The “transparent” physical nature of the formalism provides a possibility to

further apply it to a large variety of systems and processes. For instance, it can

be used for investigation of the influence of the mutations in the proteins on their

stability. This task is of primary importance for design of novel proteins and drug

delivering molecules in medicine. It can provide further insights into the problem of

protein aggregation and formation of amyloids. The problem of protein aggregation

is closely associated with various illnesses such as Alzheimer and mad cow disease.

With certain modifications, the presented theoretical method can be applied to

the description of the protein crystallization process, which is important for the

determination of the structure of proteins with X-Rays. There many other possible

applications of the ideas described in the thesis. For instance, the similar formalism

can be developed for the description of melting and unzipping of DNA, growth of

nanotubes, formation of fullerenes, etc.





Chapter 1

Introduction

A protein is a polypeptide chain consisting of a sequence of units or “residues”,

which are amino acids chosen from a pool of 20. Proteins are synthesized as un-

folded polypeptide chains and they fold after synthesis in order to become active.

Anfinsen [20] realized that the driving force for folding is the gradient of free energy

and the search for the free energy minimum gives the 3D structure, which is the

most stable structure.

Protein folding refers to the process by which a protein assumes its characteristic

structure, known as the native state. The most fundamental question of how an

amino acid sequence specifies both a native structure and the pathway to attain

that state has defined the protein folding field. Over more than four decades the

protein folding field has evolved [21], as have the questions pertaining to it.

Proteins are involved in virtually every biological process in a living system.

Therefore there is enormous number of possible biological and medical applications

of proteins in living organisms. The ultimate goal of the modern chemical engineer-

ing and protein design science is to propose an amino acid sequence with specific

structure and function for each particular application. The inverse problem to these

task is to predict the structure of a protein with a given amino acid sequence. The

protein structure prediction problem is a fundamental problem treated across disci-

plines. Many approaches to computational protein structure prediction using first

principles have been developed over the last decade that are based on Anfinsens

thermodynamic hypothesis. Computational structure prediction based on first prin-

ciples is, however, not the only way to determine protein structure. The number

of protein structures that have been determined experimentally continues to grow

rapidly. At the end of 2009, the number of structures freely available from the Pro-
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tein Data Bank [22] is approaching 60,000. The availability of experimental data

on protein structures has inspired the development of methods for computational

structure prediction that are knowledge-based rather than physics based. In con-

trast to methods that attempt to minimize the free energy and derive the structure

from first principles, these knowledge-based approaches search databases of known

structures to infer information about an amino acid sequence of unknown three-

dimensional structure. Nowadays, these knowlegde-based methods are the most

successful in protein structure prediction. However, such database methods have

been criticized for not helping to obtain a fundamental understanding of the mech-

anisms that drive structure formation [23]. The aim of these thesis is to investigate

the fundamental driving forces of the folding↔unfolding transition and to provide

the statistical mechanics model that treats the folding↔unfolding transition form

the point of view of statistical mechanics. The description of the system in terms of

equilibrium thermodynamics allows one to derive the thermodynamical properties

of the system on the timescales that are not feasible in any molecular dynamics sim-

ulations. Another advantage of statistical mechanics is that this approach provides

a ”transparent” physical picture of the fundamental forces and interactions in the

system, in contrast to molecular dynamics simulations, where the final result often

lacks the complete understanding.

In simple terms, folding could be described as the process by which the many

degrees of freedom existing in unfolded polypeptide chains become coordinated into

well-defined structures through energetics specific to their amino acid sequences.

Protein structures are defined by thousands of atomic coordinates; therefore even if

we ignored the surrounding solvent molecules, it would still be impossible to discern

which of the astronomical number of possible conformations are physically relevant.

Furthermore, protein structures are marginally stabilized by dense networks of weak

noncovalent interactions, so that the smallest imprecision in calculating protein en-

ergetics leads to large relative errors. In other words, the understanding of protein

folding is constrained by limitations in sampling and in the intrinsic simplifications

of the procedures used to correlate energy with conformation [21].

Francis Crick [24] wrote about the challenge of the protein folding problem:

“Nature performs these folding calculations effortlessly, accurately, and

in parallel, a combination we cannot hope to imitate exactly. Moreover,

evolution will have found good strategies for exploring many of the pos-
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sible structures in such a way that shortcuts can be taken on the path

to the correct fold. The final structure is a delicate balance between two

numbers, the energy of attraction between the atoms, and the energy

of repulsion. Each of these is very difficult to calculate accurately, yet

to estimate the free energy of any structure we have to estimate their

difference. The fact that it usually happens in aqueous solution, so that

we have to allow for many water molecules bordering the protein, makes

the problem even more difficult.”

A protein can be described at many levels. At the finest level, one would simply

treat the entire system with all the degrees of freedom with the laws of quantum

mechanics. The difficulties associated with a first-principles quantum mechanical

approach include the large number of degrees of freedom; the necessity of calculating

the interactions during the dynamical process of folding, with the solvent taken into

account in an accurate manner; and, even if the interactions were known exactly, the

limitations of present-day computers in accurately following the dynamics through

the folding process. Simulating such a system at this level of description is a daunting

task and has not yet been achieved. More fundamentally, such an approach would

enable one to mimic nature but not necessarily understand her.

A more practical approach is to define a small number of degrees of freedom

that describe the coarse features of the protein solvent complex, thereby reducing

the hyperdimensional potential energy surface to a much simplified potential energy

surface of low dimensionality. For the efficient description of the folding↔ unfolding

transition one has to accurately determine all the principal degrees of freedom the

are responsible for the conformational transitions in a biomolecule. Further simpli-

fication of the description of the statistical mechanics properties of a polypeptide

or a protein can be achieved if one can distinguish only the statistically significant

domains of the potential energy surface of the system of reduced dimensionality.

This is not a trivial task of an arbitrary biomolecule. However, when such domains

on the potential energy surface of reduced dimensionality are determined, one can

obtain all the thermodynamical properties of the system. This procedure effectively

connects the worlds of theory, computer simulation, and experiment in protein fold-

ing. Low-dimensional potential energy projections provide tools to condense the

wealth of structural and dynamic data generated in large-scale molecular simula-

tions [25–28] and to analyze quantitatively the data obtained in protein folding
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experiments [29–31]. Nevertheless, connecting the worlds of theoretical prediction

and empirical observation (both in vitro and in silica) comes at an expense [9].

1.1 Problems addressed in the thesis

The aim of the thesis is to provide a theoretical model for the description of the

process of polypeptide and protein folding. The major challenge of this work is to

converge the theoretical description of the folding process performed with the meth-

ods solely based on fundamental physical principles with the experimental measure-

ments of protein folding in vitro. In order to achieve this goal the following problems

were addressed:

1. The potential energy surfaces of small fragments of proteins, polypeptides,

consisting of several amino acids were calculated using the ab initio methods of

quantum mechanics. The results of these calculations are reported in Refs. [32–

36] and discussed in Chapter 3.

2. Conformational transitions in polypeptides and proteins can be understood

as a phase transitions and treated with the methods of statistical physics.

Knowing the potential energy surface of the system one can construct its

partition function and derive all thermodynamics functions of the system. The

formalism of the construction of the partition function for the polypeptides in

the gas phase is outlined in Refs. [17, 37] an in Chapter 4 of the thesis.

3. In order to benchmark the accuracy of the developed in [17, 37] statistical

mechanics formalism it is necessary to compare the results of the statistical

mechanics model with the results of molecular dynamics simulations. Unfor-

tunately, currently there are no experimental measurements of the thermody-

namic properties of polypeptides in the gas phase. But the properties of single

biomolecules in the gas phase are nowadays intensively investigated [38–40].

The thorough comparison of the results of statistical mechanics model with

the results of molecular dynamics simulation is performed in Chapter 5 and

in Refs. [41].

4. Using molecular dynamics simulations it is possible to investigate the confor-

mational transitions in various polypeptides. In Sec. 5.4 of the thesis and in
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Ref. [42] the results of molecular dynamics simulations of conformational tran-

sitions in alanine, valine and leucine polypeptides are presented. The analysis

of the molecular dynamics simulations is accompanied with a discussion of the

effective ways of obtaining the thermodynamic functions of the system, in par-

ticular heat capacity on temperature dependence from the molecular dynamics

simulations.

5. For the description of thermodynamic properties of polypeptides and pro-

teins in aqueous environment it is necessary to account for solvent effects. In

Ref. [43] is presented a way for the construction of the partition function of

the polypeptide in water solution.

6. In Ref. [44] and in Chapter 6 the way of the construction of partition function

of the protein in water environment is presented and the comparison of the

predictions of the statistical mechanics model with the results of experimental

measurements of the heat capacity on temperature dependencies is performed

for two globular proteins, staphylococcal nuclease and metmyoglobin. The

comparison of the results of the statistical mechanics model with the direct

experimental measurements of the heat capacity allows one to conclude about

the accuracy and the range of applicability of the developed theoretical for-

malism.

All the aforementioned problems are discussed in detail in the thesis. I hope

that this work will provide one more bridge between the very intriguing and long

standing interdisciplinary problem of protein folding and the deterministic world of

theoretical physics.

The thesis is structured as follows. In chapter 2 is presented an overview of

the methods of quantum mechanics which are used for the ab initio calculations of

potential energy surfaces of short alanine and glycine polypeptides. In chapter 3 are

presented the results of calculations of the potential energy surfaces of alanine and

glycine polypeptides as functions of the dihedral angles φ, ψ and ω. In chapter 3 is

performed the analysis of the potential energy surfaces and discussed the transitions

between different conformational states of short polypeptides. In chapter 4 the par-

tition function of a polypeptide is derived. The helix↔coil conformational transition

in a polypeptide is considered as a phase transition in a finite system. The discus-

sion of the comparison of the results of the developed statistical mechanics model
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with the results of molecular dynamics simulations of conformational transitions

in alanine polypeptides of different length is presented in chapter 5. The confor-

mational transitions in valine and leucine polypeptides are discussed in Sec. 5.4 of

the thesis. The partition function of a single-domain protein in water environment

is derived in chapter 6. In Sec. 6.3 the results of the statistical mechanics model

for the description of conformational transitions in proteins are compared with the

results of experimental measurements of heat capacity on temperature dependence

for staphylococcal nuclease and metmyoglobin. Chapter 7 presents the summary of

the results of the thesis and conclusions.



Chapter 2

Theoretical methods of quantum
mechanics

2.1 Introduction

Biochemical processes occur on different scales of length and time [45] ranging from

a few angstroms, the size of the active site of proteins, where the ultrafast triggering

steps usually take place, up to the level of the cells and organs, where their macro-

scopic effects are detectable by the naked eye. Intermediate steps are the structural

rearrangement of biomolecules (approximately nanometer and 10-100 ns), their ag-

gregation/separation and folding/unfolding (10 nm to micrometer and greater than

microsecond) and internal cell diffusion and dynamics (micrometers to millimeters

and milliseconds to hours). This inherent hierarchical organization is responsible

for the complexity of living matter: a single process involves a multiscale cascade

of events whose description requires the combination of different methodologies in

so-called multiscale approaches [46,47].

At any resolution, the quality of a model depends on the accuracy with which

the two following issues are addressed: the description of the interactions and the

sampling of the configurations of the system. In this respect, there are a few concepts

that iteratively occur.

First concept regards the potential energy surface. The method used to evaluate

the potential energy surface strictly depends on the resolution level. For small

molecules (up to a few tens of atoms), both the nuclear and electronic degrees

of freedom can and must be explicitly treated in order to describe the electronic

structure of the molecule. The concept of the potential energy surface is related to

the Born-Oppenheimer approximation [48], assuming that the much faster electrons



8 Theoretical methods of quantum mechanics

adiabatically adjust their motion to that of the atomic nuclei. Thus, at any time,

the Schrödinger equation for the electron system is to be solved in the external field

generated by the atomic nuclei considered as frozen, and one is left with a nuclear-

configuration dependent set of energy eigenvalues Ei({Ri}) that define the potential
energy surface of the ground and excited states. In turn, the potential energy

surfaces are effective electronic structure-dependent potential energy functions that

determine the dynamics of the nuclei.

The different methods used to solve the Schrödinger equation, called quantum

mechanics approaches, basically differ by the way the electron-electron interactions

are treated. The electron correlation can be accurately added as a perturbation of

the exchange-only Hartree-Fock scheme at the expense of a large computational cost

or via less expensive (and less predictive) semiempirical Hamiltonians [49]. Alterna-

tively, in density functional theory and, more specifically, in the Kohn-Sham scheme,

the many-electron problem is reduced to a single-electron Schrödinger problem in

a self-consistent exchange-correlation potential depending on the electron density.

Density functional theory changed the way of approaching the quantum mechanics

calculations: its accuracy and predictive power are comparable to those of other ab

initio methods but much cheaper computationally. Thus, density functional the-

ory is conveniently used for molecular structure optimization or even for dynamic

exploration of the potential energy surfaces, that is, ab initio molecular dynamics.

The density functional theory is also intensively used for the derivation of param-

eters of molecular mechanics potentials (See. Sec. 4.2). In addition, excited-state

calculations are possible with the time-dependent extension of density functional

theory [50]. Although time-dependent density functional theory is known to suffer

from large errors in the excitation energies, it is often used in biosystems thanks to

its extremely low cost with respect to other excited-state methods.

This following sections of this chapter is devoted to the brief description of the

methods of quantum mechanics that are used in Chapter 3 for the calculations of

potential energy surfaces of the polypeptides.

2.2 The Schrödinger equation

For exact description of the electronic and ionic structure of a multi atomic system

one has to solve the Schrödinger equation for all particles in the system.

The Schrödinger equation describes the wavefunction of the system (see e.g. [51]):
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ĤΨ(r,R, t) = i
∂Ψ(r,R, t)

∂t
, (2.1)

where Ĥ is the Hamilton operator (Hamiltonian), Ψ(r,R, t) is the wavefunction of

the system, which depends on the coordinates of the electrons and the nuclei within

the system, and time. Let us designate them as r, R and t, respectively. In this

section the atomic system of units is used, ~ = me = |e| = 1 unless other units are

not indicated.

The Hamiltonian is a sum of kinetic, T̂ , and potential, V̂ , energy terms:

Ĥ = T̂ + V̂ (2.2)

If V̂ is not a function of time, the Scrödinger equation can be simplified using

the mathematical technique known as separation of variables. Let us present the

wavefunction as the product of a spatial function and a time function:

Ψ(r,R, t) = ψ(r,R)τ(t). (2.3)

Substituting these new functions into equation (2.1), two equations are obtained,

one of which depends on the position of the particle independent of time and the

other of which is a function of time alone. Let us consider the problems, when this

separation is valid. The time-independent Scrödinger equation reads as:

Ĥψ(r,R) = Eψ(r,R) (2.4)

where E is the energy of the system.

The various solutions to equation (2.4) correspond to different stationary states

of the molecular system. The one with the lowest energy is called the ground state.

Equation (2.4) is a non-relativistic description of the system which is not valid when

the velocities of particles approach the speed of light. Thus equation (2.4) does not

give an accurate description of the core electrons in large nuclei.

The kinetic energy is defined as:

T̂ = −1

2

∑
k

1

mk

(
∂2

∂x2k
+

∂2

∂y2k
+

∂2

∂z2k

)
=

1

2

∑
k

p̂2
k

mk

, (2.5)

where p̂k is the momentum operator of the particle k, and mk is its mass.

The potential energy is defined by the Coulomb interaction between each pair of

charged particles:

V̂ =
∑
j<N
k<j

ejek
|rj − rk|

, (2.6)
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where N is the number of the particles in the system, |rj−rk| is the distance between
the two particles j and k, and ej and ek are their charges. For an electron, the charge

is −1, while for a nucleus, the charge is Z. Thus,

V̂ = −
∑
i<Ne
I<Nn

ZI
|ri − rI|

+
∑
i<Ne
j<i

1

|ri − rj|
+
∑
I<Nn
J<I

ZIZJ
|rI − rJ|

, (2.7)

where Ne is the number of electrons and Nn the number of nucleus in the system.

The first term corresponds to electron-nucleus attraction, the second to electron-

electron repulsion and the third to nucleus-nucleus repulsion.

2.3 The Born-Oppenheimer approximation

If the nuclei move slowly with respect to the electrons, then it is possible to simplify

the general molecular problem by separating nuclear and electronic motions. This

approximation is reasonable since the mass of a typical nucleus is thousands of times

greater than that of an electron and the electrons react essentially instantaneously

to changes in nuclear position. Thus, the electron distribution within a molecular

system depends on the position of the nuclei, and not their velocities.

This approximation is called the Born-Oppenheimer approximation. The full

Hamiltonian for the molecular system can be written as:

Ĥ = T̂ elec(r) + T̂ nucl(R) + V̂ nucl−elec(R, r) + V̂ elec(r) + V̂ nucl(R), (2.8)

where T̂ elec(r) is the electron kinetic energy, T̂ nucl(R) is the nucleon kinetic energy,

V̂ nucl−elec(R, r) is the nucleon-electron interaction, V̂ elec(r) describes the electron-

electron interaction and V̂ nucl(R) is the nucleon-nucleon interaction. The Born-

Oppenheimer approximation allows to separate the electronic and ionic subsystems,

so one can construct an electronic Hamiltonian which neglects the kinetic energy

term for the nuclei:

Ĥelec = −1

2

Ne∑
i

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)
−
∑
i<Ne
I<Nn

(
ZI

|RI − ri|

)
(2.9)

+
∑
i<Ne
j<i

(
1

|ri − rj|

)
+
∑
I<Nn
J<I

(
ZIZJ

|RI −RJ|

)

This Hamiltonian describes the motion of electrons in the field of fixed nuclei:

Ĥelecψelec(r,R) = Eeff (R)ψelec(r,R) (2.10)
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The solution of equation (2.10) for the electronic wavefunction produces the effective

nuclear potential function Eeff . It depends on the nuclear coordinates and describes

the potential energy surface for the system.

Accordingly, Eeff is also used as the effective potential for the nuclear Hamilto-

nian:

Ĥnucl = T̂ nucl(R) + Eeff (R) (2.11)

This Hamiltonian is used in the Schrödinger equation for nuclear motion, describing

the vibrational, rotational, and translational states of the ionic subsystem.

2.4 Properties of the wavefunction

Let us focus entirely on the electronic problem. The superscript on all the operators

and functions is further omitted.

As it is well known |ψ|2 can be interpreted as the probability density for the

particles it describes. Therefore, ψ has to be normalized. The integral of the prob-

ability over all space should be equal to the number of particles. Accordingly, ψ is

multiplied by a constant such that:∫
V

|cψ|2dV = nparticles (2.12)

This is done because the Schrödinger equation is an eigenvalue equation, and in

general, if f is a solution to an eigenvalue equation, than cf is also, for any value of

c. For the Schrödinger equation, it is easy to show that Ĥ(cψ) = cĤ(ψ) and that

E(cψ) = c(Eψ). Thus, if ψ is a solution to the Schrödinger equation, than cψ is as

well.

Secondly, ψ must also be antisymmetric, meaning that it must change sign when

two identical particles are interchanged. For a simple function, antisymmetry means

that the following relation holds:

f(i, j) = −f(j, i) (2.13)

For an electronic wavefunction, antisymmetry is a physical requirement following

from the fact that electrons are fermions. More specifically, this requirement means

that any valid wavefunction must satisfy the following condition:

ψ(r1, ..., ri, ..., rj, ..., rn) = −ψ(r1, ..., rj, ..., ri, ..., rn) (2.14)
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2.5 Hartree-Fock theory

It is impossible to find an exact analytical solution of the Schrödinger equation for a

multi-atomic system. However, a number of simplifying assumptions and procedures

make its approximate solution possible.

At first, let us consider is the Hartree-Fock approximation [52]. The basic idea of

this method is to replace the many-body problem by an effective one-body problem.

Within the Hartree-Fock approximation the ground-state wavefunction is decom-

posed into a combination of the single-particle wavefunctions, which are often called

molecular orbitals. Let us do so, and decompose the ground-state wave function of

an N -body system of fermions, say electrons, into a combination of molecular or-

bitals: ϕ1, ϕ2, ... To fulfill some of the conditions on ϕ discussed in previous section,

a normalized, orthogonal set of molecular orbitals is chosen:∫
ϕ∗
iϕidV = 1 (2.15)∫

ϕ∗
iϕjdV = 0; i ̸= j (2.16)

The simplest possible way of making ψ as a combination of these molecular orbitals

is by forming their Hartree product:

ψ(r) = ϕ1(r1)ϕ2(r1)...ϕN(rN) (2.17)

However, such a function is not antisymmetric, since interchanging two of the ri’s

is equivalent to swapping the orbitals of two electrons, and does not result in a sign

change. Hence, this Hartree product is an inadequate wavefunction.

The simplest antisymmetric function that is a combination of molecular orbitals

is a determinant. Before forming it, however, one needs to account for a factor that

was neglected so far: electron spin. Electrons can have spin up (+1
2
) or down (−1

2
).

Equation (2.17) assumes that each molecular orbital holds only one electron. How-

ever, most calculations are closed shell calculations, using doubly occupied orbitals,

holding two electrons of opposite spin. For the moment, let us limit the discussion

to this case.

Two spin functions, α and β, are defined as follows:

α(↑) = 1 α(↓) = 0

β(↑) = 0 β(↓) = 1

(2.18)
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The α function is 1 for a spin up electron, and the β function is 1 when the electron is

spin down. The notations α(i) and β(i) designate the values of α and β for electron

i.

Multiplying a molecular orbital function by α or β includes electron spin as part

of the overall electronic wavefunction ψ. The product of the molecular orbital and

a spin function is defined as a spin orbital, a function of both the electron’s location

and its spin. Note that these spin orbitals are also orthonormal when the component

molecular orbitals are.

A closed shell wavefunction can be build now by defining N/2 molecular orbitals

for a system with N electrons, and then assigning electrons to these orbitals in pairs

of opposite spin:

ψ(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1)α(1) ϕ1(r1)β(1) ... ϕN
2
(r1)α(1) ϕN

2
(r1)β(1)

ϕ1(r2)α(2) ϕ1(r2)β(2) ... ϕN
2
(r2)α(2) ϕN

2
(r2)β(2)

. .

. .

. .
ϕ1(ri)α(i) ϕ1(ri)β(i) ... ϕN

2
(ri)α(i) ϕN

2
(ri)β(i)

ϕ1(rj)α(j) ϕ1(rj)β(j) ... ϕN
2
(rj)α(j) ϕN

2
(rj)β(j)

. .

. .

. .
ϕ1(rN)α(N) ϕ1(rN)β(N) ... ϕN

2
(rN)α(N) ϕN

2
(rN)β(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.19)

The determinant (2.19) is also called the Slater determinant. Each row is formed by

representing all possible assignments of electron i to all orbital-spin combinations.

The initial factor is necessary for normalization. Swapping two electrons corresponds

to interchanging two rows of the determinant, which has the effect of changing its

sign. Note, that the wavefunction (2.19) also accounts for the Pauli principle, which

says that two or more fermions can not be found in the same quantum state. Two

or more identical electrons correspond to two or more identical rows in the Slater

determinant, what makes it equal to zero. Further a notation ψ(r) = |a, b, ...n⟩ is

used.

Let us introduce another notation ϕi(rj, sj) ≡ ϕi(j) – the molecular orbital of

the i-th electron with spin. Here i and j run over all integer values from 1 to

N . With this new notation one obtains: ϕi(rj, sj) = ϕ i+1
2
(rj)α(j) for spin up, and

ϕi(rj, sj) = ϕ i
2
(rj)β(j) for spin down.
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In order to calculate the energy levels of the system with N electrons, it is

necessary to evaluate matrix elements of the Hamiltonian between the antisymmetric

states. The Hamiltonian of the system with N electrons reads as:

Ĥ = −1

2

N∑
i=1

∇2
i −

N∑
i=1

Z

ri
+

N∑
i<j

1

rij
(2.20)

Here the first term represents the kinetic energy of the electrons, the second term

represents their attraction to the ionic core, and the last term represents the inter-

electron interaction. The Hamiltonian (2.20) includes one-electron operators of the

type Z/ri, which act on the coordinates of one electron, and two-electron operators

of the kind 1/rij. Therefore the matrix elements of one- and two-electron operators

between determinants of orthonormal functions are needed.

Let us consider first a general single-electron operator, which may be written:

F =
N∑
i=1

f(i) (2.21)

where f(i) acts only on the coordinates of the i-th electron. For simplicity, the

consideration is restricted to a two electron system for which

F = f(1) + f(2) (2.22)

The diagonal matrix elements of F for the antisymmetric wavefunction |ab⟩ are:

⟨ab|F |ab⟩ =
1

2

∫ ∫
[ϕa(1)ϕb(2)− ϕa(2)ϕb(1)]

∗ (2.23)

×[f(1) + f(2)][ϕa(1)ϕb(2)− ϕa(2)ϕb(1)]dr1dr2,

where dr1 and dr2, denote the volume elements, and their integrations also represent

summations over the spin coordinates, Cross terms of the kind∫ ∫
ϕ∗
a(1)ϕ

∗
b(2)f(1)ϕa(2)ϕb(1)dr1dr2 (2.24)

are obviously zero, since f(1) operates only on the first wavefunction and ϕb(2) and

ϕa(2) are assumed to be orthogonal. Furthermore, by interchanging the coordinates

of the first and the second electron, one may easily see that
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∫ ∫
ϕ∗
a(1)ϕ

∗
b(2)f(1)ϕa(1)ϕb(2)dr1dr2 =

∫ ∫
ϕ∗
a(1)ϕ

∗
b(2)f(2)ϕa(2)ϕb(1)dr1dr2

(2.25)

So (2.23) reduces to

⟨ab|F |ab⟩ =

∫ ∫
ϕ∗
a(1)ϕ

∗
b(2)[f(1) + f(2)]ϕa(1)ϕb(2)dr1dr2 (2.26)

= ⟨a|f |a⟩+ ⟨b|f |b⟩.

The nondiagonal matrix element between two determinantal states, which differ by

a single state, can be shown in a similar way to be

⟨ab|F |ac⟩ = ⟨b|f |c⟩, (2.27)

and finally, if both are different, one gets

⟨ab|F |cd⟩ = 0, (2.28)

A two-electron operator can be written generally

G =
∑
i<j

g(i, j) (2.29)

where g(i, j) acts on the i-th and the j-th electrons, and the summation includes

each pair of electrons. For a two-electron system this is simply G = g(1, 2).

The diagonal matrix element of G is then

⟨ab|G|ab⟩ =
1

2

∫ ∫
[ϕa(1)ϕb(2)− ϕa(2)ϕb(1)]

∗ g(1, 2) (2.30)

×[ϕa(1)ϕb(2)− ϕa(2)ϕb(1)]dr1dr2 =

=
1

2

∫ ∫
[ϕ∗
a(1)ϕ

∗
b(2)g(1, 2)ϕa(1)ϕb(2)

−ϕ∗
a(1)ϕ

∗
b(2)g(1, 2)ϕa(2)ϕb(1)

−ϕ∗
a(2)ϕ

∗
b(1)g(1, 2)ϕa(1)ϕb(2)

+ϕ∗
a(2)ϕ

∗
b(1)g(1, 2)ϕa(2)ϕb(1)]dr1dr2

Since the two-electron interaction g(1, 2) is symmetric with respect to an interchange

of the coordinates of the two electrons (1 ↔ 2), the first and the fourth terms in
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this expansion are equal, and similarly the second and the third terms are equal. So

the matrix element may be written simply

⟨ab|G|ab⟩ = ⟨ab|g|ab⟩ − ⟨ba|g|ab⟩. (2.31)

The symbols on the right represent here matrix elements with ordinary product

functions. The first matrix element is called the direct term and the second matrix

element the exchange term. The exchange matrix element would not occur if one uses

product functions ϕa(1)ϕb(2) rather than the proper antisymmetric wavefunctions.

The results obtained above may be generalized to N -electron systems. For this

purpose a special notation is used. Let us allow Greek letters to stand for ordered

sets of quantum numbers representing Slater determinants. So for instance, let α

correspond to the quantum numbers a, b, ... n. Then, the determinantal state

|ab...n⟩ can be written simply |α⟩. Single-particle functions, which appear in the

determinant, are called occupied orbitals and the remaining functions of the set

are called excited or virtual orbitals. The notation |αra⟩ will be used to denote a

determinant for which an occupied orbital a in α is replaced by the virtual orbital

r. Similarly, double substitutions for which two electrons (here a and b) are excited

from the sea of occupied orbitals can be written |αrsab⟩.
Using this notation the formulas for the matrix elements of one- and two- particle

operators between determinantal states of a many-particle system can be generalized

in the following way.

For diagonal elements:

⟨α|F |α⟩ =
occ∑
a

⟨a|f |a⟩ (2.32)

⟨α|G|α⟩ =
occ∑
a<b

(⟨ab|g|ab⟩ − ⟨ba|g|ab⟩) (2.33)

where the sums run over orbitals a and b that are occupied in |α⟩.
For elements between states which differ by the quantum numbers of a single

orbital

⟨αra|F |α⟩ = ⟨r|f |a⟩ (2.34)

⟨αra|G|α⟩ =
occ∑
b

(⟨rb|g|ab⟩ − ⟨br|g|ab⟩) (2.35)
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For elements between states which differ by the quantum numbers of two orbitals:

⟨αrsab|F |α⟩ = 0 (2.36)

⟨αrsab|G|α⟩ = ⟨rs|g|ab⟩ − ⟨sr|g|ab⟩ (2.37)

All matrix elements of F and G between states for which more than two quantum

numbers are different vanish.

Equations (2.32)-(2.37) may be used to evaluate the matrix elements of the

atomic Hamiltonian (2.20). The expectation value of the total energy for a state

represented by a Slater determinant |α⟩ is

⟨E⟩ = ⟨α|H|α⟩ =

⟨
α

∣∣∣∣∣
N∑
i=1

(
−1

2
∇2
i −

Z

ri

)
+

N∑
i<j

1

rij

∣∣∣∣∣α
⟩
. (2.38)

According to the variational principle, the ”best” determinant for the ground state

can be determined by minimizing this expectation value. A necessary condition is

then that expectation value be stationary with respect to small changes in the form

of the occupied orbitals, and this condition is used to derive the Hartree-Fock (HF)

equations as follows.

Small changes in the occupied orbitals (a) can be expressed by means of small

admixtures of virtual orbitals (r)

|a⟩ → |a⟩+ η|r⟩ (2.39)

Where η is a small, real number. This leads to an admixture of single substitutions

|αra⟩ into |α⟩

|a⟩ → |a⟩+ η|αra⟩ (2.40)

and a corresponding change in the expectation value of the energy

⟨E⟩ → ⟨E⟩+ η(⟨αra|H|α⟩+ ⟨α|H|αra⟩), (2.41)

neglecting terms quadratic in η. Since H is a hermitian operator, the two matrix

elements above are complex conjugates of each other. With the conventions used

here, the elements are real and hence equal. The energy is stationary if

⟨αra|H|α⟩ = 0. (2.42)
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This condition is called Brillouin’s theorem, implies that the Hamiltonian H has no

matrix elements between |α⟩ and states obtained from |α⟩ by a single substitution.

Using (2.34) and (2.35) the Hartree-Fock condition (2.42) may be written out

explicitly in terms of one- and two-particle matrix elements,

⟨
r

∣∣∣∣−1

2
∇2 − Z

r

∣∣∣∣ a⟩+
occ∑
b

(⟨
rb

∣∣∣∣ 1rij
∣∣∣∣ ab⟩−

⟨
br

∣∣∣∣ 1rij
∣∣∣∣ ab⟩) = 0 (2.43)

In order to write (2.43) in a more simple form, let us define a Hartree-Fock operator

(HHF ) and potential (UHF ) by the equations

HHF = −1

2
∇2 − Z

r
+ UHF (2.44)

⟨j|UHF |j⟩ =
occ∑
b

(⟨
rb

∣∣∣∣ 1rij
∣∣∣∣ ab⟩−

⟨
br

∣∣∣∣ 1rij
∣∣∣∣ ab⟩) (2.45)

where the sum b runs over all of the orbitals occupied in the determinant |α⟩. Then
the condition (2.43) to be satisfied becomes simply

⟨r|HHF |a⟩ = 0 (2.46)

where a is an occupied and r a virtual orbital. Using the completeness relation

(
∑

i |i⟩⟨i| = 1), this leads to the equation

HHF |a⟩ =
∑
i

|i⟩⟨i|HHF |a⟩ =
occ∑
b

|b⟩⟨b|HHF |a⟩, (2.47)

where i runs over all orbitals and b over occupied ones. Thus, when acting on

an occupied orbital the Hartree-Fock operator produces only occupied orbitals. It

follows directly from the symmetry of th Coulomb interaction that ⟨a|HHF |b⟩ =

⟨b|HHF |a⟩, which means that the HF operator is hermitian. Furthermore, it can be

shown that this operator is invariant for unitary transformation. Therefore, a set of

orbitals, where HHF is diagonal, can be found:

HHF |a
′⟩ = ε

′

a|a
′⟩. (2.48)

This is the normal form of the general Hartree-Fock equation. Using (2.44) the HF

equation (2.48) can be written out explicitly
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(
−1

2
∇2 − Z

r
+ UHF

)
|a⟩ = εa|a⟩. (2.49)

Each term here can be given a simple physical interpretation. The first term rep-

resents the kinetic energy of electron a and Z/r its attraction to the nucleus. The

potential UHF represents the average Coulomb and the exchange interaction of elec-

tron a with other electrons in the atom.

For an effective numerical solution of (2.49) and similar equations, the molecular

orbitals, ϕi, are often approximated by a linear combination of a pre-defined set

of single-electron functions, χµ, known as basis functions. This expansion reads as

follows:

ϕi =
N∑
µ=1

cµiχµ, (2.50)

where coefficients cµi are the molecular orbital expansion coefficients, N is the num-

ber of basis functions, which are chosen to be normalized.

The basis functions χµ are defined as linear combinations of primitive gaussians:

χµ =
∑
p

dµpgp, (2.51)

where dµp are fixed constants within a given basis set, the primitive gaussians,

gp = g(α, r), are the gaussian-type atomic functions having the following form:

g(α, r) = cxnymzle−αr
2

(2.52)

Here, c is the normalization constant. The choice of the integers n, m and l defines

the type of the primitive gaussian function: s, p, d or f (for details see [53]).

Here are three representative gaussian functions (s, py and dxy types, respec-

tively):

gs(α, r) =

(
2α

π

)3/4

e−αr
2

(2.53)

gy(α, r) =

(
128α5

π3

)1/4

ye−αr
2

(2.54)

gxy(α, r) =

(
2048α7

π3

)1/4

xye−αr
2

(2.55)
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In the calculations presented in the next chapter of the thesis the standard 6-31G(d),

6-31G(2d,p) and 6-31++G(d,p) basis sets were used. The detailed information on

the basis constants can be found for example in [53,54].

All of these constructions result in the following expansion for molecular orbitals:

ϕi =
N∑
µ=1

cµiχµ =
N∑
µ=1

cµi

(∑
p

dµpgp

)
(2.56)

The problem has now become how to solve for the set of molecular orbital expansion

coefficients, cµi. Hartree-Fock theory takes advantage of the variational principle,

which says that for the ground state of any antisymmetric normalized function of

the electronic coordinates, which is denoted by Ξ, the expectation value for the

energy corresponding to Ξ will always be greater than the energy for the exact

wavefunction:

E(Ξ) > E(ψ); Ξ ̸= ψ (2.57)

In other words, the energy of the exact wavefunction serves as a lower bound to

the energies calculated by any other normalized antisymmetric function. Thus the

problem becomes one of finding the set of coefficients that minimize the energy of

the resultant wavefunction.

The variational principle leads to the following equations describing the molec-

ular orbital expansion coefficients, cνi, known also as the Roothaan and Hall equa-

tions:

N∑
ν=1

(Hµν − εiSµν)cνi = 0 µ = 1, 2, ..., N (2.58)

Being written in the matrix form, this equation reads as:

HC = SCε, (2.59)

where each element is a matrix. Here, ε is a diagonal matrix of orbital energies,

each of its elements εi is the single-electron energy of the molecular orbital ψi, H is

the Hamiltonian matrix as it follows from (2.48), S is the overlap matrix, describing

the overlap between orbitals. For more details regarding this formalism see [53].

Equations (2.59) are none linear and must be solved iteratively. The procedure

which does so is called the Self-Consistent Field (SCF) method.
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The above written equations consider the restricted Hartree-Fock method. For

the open shell systems, the unrestricted Hartree-Fock method has to be used. In this

case, the alpha and beta electrons with spins up and down are assigned to different

orbitals, resulting in two sets of molecular orbital expansion coefficients:

ϕαi =
N∑
µ=1

cαµiχµ

ϕβi =
N∑
µ=1

cβµiχµ, (2.60)

The two sets of coefficients result in two sets of the Hamiltonian matrices and

the two sets of orbitals.

2.6 Density functional theory

Density functional theory (DFT) is another approach, which accounts for many-

electron correlation interaction. It is based upon a strategy of modelling electron

correlation via general fundamental functionals of the electron density.

Within the DFT one has to solve the Kohn-Sham equations, which read as (see

e.g. [55–61]) (
p̂2

2
+ Uions + VH + Vxc

)
ψi = εiψi, (2.61)

where the first term represents the kinetic energy of the i-th electron, and Uions

describes its attraction to the ions in the cluster, VH is the Hartree part of the

interelectronic interaction:

VH(r) =

∫
ρ(r ′)

|r− r ′|
dr ′ , (2.62)

where ρ(r) is the electron density:

ρ(r) =
Ne∑
ν=1

|ψi(r)|2 , (2.63)

and Vxc is the local exchange-correlation potential, ψi are the electronic orbitals and

Ne is the number of electrons in the cluster.
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The exchange-correlation potential is defined as the functional derivative of the

exchange-correlation energy functional:

Vxc =
δExc[ρ]

δρ(r)
, (2.64)

One of the well-known approximations is the Gunnarsson and Lundqvist model

[62]. It is based upon the calculation of the self-energy of an electron for the ho-

mogeneous electron gas. The local Gunnarsson and Lundqvist exchange-correlation

energy density functional reads as:

EGL
xc = −3

4

(
9

4π2

)1/3
1

rs(r)
− 0.0333 G

(
rs(r)

11.4

)
. (2.65)

Here rs(r) = (3/4πρel(r))
1/3 is a local Wigner-Seitz radius, while ρel(r) is the electron

density in the cluster, and the function G(x) is defined by following relation:

G(x) = (1 + x3) ln

(
1 +

1

x

)
− x2 +

x

2
− 1

3
. (2.66)

The first and the second terms in equation (2.65) corresponds to the exchange

and correlation interaction respectively. The exchange-correlation energy density

EGL
xc , defines the LDA exchange-correlation potential V GL

xc as

V GL
xc =

δ
[
ρel(r)E

GL
xc (ρel(r))

]
δρel(r)

= (2.67)

−
(

9

4π2

)1/3
1

rs(r)
− 0.0333 ln

(
1 +

11.4

rs(r)

)
.

The approximate functionals employed by DFT methods often separate the

exchange-correlation energy into two parts, referred to as exchange and correlation

parts:

Exc[ρ] = Ex(ρ) + Ec(ρ) (2.68)

Both parts are the functionals of the electron density, which can be of two distinct

types: either local functional depending on only the electron density ρ or gradient-

corrected functionals depending on both ρ and its gradient, ∇ρ.
In literature, there is a variety of exchange correlation functionals. Below, are

presented only those, which are related to the calculation performed in the thesis.
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The local exchange functional is virtually always defined as follows:

ELDA
x = −3

2

(
3

4π

)1/3 ∫
ρ4/3d3r. (2.69)

This form was developed to reproduce the exchange energy of a uniform electron

gas. By itself, however, it is not sufficient for the adequate description of atomic

clusters.

The gradient-corrected exchange functional introduced by Becke [63] and based

on the LDA exchange functional reads as:

EB88
x = ELDA

x − γ

∫
ρ4/3x2

1 + 6γSinh−1x
d3r, (2.70)

where x=ρ−4/3|∇ρ| and γ = 0.0042 is a parameter chosen to fit the known exchange

energies of the noble gas atoms.

Analogously to the above written gradient-corrected exchange functionals, there

are gradient-corrected correlation functionals. For example, here is the correlation

functional introduced by Perdew and Wang [64]:

EPW91
c =

∫
ρϵc(rs(ρ(r)), ζ)d

3r (2.71)

rs =

[
3

4πρ

]1/3
ζ =

ρα − ρβ
ρα + ρβ

ϵc(rs, ζ) = ϵc(ρ, 0) + ac(rs)
f(ζ)

f ′′(0)
(1− ζ4) + [ϵc(ρ, 1)− ϵc(ρ, 0)]f(ζ)ζ

4

f(ζ) =
(1 + ζ)4/3 + (1− ζ)4/3 − 2

24/3 − 2
,

where ρα is used to refer to the alpha spin density, ρβ to refer to the beta spin

density, ρ to refer to the total electron density, (ρα + ρβ). rs is the local Wigner

Seitz radius. ζ is the relative spin polarization. ζ = 0 corresponds to equal α and

β densities, ζ = 1 corresponds to all α density and ζ = −1 corresponds to all β

density.

In the pure DFT, an exchange functional usually pairs with a correlation func-

tional. For example, the well-known BLYP functional pairs Becke’s gradient- cor-

rected exchange functional (2.70) with the gradient-corrected correlation functional

of Lee, Yang and Parr [65].
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The gradient-corrected correlation functional of Lee, Yang and Parr reads as:

ELY P
c = −a

∫
γ(r)

1 + dρ−1/3

{
ρ+ 2bρ−5/3

[
22/3CFρ

8/3
α (2.72)

+22/3CFρ
8/3
β − ρtW +

1

9

(
ραt

α
W + ρβt

β
W

)
+

1

18

(
ρα∇2ρα + ρβ∇2ρβ

)]
e−cρ

−1/3

}
d3r

where

γ(r) = 2

(
1−

ρ2α(r) + ρ2β(r)

ρ2(r)

)
(2.73)

tW (r) =
1

8

|∇ρ(r)|2

ρ((r))
− 1

8
∇2ρ

CF =
3

10

(
3π2
)2/3

tW (r) is the local kinetic-energy density, tαW (r) and tβW (r) are the kinetic-energy

densities of the α-spin and β-spin electron densities respectively. The parameters in

equation (2.73) are as follows: a = 0.04918, b = 0.132, c = 0.2533 and d = 0.349.

In spite of the success of the pure DFT theory in many cases, one has to admit

that the Hartree-Fock theory accounts for the electron exchange the most naturally

and precisely. Thus, Becke has suggested [63] functionals which include a mixture of

Hartree-Fock and DFT exchange along with DFT correlations, conceptually defining

Exc as:

Emix
xc = cHFE

HF
x + cDFTE

DFT
xc , (2.74)

where cHF and cDFT are constants. Following this idea, a Becke-type three param-

eter functional (B3LYP) can be defined as follows:

EB3LY P
xc = ELDA

x + c0(E
HF
x − ELDA

X ) + cx(E
B88
x − ELDA

x ) +

+EVWN3
c + cc(E

LY P
c − EVWN3

c ) (2.75)

Here, c0 = 0.2, cx = 0.72 and cc = 0.81 are constants, which were defined

by fitting to the atomization energies, ionization potentials, proton affinities and

first-row atomic energies [53]. ELDA
x and EB88

x are defined in (2.69) and (2.70)

respectively. EHF
x is the functional corresponding to Hartree-Fock equations (2.48).

EVWN3
c is the so-called Vosko-Wilk-Nusair functional [66]. , which reads as:
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EVWN3
c =

∫
ρϵVWN3
c (ρα, ρβ)d

3r (2.76)

ϵVWN3
c (ρα, ρβ) = ϵI(ρα, ρβ) + ∆ϵc(rs, ξ)

ϵi = Ai

(
Ln

rs
Xi(

√
rs)

+
2bi
Qi

Tan−1

(
Qi

2
√
rs + bi

)
− bix0i
Xi(x0i)

(
Ln

(
√
rs − x0i)

2

X(
√
rs)

+
2(bi + 2x0i)

Qi

Tan−1 Qi

2
√
rs + bi

))
∆ϵc(rs, ξ) = ϵIII(ρα, ρβ)

f(ζ)

f ′′(0)
(1 + β(rs)ζ

4)

β(rs) =
f

′′
(0)

ϵIII(ρα, ρβ)
∆ϵ(rs, 1)− 1

∆ϵc(rs, 1) = ϵI(ρα, ρβ)− ϵII(ρα, ρβ)

Qi =
√
4ci − b2i

X(x) = x2 + bix+ ci

rs =

[
3

4πρ

]1/3
,

where the constants Ai, bi, ci and x0i are given in the table 2.1. The gradient-

corrected correlation functional of Lee, Yang and Parr, ELY P
c is defined in (2.73).

Note that instead of EVWN3
c and ELY P

c in (2.75) one can also use the Perdew and

Wang correlation functional (2.72) to obtain the so-called B3PW91 functional, which

is also used for the calculation.

Table 2.1: Constants for the Vosko-Wilk-Nusair parameterization
Parameter I II III

Ai 0.06218 0.03109 -0.033774
bi 3.72744 7.06042 1.131071
ci 12.93520 18.05780 13.004500
x0i -0.10498 -0.32500 -0.004758

Post Hartree-Fock perturbation theories and the density functional approxima-

tion are the two different theoretical schemes for the solution of many-electron cor-

relation problem based on different physical principles. The important feature of the

density functional method consists in the fact, that this method takes into account
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many-electron correlations via the phenomenological exchange-correlation potential.

However, so far, there has not been found the unique potential, universally applica-

ble for different systems and conditions. As a result there is a ”zoo of potentials”

(see e.g. D. Salahub, session LXXIII, in [60]) valid for special cases. These potentials

of course do exist in principle as unique quantities but are not actually understood,

so alone they can not serve as a satisfactory basis for achieving a physical interpre-

tation.

2.7 Molecular mechanics approach: a way to over-

come the complexity of quantum mechanics

It is not possible to apply straightforwardly the methods of quantum mechanics

for the description of the dynamical behavior of large molecular systems such as

proteins due to the fact that ab initio methods are computationally demanding.

However, one can distinguish the principal coordinates in the molecules that corre-

spond to the quantum nature of the covalent chemical bonds in the system. These

coordinates are usually the distances between atoms, the angles between two neigh-

boring chemical bonds and the dihedral angles that correspond to the twisting along

chemical bonds. The dynamics of the system in the coordinates of bond lengths,

angles between bonds and dihedral angles can be described classically at moderate

temperatures (~ω ≪ 2kT , i. e. at temperatures at which one can omit the quantum

corrections to the vibrations). Such a description implies the construction of a clas-

sical Hamiltonian of the system that describes the interactions between the atoms.

The classical Hamiltonian for the description of the dynamics of atoms in a molecule

is usually constructed on the basis of so call potential of Molecular Mechanics (which

is discussed in Sec. 4.2). The parameters of the Molecular Mechanics potential that

describe the ”stiffness” of chemical bonds, angles between bonds, etc. are usually

obtained on the basis of quantum mechanical calculations of the fragments of a

large molecule. For instance, the substantial part of the parameters of a widely

used CHARMM forcefield [18] are obtained from calculations of alanine dipeptide

using a Hartree-Fock theory with a 6-31G(d) basis set. Hartree-Fock theory and

various basis sets were introduced in Sec. 2.5. The discussion of the Molecular Me-

chanics potential and it accuracy are presented in Sec. 4.2 and Sec. 5.3 of the thesis

correspondingly.



Chapter 3

Degrees of freedom in
polypeptides and proteins

3.1 Introduction

Proteins are biological polymers consisting of amino acids whose number may vary

in the range from several tens up to tens of thousands. Small fragments of proteins

are usually called polypeptide chains or polypeptides. This chapter is devoted to a

study of the conformational properties of alanine and glycine polypeptide chains.

Recently, it became possible to study small fragments of proteins and polypep-

tides in the gas phase experimentally with the use of the MALDI mass spectroscopy

[67–70] and the ESI mass spectroscopy [71,72]. From theoretical viewpoint, investi-

gation of small polypeptides is of significant interest because they can be treated by

means of ab initio methods which allow accurate comparison of theoretical predic-

tions with experiment. The results of ab initio calculations can be utilized for the

development of model approaches applicable for the description of larger and more

complex protein structures.

Polypeptides are characterized by primary and secondary structures [22,73–75].

Different geometrical configurations of polypeptides are often called as the conforma-

tions. The number of various conformations (isomeric states) grows rapidly with the

growth of a system size. Thus, a search for the most stable conformations becomes

an increasingly difficult problem for large molecules.

The sheet and the helix structures are the most abundant motifs in proteins.

Study of the transition between these motifs and the evaluation of the characteristic

duration transition in these structures is of significant interest, because it is closely

related to one of the most intriguing problems of the protein physics, the protein
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folding. In order to study this transition it is necessary to investigate the potential

energy surface of amino acid chains with respect to their twisting. This chapter of

the thesis is devoted to the study of the potential energy surfaces for small alanine

and glycine chains. These molecules were chosen because they are often present in

native proteins as fragments and also because they allow for an ab initio theoretical

treatment due to their relatively small size.

Previously, only glycine and alanine dipeptides were studied in detail. Some-

times their analogues were used to reduce the computational costs (for example,

(S)-α-(formylamino)propanamide). In refs. [76–78] alanine and glycine dipeptides

were investigated within the Hartree-Fock theory. In these papers, the potential en-

ergy surfaces were calculated versus the twisting angles of the molecules. Different

stable states of the dipeptides, corresponding to different molecular conformations,

were determined. In refs. [79–84], different conformations and their energies were

determined within the framework of the density functional theory. In ref. [84], the

dynamics of the alanine dipeptide analog was discussed and the time of the transi-

tions between the two conformations of the alanine dipeptide was found.

A number of papers were devoted to the study of tripeptides. In refs. [85–89]

dynamics of the alanine and glycine tripeptides was studied by means of classical

molecular dynamics and with the use of semi-empirical potentials (such as GRO-

MOS, CHARMM and AMBER). In [90], within the framework of the Hartree-Fock

theory, several stable conformations of alanine and glycine tripeptides were found.

In ref. [91], the Raman and IR spectra for alanine and glycine tripeptides were

measured in neutral, acidic and alkali environments.

A few works were devoted to the study of polypeptides of greater length. In

particular, stable conformations of neutral and charged alanine hexapeptides were

obtained with the use of empirical potentials and discussed in ref. [92]. Experi-

mental NMR study of various conformations of alanine heptapeptides at different

temperatures was carried out in ref. [93]. In ref. [94], with the use of empirical

molecular dynamics based on Monte-Carlo methods, a polypeptide consisting of 21

amino acids was described.

In this chapter, ab initio calculations of the multidimensional potential energy

surface for the alanine and glycine polypeptide chains, consisting of three and six

amino acids, are discussed . The potential energy surface as function of twisting

degrees of freedom of the polypeptide chain has been calculated. The calculations

have been performed within ab initio theoretical framework based on the density
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functional theory (DFT) accounting for all the electrons in the system. Previously,

this kind of calculations were performed only for dipeptides (see, e.g., [76, 77, 84]).

For larger molecules, only a few conformations were considered (see citations above).

In the present work the most energetically favorable conformations of the polypep-

tides and the energy barriers for the transitions between these conformations are

determined.

Using a thermodynamic approach, the times of the characteristic transitions be-

tween the most energetically favorable conformations were estimated. The results

of the calculations have been compared with other theoretical simulations and with

the available experimental data. The influence of the secondary structure on the

potential energy landscapes is analyzed as well. In particular, the role of the sec-

ondary structure in the formation of stable conformations of the chains of six amino

acids being in the sheet and in the helix conformations has been elucidated. The

results of the work presented in this chapter are published in [32,33,35,36].

3.2 Conformational properties of alanine and gly-

cine chains

3.2.1 Determination of the polypeptides twisting degrees of
freedom

In this section are presented the potential energy surfaces for the alanine and glycine

polypeptide chains calculated versus dihedral angles φ and ψ defined in figure 3.1.

In particular, the chains consisting of three and six amino acids are considered.

Both angles are defined by the four neighboring atoms in the polypeptide chain.

The angle φi is defined as the dihedral angle between the planes formed by the

atoms (C
′
i−1−Ni−Cα

i ) and (Ni−Cα
i −C

′
i). The angle ψi is defined as the dihedral

angle between the (Ni − Cα
i − C

′
i) and (Cα

i − C
′
i − Ni+1) planes. The angle χi is

defined as the dihedral angle between the planes formed by the atoms (C
′
i−Cα

i −C
β
i )

and by the bonds Cα
i − Cβ

i and Cβ
i −Hβ

i1. Beside the angles φi, ψi and χi there is

an angle ωi, which is defined as the dihedral angle between (Cα
i − C

′
i − Ni+1) and

(C
′
i−Ni+1−Cα

i+1) planes. The atoms are numbered from the NH2− terminal of the

polypeptide. The angles φi, ψi and ωi take all possible values within the interval

[−180o;180o]. For the unambiguous definition, the angles φi, ψi and ωi are counted

clockwise, if one looks on the molecule from its NH2− terminal (see fig. 3.1). This
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Figure 3.1: Dihedral angles φ and ψ used for characterization of the secondary
structure of a polypeptide chain. The dihedral angle χi characterizes the rotation
of the side radical along the Cα

i − Cβ
i bond. The Fig. is adopted from [95].

way of angle counting is the most commonly used [75].

The angles φi and ψi can be defined for any amino acid in the chain, except the

first and the last ones. Below the subscripts are omitted and the angles φ and ψ are

considered for the middle amino acid of the polypeptide.

3.2.2 Optimized geometries of alanine polypeptides

In order to study twisting of a polypeptide chain one needs first to define its initial

structure. Although, the number of its conformations increases with the growth of

the molecule size, there are certain types of polypeptide structure, namely the sheet

and the helix conformations, which are the most typical. Therefore, the twisting

of the polypeptide chains of the sheet and the helix conformations is discussed in

this work. By varying the angles φ and ψ in the central amino acid one can create

the structure of the polypeptide differing significantly from the pure sheet or helix

conformations. If the structure of a polypeptide can be transformed to a helix or
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a sheet one by a trivial variation of φ and ψ, such polypeptides for the sake of

simplicity are referred below as belonging to the group of the helix or the sheet

structure, respectively.

Figure 3.2: Optimized geometries of alanine polypeptide chains calculated by the
B3LYP/6-31++G(d,p) method: a) Alanine tripeptide; b) Alanine hexapeptide
(sheet conformation); c) Alanine hexapeptide (helix conformation). The Fig. is
adopted from [35].

In figure 3.2 are presented the optimized geometries of alanine polypeptide chains

that have been used for the exploration of the potential energy surfaces. All geome-

tries were optimized with the use of the B3LYP functional. Figure 3.2a shows the

alanine tripeptide structure. In the present work the sheet conformation is chosen,

because the tripeptide is too short to form the helix conformation. Figures 3.2b and

3.2c show alanine hexapeptide in the sheet and the helix conformations, respectively.

The total energies (in atomic units)of the molecules are given below the images.

3.2.3 Polypeptide energy dependance on
the dihedral angle ω

For each amino acid there are only three dihedral angles formed by atoms of the

polypeptide chain which describe its twisting. The angle ω (see fig. 3.1) differs from

the angles φ and ψ, because C
′
i atom has the sp2 hybridization state, what leads to

formation of a quasi-double bond between C
′
i and Ni+1 atoms. Therefore, the angle
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Figure 3.3: Dependance of alanine tripeptides energy on angle ω calculated by the
B3LYP/6-31G(d) method at different values of angles φ and ψ. The Fig. is adopted
from [35].

ω is often referred as a ”stiff” degree of freedom, whose value depends only slightly

on both the polypeptide constituent amino acids and the values of other degrees of

freedom. To illustrate this fact, in figure 3.3 are presented the energy dependencies

on ω calculated for alanine dipeptide with different values of angles φ and ψ in the

central amino acid.

From this figure it is clear that there are two stable states in the system with

ω = 0o and ω = 180o which do not depend on the angles φ and ψ. The heights of

the barriers between these states are weakly depend on φ and ψ, being equal to ∼1

eV=23.06 kcal/mol.

The calculation shows that at temperatures close to the room temperature, the

value of the angle ω changes insignificantly. The potential energy surface as a

function of the angles φ and ψ appears to be much more complex as it is shown in

the next section.
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3.2.4 Potential energy surface for alanine tripeptide

Figure 3.4: Potential energy surface for the alanine tripeptide calculated by the
B3LYP/6-31G(2d,p) method. Energies are given in eV, kcal/mol and Kelvin. Num-
bers mark energy minima on the potential energy surface. Arrows show transi-
tion paths between different conformations of the molecule. The Fig. is adopted
from [35].

In figure 3.4 is presented the potential energy surface for the alanine tripeptide

calculated by the B3LYP/6-31G(2d,p) method. The energy scale is given in eV,

kcal/mol and Kelvin. Energies on the plot are measured from the lowest energy

minimum of the potential energy surface.

From the figure follows that there are several minima on the potential energy

surface. They are numbered according to the value of the corresponding energy

value. Each minimum corresponds to a certain conformation of the molecule. These

conformations differ significantly from each other. In the case of alanine tripeptide

there are six conformations, shown in figure 3.5. Dashed lines show the strongest

hydrogen bonds in the system, which arise when the distance between hydrogen and

oxygen atoms becomes less then 2.9 angstroms.

To calculate the potential energy surface the following procedure was adopted.

Once the stable structure of the molecule has been determined and optimized, all

but two (these are the angles φ and ψ in the central amino acid) degrees of freedom
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Figure 3.5: Optimized conformations of the alanine tripeptide. Different geometries
correspond to different minima on the potential energy surface (see contour plot in
figure 3.4). Below each image the angles φ and ψ are presented, which have been ob-
tained with accounting for relaxation of all degrees of freedom in the system. Values
in brackets give the angles calculated without accounting for relaxation. Above each
image the energy of the corresponding conformation is given in eV. The energies are
counted from the energy of conformation 1 (the energy of conformation 1 is given in
a.u.). Values in parentheses correspond to the energies obtained without relaxation
of all degrees of freedom in the system. Dashed lines show the strongest hydrogen
bonds. Their lengths are given in angstroms. The Fig. is adopted from [35].

were frozen. Then the energy of the molecule was calculated by varying φ and ψ.

This procedure was used to calculate all potential energy surfaces presented below
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in this section. It allows one to find efficiently the minima on the energy surface and

to determine the main stable conformations of the molecule. The absolute energy

values of different conformations of the tripeptide found by this method are not too

accurate, because the method does not account for the relaxation of other degrees

of freedom in the system. To calculate the potential energy surface with accounting

for the relaxation one needs 20-30 times more of the computer time. Therefore, a

calculations with accounting for the relaxation have not been performed in this work.

Instead, a complete optimization of the molecular conformations, corresponding to

all minima on the calculated potential energy surface was performed.

In figure 3.5 are compared stable conformations of the alanine tripeptide calcu-

lated with and without accounting for the relaxation of all atoms in the system. As

it is seen from this figure the angles φ and ψ differ by about 10 percent in the two

cases. This difference arises due to the coupling of φ and ψ with other degrees of

freedom. Note the change of the sign of the relative energies of some conformations.

This effect is due to the rearrangement of side atoms (radicals) in the polypeptide

chain which lowers the energies of different conformations differently.

The potential energy surface has been calculated and interpolated on the grid

with the step of 18◦. This step size is an optimal one, because the interpolation

error is about 9◦, i.e. comparable with the angle deviations caused by the relaxation

of all degrees of freedom in the system.

Note that for the alanine tripeptide an additional maximum appears at φ =

120o ± 50o, ψ = 30o ± 30o, while it is absent on the potential energy surface for the

glycine tripeptide (See Fig. 3.12). This maximum is a result of overlapping of the

side CH3- radicals, which are substituted in the case of the glycine polypeptide with

the H- atoms.

Conformation φ [76] ψ [76] φ [77] ψ [77] φ ψ
1 -168.4 170.5 -157.2 159.8 -157.4 166.2
2 - - -60.7 -40.7 -82.3 -68.3
3 63.8 32.7 67.0 30.2 64.7 30.5
4 - - - - -166.9 -52.1
5 74.1 -57.3 76.0 -55.4 72.0 -60.5
6 -128.0 29.7 -130.9 22.3 -119.1 13.6
7 - - - - 57.9 -136.3

Table 3.1: Comparison of dihedral angles φ and ψ corresponding to different con-
formations of alanine tripeptide.
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In ref. [76] and ref. [77] several stable conformations were found for alanine and

glycine dipeptides. The values of angles φ and ψ for the stable conformations of

dipeptide and tripeptide are close indicating that the third amino acid in tripeptide

makes relatively small influence on the values of dihedral angles of two other amino

acids. In earlier papers refs. [76, 77] dipeptides were studied within the framework

of the Hartree-Fock theory. In ref. [76], values of φ and ψ were obtained by the

HF/6-31+G* method, and in ref. [77] by HF/6-31G**. In table 3.2.4 are compared

the results of the calculation for tripeptide with the corresponding data obtained for

dipeptides. Some discrepancy between the values presented is due to the difference

between the dipeptide and tripeptide (i.e. the third alanine in the tripeptide affects

the values of angles φ and ψ). However, another source of discrepancy might arise

due to accounting for the many-electron correlations in the DFT and neglecting this

effect in the Hartree-Fock theory used in refs. [76,77].

Figure 3.6: Transition barriers for between conformations 1 ↔ 2 of the alanine
tripeptide. Circles and squares correspond to the barriers calculated without and
with relaxation of all degrees of freedom in the system. The Fig. is adopted from [35].

Figure 3.4 shows that some domains of the potential energy surface, where the

potential energy of the molecule increases significantly, appear to be unfavorable for

the formation of a stable molecular configuration. The growth of energy takes place

when some atoms in the polypeptide chain approach each other at small distances.
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Accounting for the molecule relaxation results in the decrease of the system energy

in such cases, but the resulting molecular configurations remain unstable. Such

domains on the potential energy surface are called as forbidden ones. In figure 3.4

one can identify two forbidden regions in the vicinity of the points (0, 0) and (0,

180). At (0, 0)a pair of hydrogen and oxygen atoms approach to the distances

much smaller than the characteristic H − O bond length. This leads to a strong

interatomic repulsion caused by the exchange interaction of electrons. At (0, 180)

the Coulomb repulsion of pair of oxygen atoms causes the similar effect.

Figure 3.4 shows that there are six minima on the potential energy surface for

alanine tripeptide. The transition barrier between the conformations 1 ↔ 2 is

shown in figure 3.6. The barrier has been calculated with and without relaxation

of the atoms in the system. The corresponding transition path is marked in figure

3.4 by an arrow. This comparison demonstrates that accounting for the relaxation

significantly lowers the barrier height and influences the relative value of energy of

the minima.

Let us now estimate the time needed for a system for the transition from one

conformation to another. It can be done using the Arhenius equation, which reads

as:
1

τ
= Ωe−

∆E
kT (3.1)

where τ is the transition time, Ω is the factor, determining how frequently the system

approaches the barrier, ∆E is the barrier height, T is the temperature of the system,

k is the Boltzmann factor.

Figure 3.7 shows the transition barrier between two main conformations of

the alanine dipeptide analog ((S)-α-(formylamino)propanamide). It is seen that

∆E1→2 = 0.047 eV for the transition 1 → 2, while ∆E2→1 = 0.079 eV for the tran-

sition 2 → 1. The frequency Ω for this molecule is equal to 42.87 cm−1. Thus, at

T = 300 K, τ 1→2
2×Ala ∼ 5 ps and τ 2→1

2×Ala ∼ 17 ps. This result is in excellent agreement

with the molecular dynamics simulations results obtained in ref. [84] predicting τ ∼ 7

ps for the transition 1 → 2 and τ ∼ 19 ps for the transition 2 → 1. This comparison

demonstrates that the presented method is reliable enough and it can be used for the

estimation of transition times between various conformations of the polypeptides.

Using the B3LYP/6-31G(2d,p) method, were calculated the frequencies of nor-

mal vibration modes for the alanine tripeptide. The characteristic frequency corre-

sponding to twisting of the polypeptide chain is equal to 32.04 cm−1. From figure
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Figure 3.7: Transition barriers for between conformations 1 ↔ 2 of alanine dipep-
tide analog calculated by the B3LYP/6-31+G(2d,p) method accounting for the re-
laxation of all degrees of freedom in the system. Structure of the conformations 1
and 2 is shown near each minimum. The Fig. is adopted from [35].

3.6 follows that ∆E1→2 = 0.066 eV for the transition 1 → 2 and ∆E2→1 = 0.114 eV

for the transition 2 → 1. Thus, τ 1→2
3×Ala ∼ 13 ps and τ 2→1

3×Ala ∼ 86 ps. Note, that these

transition times can be measured experimentally by means of NMR refs. [75, 96].

3.2.5 Potential energy surface for alanine hexapeptide with
the sheet and the helix secondary structure

In figure 3.8 are presented contour plots of the potential energy surface for the alanine

hexapeptide with the sheet (part a) and the helix (part b) secondary structure

respectively versus dihedral angles φ and ψ. In both cases the forbidden regions

arise because of the repulsion of oxygen and hydrogen atoms analogously to the

alanine tripeptide case.

Minima 1-6 on the potential energy surface 3.8a correspond to different confor-

mations of the alanine hexapeptide with the sheet secondary structure. Note that

these minima are also present on the potential energy surface of the alanine tripep-

tide (see fig. 3.4). Geometries of the conformations 1-6 are shown on the right-hand
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Figure 3.8: Potential energy surface for the alanine hexapeptide with the sheet sec-
ondary structure (part a) and with the helix secondary structure (part b) calculated
by the B3LYP/6-31G(2d,p) method. Energy scale is given in figure 3.4. Numbers
mark energy minima on the potential energy surface. Images of optimized conforma-
tions of the alanine hexapeptide are shown near the corresponding energy landscape.
Values of angles φ and ψ, as well as the relative energies of the conformations are
given analogously to that in figure 3.5. The Fig. is adopted from [35].
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Figure 3.9: Transitions barriers between conformations 1 ↔ 2 of the alanine
hexapeptide with the sheet secondary structure. Circles and squares correspond
to the barriers calculated without and with relaxation of all degrees of freedom in
the system. The Fig. is adopted from [35].

side of figure 3.8a.

Energy barrier as a function of a scan variable (see figure 3.8a) for the transition

between conformations 1 and 2 is shown in figure 3.9. The energy dependence has

been calculated with and without relaxation of all the atoms in the system. In the

case of alanine hexapeptide with the sheet secondary structure the barrier height

for the transition 1 → 2 is significantly higher than for the transition 2 → 1, being

equal to 0.095 eV and 0.023 eV, respectively. The normal vibration mode frequency,

corresponding to the twisting of the polypeptide chain is equal to 6.24 cm−1 and

was calculated with the B3LYP/STO-3G method. Using equation (3.1) one derives

the transition times at room temperature: τ 1→2
6×Gly ∼ 211 ps, τ 2→1

6×Gly ∼ 13 ps.

Let us now consider alanine hexapeptide with the helix secondary structure. The

potential energy surface for this polypeptide is shown in figure 3.8b. The positions

of minima on this surface are shifted significantly compared to the cases discussed

above. This change takes place because of the influence of the secondary structure of

the polypeptide on the potential energy surface. The geometries of the most stable

conformations are shown on the right-hand side of figure 3.8b.
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For the alanine hexapeptide with the helix secondary structure there is a maxi-

mum at φ ∼ 180o and ψ ∼ 40o in addition to the central maxima on the potential

energy surface. This maximum appears because of the repulsive interaction of the

outermost amino acids side radicals.

It is worth noting that for some conformations of alanine hexapeptide the angles

φ and ψ change significantly when the relaxation of all degrees of freedom in the

system are accounting for (see for example conformations 1, 5 in fig. 3.8a and

conformations 2, 4 in fig. 3.8b). This means that the potential energy surface of the

alanine hexapeptide in the vicinity of the mentioned minima is very sensitive to the

relaxation of all degrees of freedom. However, calculation of the potential energy

surface with accounting for the relaxation of all degrees of freedom is unfeasible

task. Indeed, one needs about 2000 hours of computer time (Pentium Xeon 2.4

GHz) for the calculation of the potential energy surface for the alanine hexapeptide.

To perform an analogues calculation with accounting for the relaxation about 5

years of computer time would be needed. Nevertheless, the potential energy surface

calculated without accounting for the relaxation carries a lot of useful information.

Thus, one can predetermine stable conformations of polypeptide, which then can be

used as starting configurations for further energy minimization.

3.2.6 Comparison of calculation results with experimental
data

Nowadays, the structure of thousands of proteins has been determined experimen-

tally ref. [22]. Knowing the protein structure one can find the angles φ and ψ for

each amino acid in the protein.

In figure 3.10a is shown a map of the allowed and forbidden conformations for

alanine residues in poly-alanine chain taken from ref. [98] (steric Ramachandran di-

agram). This map was obtained from pure geometrical considerations, in which the

structure of the polypeptide was assumed to be fixed and defined by the interatomic

van der Waals interaction radii. Depending on the distances between the atoms

one could distinguish three regions: completely allowed, conventionally allowed and

forbidden. The conformation is called completely allowed if all the distances be-

tween atoms of different amino acids are larger than some critical value rij ≥ rmax.

Conventionally allowed regions on the potential energy surface correspond to the

conformations of the polypeptide, in which the distances between some atoms of
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Figure 3.10: Comparison of angles φ and ψ of alanine residues in protein structures
selected from the Brookhaven Protein Data Bank [22, 97] with the steric diagram
for poly-alanine [98] (part a)). Comparison of angles φ and ψ of alanine residues in
protein structures selected from the Brookhaven Protein Data Bank [22,97] with the
minima on the calculated potential energy surfaces for: alanine tripeptide (b); ala-
nine hexapeptide in sheet conformation (c); alanine hexapeptide in helix conforma-
tion (d). Transparent rhomboids correspond to alanines surrounded with alanines,
while filled circles correspond to alanines surrounded by other amino acids. Dashed
ellipses mark the regions of higher concentration of the observed angles. The Fig.
is adopted from [35].
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different amino acids lie within the interval rmin ≤ rij < rmax. All other conforma-

tions are referred to as forbidden. The values of rmin and rmax are defined by the

types of interacting atoms and can be found in the textbooks (see, e.g., [98]). In

figure 3.10a the completely allowed regions are marked with white, the convention-

ally allowed regions with light gray and the forbidden regions with dark gray color.

In this figure are marked the points, which correspond to the geometries of alanine,

whose periodical iteration leads to the formation of chains with specific secondary

structure. In table 3.2 is presented the compilation of the values of angles φ and ψ,

which correspond to the most prominent poly-alanine secondary structures. For the

illustrative purposes these points are marked by white circles with the corresponding

type of the secondary structure typed in. Thus, 2R7 , 2
L
7 are the right-handed and the

left-handed 27 helix; 3
R
10, 3

L
10 are the right-handed and the left-handed 310 helix; αR,

αL are the right-handed and the left-handed α−helix (413); πR, πL are the right-

handed and the left-handed π−helix (516); ↑↑, ↑↓ are the parallel and antiparallel β

sheets. βI , βII correspond to the β−turns of types I and II respectively.

Structure type φ (Deg.) ψ (Deg.)
right-handed (left-handed) 27 helix -78 (78) 59 (-59)
right-handed (left-handed) 310 helix -49 (49) -26 (26)

right-handed (left-handed) α−helix (413) -57 (57) -47 (47)
right-handed (left-handed) π−helix (516) -57 (57) -70 (70)

parallel β sheet (↑↑) -119 113
antiparallel β sheet (↑↓) -139 135

β−turn of type I -90 0
β−turn of type II 90 0

Table 3.2: Angles φ and ψ corresponding to the most prominent poly-alanine sec-
ondary structures.

Note that not all of the structures listed above are present equally in proteins.

In figure 3.10a is shown the distribution of the angles φ and ψ of alanine residues

in protein structures selected from the Brookhaven Protein Data Bank [22,97]. It is

possible to distinguish four main regions, in which most of experimental points are

located. In figure 3.10 these regions are schematically shown with dashed ellipses.

Note, that these ellipses are used for illustrative purposes only, and serve for a better

understanding of the experimental data. The regions in which most of the observed

angles φ and ψ are located correspond to different secondary structures of the poly-
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alanine. Thus, region I corresponds to the parallel and antiparallel β−sheets. Region

II corresponds to the right-handed 2R7 helix. Region III corresponds to the right-

handed αR−helix, right-handed πR−helix, right-handed 3R10 helix and β−turn of

type I. Region IV corresponds to the left-handed αL−helix, right-handed πL−helix,

left-handed 3L10 helix and β−turn of type II. In some cases there are several types

of secondary structure within one domain.

Let us now compare the distribution of angles φ and ψ experimentally observed

for proteins with the potential energy landscape calculated for alanine polypeptides

and establish correspondence of the secondary structure of the calculated conforma-

tions with the predictions of the simple Ramachandran model.

Region I corresponds to the minimum 1 on the both potential energy surfaces of

the alanine tripeptide (fig. 3.10b) and the alanine hexpeptide with the secondary

structure of sheet (fig. 3.10c). These conformations correspond exactly to the

alanine chains in the β-sheet conformation (see fig. 3.5 and 3.8a). Note that there is

no minimum in that region of the potential energy surface for alanine hexapeptide

with the secondary structure of helix (see fig. 3.10d).

Region II corresponds to the minimum 2 on the both potential energy surfaces

3.10b and 3.10c, as well as to the minimum 3 on the potential energy surface 3.10d.

On the steric diagram for poly-alanine this region corresponds to the right-handed

2R7 helix. The structure of conformations 2 on the surfaces 3.10b and 3.10c differs

from the structure of this particular helix type. Only the central alanines, for which

the angles φ and ψ in figures 3.10b and 3.10c are defined, have the structure of 2R7

helix. Thus, one can refer to the conformations 2 as to the mixed states, where

the central part of the polypeptide chain has the conformation of helix and the

outermost parts have the conformation of sheet. Conformation 3 on the surface

3.10d is also a mixed state. Here one can distinguish one turn of 3R10 helix and two

turns of 2R7 helix (see fig. 3.8b).

Region III corresponds to the structure of right-handed αR−helix, right-handed

3R10 helix, right-handed πR−helix and β−turn. It corresponds to minima 6, 5 and 4

on the potential energy surfaces 3.10b, 3.10c and 3.10d respectively. Conformation 6

can not be assigned to any specific type of secondary structure because the chain is

too short. Note, that conformation 6 is even not a stable one on the potential energy

surface of the alanine tripeptide. The most probable types of secondary structures in

that region of the potential energy surface are right-handed αR−helix and β−turn.

However, for the formation of a single turn of αR−helix (or for the formation of
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β−turn) at least four amino acids are needed. Conformation 5 on the potential

energy surface of the alanine hexapeptide can be characterized as a partially formed

β−turn because the alanine, for which the dihedral angles φ and ψ in figure 3.10c

are defined has the geometry of β−turn, but its neighbor forms a β−sheet (see fig.

3.8a). Conformation 4 on the potential energy surface 3.8b changes significantly

after accounting for the relaxation of all degrees of freedom in the system, and gets

outside the region III. In this conformation one can locate fragments of right-handed

2R7 and 3R10 helices. The point corresponding to the minimum 4 (after accounting for

the relaxation) lies outside regions II and III because angles φ and ψ in figure 3.10d

are defined for the amino acid between two helix fragments.

Region IV is represented by the structure of left-handed αL−helix, left-handed

3L10 helix, left-handed πL−helix and β−turn of type II. The fragments with those

types of secondary structures are very rare met in native proteins. To form these

structures it is necessary to have at least four amino acids, therefore minima 3 on

the potential energy surface for alanine tripeptide can not be compared to any type

of the mentioned secondary structures. Region IV corresponds to the conformations

3 and 2 on the surfaces 3.10c and 3.10d respectively. Conformation 3 on the surface

3.10c corresponds to partially formed β−turn, because the alanine, for which the

dihedral angles φ and ψ in figure 3.10c are plotted has the configuration of β−turn

but the neighboring amino acid in the polypeptide chain forms β−sheet (see fig.

3.8a). Conformation 2 on the potential energy surface 3.10d lies outside the region

IV, but accounting for the relaxation of all degrees of freedom shifts the minimum

on the potential energy surface to the allowed region of left-handed αL− and 3L10

helix (see fig. 3.8b). The geometry of conformation 2 is similar to the geometry

of left-handed 3L10 helix (see fig. 3.8b). The main differences in the structure are

caused by the insufficient length of the polypeptide chain to form a regular helix

structure.

3.3 Conformational changes in glycine tri- and

hexapeptide

In this section the potential energy surfaces of glycine polypeptides are discussed.

It is not feasible to study the dependence of potential energy on all possible angles

φ and ψ for all amino acids, because the amount of computer powers required for

such DFT computation would be enormous. Therefore, only the twisting angles in
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the middle amino acid of the polypeptide are considered, in order to to stress the

topological conformity of the potential energy surfaces in the tripeptide and in the

hexapeptide. One can expect that for the inner amino acids of a polypeptide the

dependence of the potential energy surfaces on the twisting angles should be similar

if the amino acids are loosely correlated. For glycines this condition is fulfilled,

because glycines do not have side radicals and thus interact weakly with each other

along the polypeptide chain.

Figure 3.11: Optimized geometries of glycine polypeptide chains calculated by
the B3LYP/6-31++G(d,p) method: a) Glycine tripeptide; b) Glycine hexapeptide
(sheet conformation); c) Glycine hexapeptide (helix conformation). The Fig. is
adopted from [32].

3.3.1 Optimized geometries of glycine polypeptides

In figure 3.11 are presented the optimized geometries of glycine polypeptide chains

that have been used for the exploration of the potential energy surfaces. All ge-

ometries have been optimized with the use of the B3LYP functional. Figure 3.11a

shows the glycine tripeptide structure. In the present work the sheet conformation is

chosen, because the tripeptide is too short to form the helix conformation. Figures

3.11b and 3.11c show glycine hexapeptide in the sheet and the helix conformations

respectively. The total energies (in atomic units) of the molecules are given below

the images.
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3.3.2 Potential energy surface for glycine tripeptide

Figure 3.12: Potential energy surface for the glycine tripeptide calculated by the
B3LYP/6-31G(2d,p) method. Energies are given in eV, kcal/mol and Kelvin. Num-
bers mark energy minima on the potential energy surface. Arrows show the tran-
sition paths between different conformations of the molecule. The Fig. is adopted
from [32].

In figure 3.12 are presented the potential energy surface for the glycine tripeptide

calculated by the B3LYP/6-31G(2d,p) method. The energy scale is given in eV,

kcal/mol and Kelvin. Energies on the plot are measured from the lowest energy

minimum of the potential energy surface.

From the figure follows that there are several minima on the potential energy

surface. They are numbered according to the value of the corresponding energy

value. Each minimum corresponds to a certain conformation of the molecule. These

conformations differ significantly from each other. In the case of glycine tripeptide

there are only three conformations, shown in figure 3.13. Dashed lines show the

strongest hydrogen bonds in the system, which arise when the distance between

hydrogen and oxygen atoms becomes less then 2.9 angstroms.

To calculate the potential energy surface was adopted the same procedure as for

alanine polypeptides (see Sec. 3.2.4).
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Figure 3.13: Optimized conformations of the glycine tripeptide. Different geometries
correspond to different minima on the potential energy surface (see contour plot in
figure 3.12). Below each image are presented angles φ and ψ, which have been
obtained with accounting for relaxation of all degrees of freedom in the system.
Values in brackets give the angles calculated without accounting for relaxation.
Above each image, the energy of the corresponding conformation is given in eV. The
energies are counted from the energy of conformation 1 (the energy of conformation
1 is given in a.u.). Values in brackets give the energies obtained without accounting
for the relaxation of all degrees of freedom in the system. Dashed lines show the
strongest hydrogen bonds. Their lengths are given in angstroms. The Fig. is
adopted from [32].

In table 3.3.2 the results of the calculation for tripeptide are compared with the

corresponding data obtained for dipeptides. Some discrepancy between the values

presented is due to the difference between the dipeptide and tripeptide (i.e. the third

glycine in tripeptide affects the values of angles φ and ψ). However, another source

of discrepancy might arise due to accounting for the many-electron correlations in

the DFT and neglecting this effect in the Hartree-Fock theory used in refs. [76,77].

Figure 3.12 shows that some domains of the potential energy surface, where the

potential energy of the molecule increases significantly, appear to be unfavorable for

the formation of a stable molecular configuration. At (0, 0) a pair of hydrogen and

oxygen atoms approach to the distances much smaller than the characteristic H−O
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conformation φ, ref. [76] ψ, ref. [76] φ, ref. [77] ψ, ref. [77] φ ψ
1 - - 76.0 -55.4 80.1 -70.2
2 -180.0 180.0 -157.2 159.8 -164.2 176.2
3 -85.2 67.4 -85.8 79.0 -81.2 62.8

Table 3.3: Comparison of dihedral angles φ and ψ corresponding to different confor-
mations of glycine tripeptide (column 3) with angles φ and ψ for glycine dipeptide
from ref. [76,77] (column 1 and 2).

bond length. This leads to a strong interatomic repulsion caused by the exchange

interaction of electrons. At (0, 180) the Coulomb repulsion of pair of oxygen atoms

causes the similar effect.

Figure 3.14: Transition barriers between conformations 1 ↔ 2 ↔ 3 of the glycine
tripeptide. Circles and squares correspond to the barriers calculated without and
with relaxation of all degrees of freedom in the system. The Fig. is adopted from [32].

Figure 3.12 shows that there are three minima on the potential energy surface

for glycine tripeptide. The transition barriers between the conformations 2 ↔ 1

and 2 ↔ 3 are shown in figure 3.14. They have been calculated with and without

relaxation of the atoms in the system. The corresponding transition paths are

marked in figure 3.12 by arrows. This comparison demonstrates that accounting
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for the relaxation significantly lowers the barrier height and influences the relative

value of energy of the minima.

Let us now estimate the time needed for a system for the transition from one

conformation to another applying Arhenius equation defined in (3.1), . The fre-

quencies of normal vibration modes for the glycine tripeptide were calculated using

the B3LYP/6-31G(2d,p) method. The characteristic frequency corresponding to

twisting of the polypeptide chain is equal to 33.49 cm−1. From figure 3.14 follows

that ∆E2→3 = 0.103 eV for the transition 2 → 3, and ∆E3→2 = 0.132 eV for the

transition 3 → 2. Thus, τ 2→3
3×Gly ∼ 54 ps and τ 3→2

3×Gly ∼ 164 ps. The transition times

can be also measured experimentally using NMR technique [75,96].

3.3.3 Potential energy surface for glycine hexapeptide with
the sheet and the helix secondary structure

In figure 3.15 are presented contour plots of the potential energy surfaces for the

glycine hexapeptide with the sheet (part a) and the helix (part b) secondary struc-

ture, respectively, versus dihedral angles φ and ψ. In both cases the forbidden

regions arise because of the repulsion of oxygen and hydrogen atoms analogously to

the glycine tripeptide case.

Minima 1-5 on the potential energy surface 3.15a correspond to different confor-

mations of the glycine hexapeptide with the sheet secondary structure. Note that

minima 1-3 are also present on the potential energy surface of the glycine tripep-

tide. Geometries of the conformations 1-5 are shown on the right-hand side of figure

3.15a.

For the glycine hexapeptide with the sheet secondary structure additional min-

ima 4-5 arise. The appearance of these minima is the result of the interaction of the

outermost amino acids, which are absent in the case of tripeptide.

Energy barrier as a function of a scan variable (see figure 3.15a) for the transition

between conformations 1 and 2 is shown in figure 3.16. The energy dependence has

been calculated with and without relaxation of all the atoms in the system. In the

case of glycine hexapeptide with the sheet secondary structure the barrier height

(0.128 eV) for the transition 1 → 2 appears to be close to the corresponding barrier

height of the glycine tripeptide (0.103 eV), while the barrier height for the transition

2 → 1 is significantly lower (0.028 eV). The normal vibration mode frequency,

corresponding to the twisting of the polypeptide chain is equal to 15.45 cm−1 and
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Figure 3.15: Potential energy surface for the glycine hexapeptide with the sheet sec-
ondary structure (part a) and with the helix secondary structure (part b) calculated
by the B3LYP/6-31G(2d,p) method. Energy scale is given in figure 3.12. Numbers
mark energy minima on the potential energy surface. Images of optimized conforma-
tions of the glycine hexapeptide are shown near the corresponding energy landscape.
Values of angles φ and ψ, as well as the relative energies of the conformations are
given analogously to that in figure 3.13. The Fig. is adopted from [32].
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Figure 3.16: Transition barriers between conformations 1 ↔ 2 of the glycine
hexapeptide with the sheet secondary structure. Circles and squares correspond
to the barriers calculated without and with relaxation of all degrees of freedom in
the system. The Fig. is adopted from [32].

was calculated with the B3LYP/6-31G(2d,p) method. Using equation (3.1) one

derives the transition times at room temperature: τ 1→2
6×Gly ∼ 305 ps, τ 2→1

6×Gly ∼ 6 ps.

It is well known that the DFT method in its most simple formulation does not

reproduce the attractive polarization (van der Waals) interaction well enough, for

a discussion see, e.g., Ref. [99] and references therein. However the polarization

interaction can partially be included in the DFT framework via the correlation

functional. The degree of accounting for the polarization effects can be controlled

by the choice of the number of the polarization functions included in the basis set.

The combination of the B3LYP functional with the 6-31G(2d,p) basis set, which

is used for the computations accounts for the polarization interaction on the level of

50 % at least. The most straightforward way of accounting for this energy correction

more precisely would be the calculation performed within the framework of the

perturbation theory. However, it is not feasible to perform such calculations for

molecular systems like hexapeptides, because they would require enormous computer

powers.

Another way of accounting for the van der Waals (vdW) interaction is based on
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the addition of phenomenological Lennard-Jones-type of terms to the total energy

of the system [99]. Each of the potentials includes at least two parameters: the

equilibrium separation distance of a pair of atoms, and the potential energy well

depth. Unfortunately, there are no fixed values for these parameters which would

be universally applicable in a wide scope of situations. Even for the same systems

different authors choose different parameters (see e.g., [99–101]). Some arbitrariness

in the choice of the vdW correction seems to be a general problem of the hybrid

approaches.

A systematic study of the potential energy surfaces for polypeptide chains with

vdW energy correction taken into account is an interesting problem, which however

lies beyond the scope of the thesis. Thus, in the current chapter the vdW interaction

energies are calculated only for a few key-points on the potential energy surface, in

order to establish the level of accuracy of the calculations. The vdW energy correc-

tion for the transition between the conformations 1 and 2 of the glycine hexapeptide

is estimated using the set of constants suggested in [100]. The maximum energy

value was obtained for the conformation 2, and is equal to 0.0093 eV, which gives

the relative error of about 9 %. For the state corresponding to the barrier maximum

the vdW energy correction is equal to 0.0058 eV (relative error 4.5 %). Note, that

these energies depend strongly on the set of the chosen constants. For example,

the vdW energy correction calculated with a set of constants suggested in [101] for

conformation 2 is equal to 0.0076 eV, resulting in the relative error of 7.5 %. These

estimates demonstrate that the vdW polarization energy plays an important role

giving the relative error to the calculated energies of the order of about 5-10 %.

Note, that this fact does not necessarily imply changes of the topology of the calcu-

lated potential energy surfaces on the same scale, because the relative variations of

energies on the potential energy surface are much smaller.

Let us now consider glycine hexapeptide with the helix secondary structure. The

potential energy surface for this polypeptide is shown in figure 3.15b. The positions

of minima on this surface are shifted significantly compared to the cases discussed

above. This change takes place because of the influence of the secondary structure of

the polypeptide on the potential energy surface. The geometries of the most stable

conformations are shown on the right hand-side of figure 3.15b.

It is worth noting that for some conformations of glycine hexapeptide the angles

φ and ψ change significantly when the relaxation of all degrees of freedom in the

system is accounted for (see for example conformations 1, 4, 5 in fig. 3.15a and
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conformations 3, 4 in fig. 3.15b). This means that the potential energy surface of

the glycine hexapeptide in the vicinity of mentioned minima is very sensitive to the

relaxation of all degrees of freedom. However, calculation of the potential energy

surface with accounting for the relaxation of all degrees of freedom is unfeasible

task. Indeed, one needs about 1000 hours of computer time (Pentium Xeon 2.4

GHz) for the calculation of the potential energy surface for the glycine hexapeptide.

To perform an analogues calculation with accounting for the relaxation about 3

years of computer time would be needed. Nevertheless, the potential energy surface

calculated without accounting for the relaxation carries a lot of useful information.

Thus, one can predetermine stable conformations of polypeptide, which then can be

used as starting configurations for further energy minimization.

3.3.4 Comparison of calculation results with experimental
data

Nowadays, the structure of many proteins has been determined experimentally [22].

Knowing the protein structure one can find the angles φ and ψ for each amino acid

in the protein.

In figure 3.17a, a map of the allowed and forbidden conformations for glycine

residues in poly-glycine chain is shown. The map is taken from [98] (steric Ra-

machandran diagram). This map was obtained from pure geometrical considera-

tions, in which the structure of the polypeptide was assumed to be fixed and defined

by the interatomic van der Waals interaction radii. Depending on the distances

between the atoms one could distinguish three regions: completely allowed, conven-

tionally allowed and forbidden. The conformation is called completely allowed if all

the distances between atoms of different amino acids are larger than some critical

value rij ≥ rmax. Conventionally allowed regions on the potential energy surface

correspond to the conformations of the polypeptide, in which the distances between

some atoms of different amino acids lie within the interval rmin ≤ rij < rmax. All

other conformations are referred to as forbidden. The values of rmin and rmax are

defined by the types of interacting atoms and can be found in the textbooks (see,

e.g., [98]). In figure 3.17a the completely allowed regions are marked with white, the

conventionally allowed regions with light-gray and the forbidden regions with dark

gray color. In this figure the points, which correspond to the geometries of glycine,

whose periodical iteration leads to the formation of chains with specific secondary
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Figure 3.17: Comparison of angles φ and ψ of glycine residues in protein structures
selected from the Brookhaven Protein Data Bank [22, 97] with the steric diagram
for poly-glycine [98] (part a)). Comparison of angles φ and ψ of glycine residues
in protein structures selected from the Brookhaven Protein Data Bank [22,97] with
the minima on the calculated potential energy surfaces for: glycine tripeptide (b);
glycine hexapeptide in sheet conformation (c); glycine hexapeptide in helix confor-
mation (d). Transparent rhomboids correspond to glycines surrounded with glycines,
while filled circles correspond to glycines surrounded by other amino acids. Dashed
ellipses mark the regions of higher concentration of the observed angles. The Fig.
is adopted from [32].

structure are marked. The values of angles φ and ψ, which correspond to the most

prominent poly-glycine secondary structures are compiled in table 3.4 . These points
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Structure type φ (Deg.) ψ (Deg.)
right-handed (left-handed) 27 helix -78 (78) 59 (-59)
right-handed (left-handed) 310 helix -49 (49) -26 (26)

right-handed (left-handed) α−helix (413) -57 (57) -47 (47)
right-handed (left-handed) π−helix (516) -57 (57) -70 (70)

parallel β sheet (↑↑) -119 113
antiparallel β sheet (↑↓) -139 135

β−turn of type I -90 0
β−turn of type II 90 0

Table 3.4: Angles φ and ψ corresponding to the most prominent poly-glycine sec-
ondary structures.

are marked for illustrative purposes by white circles with the corresponding type of

the secondary structure typed in. Thus, 2R7 , 2
L
7 are the right-handed and the left-

handed 27 helix; 3R10, 3
L
10 are the right-handed and the left-handed 310 helix; αR, αL

are the right-handed and the left-handed α−helix (413); πR, πL are the right-handed

and the left-handed π−helix (516); ↑↑, ↑↓ are the parallel and antiparallel β sheets.

βI , βII correspond to the β−turns of types I and II respectively.

Note that not all of the structures listed above are present equally in proteins.

The distribution of the angles φ and ψ of glycine residues in protein structures

selected from the Brookhaven Protein Data Bank [22,97] is shown in Fig. 3.17. It is

possible to distinguish four main regions, in which most of the experimental points

are located. In figure 3.17 these regions are schematically shown with dashed ellipses.

Note that these ellipses are used for illustrative purposes only, and serve for a better

understanding of the experimental data. The regions in which most of the observed

angles φ and ψ are located correspond to different secondary structure of the poly-

glycine. Thus, region I corresponds to the parallel and antiparallel β−sheets. Region

II corresponds to the right-handed 2R7 helix. Region III corresponds to the right-

handed αR−helix, right-handed 3R10 helix, right-handed πR−helix and β−turn of

type I. Region IV corresponds to the left-handed αL−helix, left-handed 3L10 helix

and β−turn of type II. In some cases there are several types of secondary structure

within one domain.

Note that some experimental points lie in the forbidden region of the steric

Ramachandran diagram (see region IV in fig. 3.17a). The quantum calculation

shows that in fact this region is allowed and has several minima on the potential
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energy surface (see fig 3.17c and 3.17d). This comparison shows that for an accurate

description of polypeptides it is important to take quantum properties of these

systems into account.

Let us now compare the distribution of angles φ and ψ experimentally observed

for proteins with the potential energy landscape calculated for glycine polypeptides,

and establish correspondence of the secondary structure of the calculated conforma-

tions with the predictions of the simple Ramachandran model.

Region I corresponds to the minima 2, 1 and 5 on the potential energy surfaces

of the glycine tripeptide (fig. 3.17b), the glycine hexpeptide with the secondary

structure of sheet (fig. 3.17c), and the glycine hexapeptide with the secondary

structure of helix (fig. 3.17d) respectively. Conformations 2 and 1 in figures 3.17b

and 3.17c correspond exactly to the glycine chains in the β-sheet conformation (see

fig. 3.13 and 3.15a). Conformation 5 in figure 3.17d is a mixed state. Here the

central amino acid has the conformation of sheet, while the outermost amino acids

have the conformation of helix.

Region II corresponds to the minima 3, 2 and 1 on the potential energy surfaces

3.17b, 3.17c, and 3.17d, respectively. On the steric diagram for poly-glycine (see

fig. 3.17a) this region corresponds to the right-handed 2R7 helix. The structure of

conformations 3 and 2 on the surfaces 3.17b and 3.17c differs from the structure of

this particular helix type. Only the central glycines, for which the angles φ and ψ

in figures 3.17b and 3.17c are defined, have the structure of 2R7 helix. Thus, one can

refer to conformations 3 and 2 as to the mixed states, where the central part of the

polypeptide chain has the conformation of helix and the outermost parts have the

conformation of sheet. Conformation 1 on the surface 3.17d is also a mixed state.

Here one can distinguish one turn of 3R10 helix and two turns of 2R7 helix (see fig.

3.15b).

Region III corresponds to the structure of right-handed αR−helix, right-handed

3R10 helix, right-handed πR−helix and β−turn I. It corresponds to minimum 5 on

the potential energy surface of the glycine hexapeptide with the secondary structure

of sheet 3.17c. Conformation 5 can be characterized as partially formed β−turn,

because the glycine, for which the dihedral angles φ and ψ in figure (fig. 3.17c)

are defined, has the geometry of β−turn and its neighbor forms a β−sheet (see fig.

3.15a). There are no minima in region III on the potential energy surfaces presented

in figures 3.17b and 3.17d. This happens because in this case most probable is the

structure of right-handed αR−helix. To form one turn of the helix of this type it
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is necessary to link at least four amino acids, so the glycine tripeptide is too short

for that. As well, six amino acids chain is too short to form a stable fragment

of an αR−helix, because it does not have enough hydrogen bonds to stabilize the

structure. For the hexapeptide more probable are the elements of 3R10 and 2R7 helixes,

because in these cases 2 and 3 helical turns respectively can be formed.

Region IV is represented by the structure of left-handed αL−helix, left-handed

3L10 helix and β−turn of type II. To form these structures it is necessary to have at

least four amino acids, therefore there is no minima in this region on the potential

energy surface of glycine tripeptide (fig. 3.17b). Region IV corresponds to the

conformations 4 and 3 on the surfaces 3.17c and 3.17d respectively. Conformation 4

on the surface 3.17c corresponds to partially formed β−turn, because the glycine, for

which the dihedral angles φ and ψ in figure 3.17c are plotted has the configuration

of β−turn, but the neighboring aminoacid in the chain forms a β−sheet (see fig.

3.15a). Conformation 3 on the surface 3.17d can be characterized as deformed turn

of left-handed αL−helix, which turns out to be energetically the most favorable in

this region of the potential energy surface (see fig. 3.15b).

Finally, let us mention a few peculiarities of the calculated potential energy

landscapes. At each of the potential energy surfaces discussed in this work one can

see a minimum at φ ∼ 80o and ψ ∼ −70o. On the steric diagram for poly-glycine

this region corresponds to the left-handed 2L7 helix. Conformations 1, 3 and 2 on the

potential energy surfaces 3.17b, 3.17c, and 3.17d respectively partially represent this

structure (see fig. 3.13, 3.15a and 3.15b). The structure of conformation 4 on the

potential energy surface 3.17d is similar to left-handed αL−helix, but differs from

it due to the short length of the polypeptide chain, resulting in significant variation

of angles φ and ψ in all the residues along the chain.



Chapter 4

Partition function of a polypeptide

4.1 Introduction

To study thermodynamic properties of the system one needs to investigate its po-

tential energy surface with respect to all degrees of freedom. There is a number of

different methods for calculating the energy of many-body systems. The most accu-

rate approaches are based on solving the Schrödinger equation. These approaches

are usually referred to as ab initio methods since they involve a minimum number

of assumptions about the system.

For complex molecular systems ab initio calculations require significant computer

power. Depending on the method, the computational cost of such calculations grows

as N2 or even N8 [53], where N is the number of particles in the system. The size

of molecular system, which can be described using ab initio methods is therefore

limited, and such methods can hardly be used for the description of large biological

molecules or systems. This chapter is based on the results published in [17,37,95].

4.2 Molecular mechanics potential

For the description of macromolecular systems, such as polypeptides and proteins,

efficient model approaches are necessary. One of the most common tools for the de-

scription of macromolecules is based on the so-called molecular mechanics potential,

which reads as
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U =

Nb∑
i=1

kbi (ri − r0i )
2 +

Na∑
i=1

kai (θi − θ0i )
2 +

Nd∑
i=1

kdi [1 + cos(niϕi + δi)] +

Nid∑
i=1

kidi (Si − S0
i )

2 +
N∑

i,j=1
i<j

4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]
+

N∑
i,j=1
i<j

qiqj
rij

. (4.1)

Here the first four terms describe the potential energy with respect to variation of

distances, angles, dihedral angles and improper dihedral angles between two, three

and four neighboring atoms respectively. The last two terms describe the Van der

Waals and Coulomb interaction respectively. The summation in the first term goes

over all topologically defined bonds in the system, in the second over all topologically

defined angles, and in the third over all topologically defined dihedral angles and in

the fourth over all topologically defined improper dihedral angles. The total number

of bonds, angles, dihedral angles and improper dihedral angles are Nb, Na, Nd and

Nid respectively. N is the total number of atoms in the system. kbi , k
a
i , k

d
i and kidi

in (4.1) are the stiffness parameters of the corresponding energy terms. r0i , θ
0
i and

S0
i are the equilibrium values of bonds, angles and improper dihedral angles. ni and

δi are the number of possible stable torsion conformations and the initial torsion

phase. ϵij, σij and qi are the Van der Waals parameters and the charges of atoms in

the system.

Parameters kbi , k
a
i , k

d
i , k

id
i , r

0
i , θ

0
i , S

0
i , ni, δi, ϵij, σij and qi are derived from

experimental measurements of crystallographic structures, infrared spectra or on

the basis of quantum mechanical calculations for small systems (see [18,19,102] and

references therein). The independent variables in (4.1) are ri, θi, ϕi and Si.

Note, that the terms corresponding to the variations of distances, angles and

improper dihedral angles in (4.1) describe the motion of the molecule within the

harmonic approximation which is reasonable only at low temperatures. The poten-

tial energy corresponding to torsion degrees of freedom is usually assumed to be

periodic (see equation (4.1)) because several stable conformations of the molecule

with respect to these degrees of freedom are possible [18, 19, 102]. The torsion de-

grees of freedom are also referred as the twisting degrees of freedom as discussed

in chapter 3 of the thesis. The most important twisting degrees of freedom for

the description of a helix-coil transition in polypeptides are the twisting degrees of

freedom along the backbone of the polypeptide [103,104]. (See Sec. 3.2)
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4.3 Hamiltonial of a polypeptide chain

A Hamiltonian function of a polypeptide chain is constructed as a sum of the poten-

tial, kinetic and vibrational energy terms. For a polypeptide chain in a particular

conformational state j consisting of n amino acids and N atoms one obtains:

Hj =
P2

2M
+

1

2

(
I
(j)
1 Ω2

1 + I
(j)
2 Ω2

2 + I
(j)
3 Ω2

3

)
+

3N−6∑
i=1

p2i
2mi

+ U({x}), (4.2)

where P, M , I
(j)
1,2,3, Ω1,2,3, are the momentum of the whole polypeptide, its mass,

its three main momenta of inertia, and its rotational frequencies. pi, xi and mi are

the momentum, the coordinate and the generalized mass describing the motion of

the system along the i-th degree of freedom. U({x}) is the potential energy of the

system, being the function of all atomic coordinates in the system.

One can group all degrees of freedom in a polypeptide in the two classes: ”stiff”

and ”soft” degrees of freedom. The degrees of freedom corresponding to the variation

of bond lengths, angles and improper dihedral angles (see Fig. 3.1) are called as

”stiff”, while degrees of freedom corresponding to the angles φi and ψi are classified

as ”soft” degrees of freedom. The ”stiff” degrees of freedom can be treated within

the harmonic approximation because the energies needed for a noticeable change of

the system structure with respect to these degrees of freedom are about several eV

which is significantly larger than the characteristic thermal energy of the system at

room temperature being on the order of 0.026 eV [18,19,34,36,102].

The Hamiltonian of the polypeptide can be rewritten in terms of the ”soft” and

”stiff” degrees of freedom. Transforming the set of cartesian coordinates {x} to a

set of generalized coordinates {q}, corresponding to the ”soft” and ”stiff” degrees

of freedom one obtains:

Hj =
P2

2M
+

1

2

(
I
(j)
1 Ω2

1 + I
(j)
2 Ω2

2 + I
(j)
3 Ω2

3

)
+

ls∑
i=1

ls∑
j=l

gij
psip

s
j

2

+
ls∑
i=1

lh∑
j=ls+1

gijp
s
ip
h
j +

lh∑
i=ls+1

lh∑
j=ls+1

gij
phi p

h
j

2
+ U({qs}, {qh}), (4.3)

where qs and qh are the generalized coordinates corresponding to the ”soft” and

”stiff” degrees of freedom, and ps and ph are the corresponding generalized momenta.

ls and lh is the number of the ”soft” and ”stiff” degrees of freedom in the system,



62 Partition function of a polypeptide

satisfying the relation 3N − 6 = ls + lh. U({qs}, {qh}) in Eq. (4.3) is the potential

energy of the system as a function of the ”soft” and ”stiff” degrees of freedom. 1/gij

has a meaning of the generalized mass, while gij is defined as follows:

gij =
3N−6∑
λ=1

1

mλ

∂qi
∂xλ

∂qj
∂xλ

. (4.4)

Here xλ and mλ are the generalized coordinate in the cartesian space and the gen-

eralized mass of the system, corresponding to the degree of freedom with index λ.

qi and qj denote the ”soft” or the ”stiff” generalized coordinate in the transformed

space.

The motion of the system with respect to its ”soft” and ”hard” degrees of freedom

occurs on the different time scales as was discussed in [105]. The typical oscillation

frequency corresponding to the ”soft” degrees of freedom is on the order of 100 cm−1,

while for the ”stiff” degrees of freedom it is more than 1000 cm−1 [105]. Thus the

motion of the system with respect to the ”soft” degrees of freedom is uncoupled from

the motion of the system with respect to the ”stiff” degrees of freedom. Therefore

the fifth term in Eq. (4.3), which describes the kinetic energy of the ”stiff” motions

in the polypeptide can be diagonalized. The corresponding set of coordinates {q̃s}
describes the normal vibration modes in the ”stiff” subsystem:

Hj =
P2

2M
+

1

2

(
I
(j)
1 Ω2

1 + I
(j)
2 Ω2

2 + I
(j)
3 Ω2

3

)
+

lh∑
i=1

((
p̃hi
)2

2µhi
+
µhi ω

2
i

(
q̃hi
)2

2

)

+
ls∑
i=1

ls∑
j=1

gij
psip

s
j

2
+ U({χ}) + U({φ, ψ}). (4.5)

Here ωi and µ
h
i are the frequency of the i-th ”stiff” normal vibrational mode and the

corresponding generalized mass. Note, that the fourth term in Eq. (4.3) vanishes

if the ”soft” and the ”stiff” degrees of freedom are uncoupled. The last two terms

in Eq. (4.5) describe the potential energy of the system in respect to the ”soft”

degrees of freedom. For every amino acid there are at least two ”soft” degrees of

freedom, corresponding to the angles φi and ψi (see Fig. 3.1). Some additional

”soft” degrees of freedom involve the rotation of the side radicals in amino acids. A

typical example is the angle χi, which describes the twisting of the side chain radical

along the Cα
i −Cβ

i bond (see Fig. 3.1). The angle χi is defined as the dihedral angle



4.4 Construction of the partition function 63

between the planes formed by the atoms (C
′
i −Cα

i −Cβ
i ) and by the bonds Cα

i −Cβ
i

and Cβ
i −Hβ

i1. Note, that the notations χ, φ and ψ are used for the simplicity and

for the further explanation of the theory. The set of these dihedral angles builds up

the set of ”soft” degrees of freedom of the polypeptide: {qs} ≡ {χ, φ, ψ}.
Generalized masses 1/gij depend on the choice of the generalized coordinates in

the system. However this dependence can be neglected if the system is considered

in the vicinity of its equilibrium state. In this case the motion of the polypeptide

with respect to the ”soft” degrees of freedom can be considered as the motion of the

system of coupled nonlinear oscillators. In the vicinity of the system’s equilibrium

state the generalized mass can be written as:

1

gij
=

1

gij
(
{qsi0}

) + ls∑
k=1

∂ (1/gij)

∂qsk

∣∣∣∣
qsk=q

s
k0

(
qsk − qsk0

)
+ o

(
qsk − qsk0

)
, (4.6)

where qsk0 denotes the value of the k-th ”soft” degree of freedom at the equilibrium

position. The second term in Eq. (4.6) describes the dependence of the generalized

mass on coordinates and can be neglected if the system is in the vicinity of its equi-

librium. All the information about the nonlinearity of the oscillations is contained

in the potential energy functions U({χ}) and U({φ, ψ}) in Eq. (4.5).

The validity of the coordinate-independent mass approximation was also dis-

cussed in Ref. [105]. The accounting for the coordinate dependence of the generalized

masses, gij, is not performed in the thesis and left further investigation.

4.4 Construction of the partition function

The partition function of the polypeptide is constructed within the framework of

classical mechanics due to the large masses of the molecules and high temperatures

of the conformational transitions. However the presented formalism can be easily

generalized for the quantum mechanical description of the system.

All thermodynamic properties of a system are determined by its partition func-

tion, which can be expressed via the system’s Hamiltonian in the following form

[106]:

Z =

∫
exp

(
− H

kT

)
dΓ, (4.7)

where H is the Hamiltonian of the system, k and T are the Boltzmann constant and

the temperature respectively and dΓ is an element of the phase space. Substituting
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(4.5) into (4.7) one obtains an expression for the partition function of a polypeptide

in a particular conformational state j. Thus, the partition function of the system

can be factored as follows:

Z =
1

(2π~)3N
Z1 · Z2 · Z3 · Z4 · Z5, (4.8)

where

Z1 =

∫
exp

(
1

kT

[
− P2

2M
−

(
M2

1

2I
(j)
1

+
M2

2

2I
(j)
2

+
M2

3

2I
(j)
3

)])
d3P · d3Q · d3M · d3Φ =

= 64π5VjM
3/2

√
I
(1)
j I

(2)
j I

(3)
j (kT )3 (4.9)

Z2 =

∫
exp
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− 1

kT

lh∑
i=1
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p̃hi
)2

2µhi
+
µhi ω

2
i

(
q̃hi
)2

2

))
dlh p̃h · dlh q̃h =

(2πkT )lh∏lh
i=1 ωi

,(4.10)

Z3 =

∫
exp

(
− 1

kT

ls∑
i=1

(p̃si )
2

2µsi

)
dls p̃s =

√
(2πkT )

ls
ls∏
i=1

√
µsi , (4.11)

Z4 =

∫
exp

(
−U({χ̃})

kT

)
dlχχ̃s, (4.12)

Z5 =
1

(2π~)(lφ+lψ)/2

∫
exp

(
−U({φ̃, ψ̃})

kT

)
dlφφ̃s · dlψ ψ̃s. (4.13)

Z1, Eq. (4.9), describes the contribution to the partition function originating from

the motion of the polypeptide as a rigid body. Here Vj is the specific volume of the

polypeptide in conformational state j andM is the angular momenta of the polypep-

tide. Z2, Eq. (4.10), accounts for the ”stiff” degrees of freedom in the polypeptide.

Z3, Eq. (4.11), describes the contribution of the kinetic energy of the ”soft” degrees

of freedom to the partition function. Z4, Eq. (4.12), and Z5, Eq. (4.13), describe the

contribution of the potential energy of the ”soft” degrees of freedom to the partition

function. Integrating over the phase space in Eqs. (4.9)-(4.13) is performed over

generalized coordinates and momentum space.
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For the derivation of Eqs. (4.11)-(4.13) the diagonalization of the quadratic

form of the generalized momenta corresponding to the ”soft” degrees of freedom in

Eq. (4.5) is performed and made a transformation qsi → q̃si , p
s
i → p̃si . In Eq. (4.11),

µsi is the generalized mass of the i-th ”soft” normal vibration mode, being related

to gij in Eq. (4.4). χ̃, φ̃ and ψ̃ in Eqs. (4.12)-(4.13) denote the ”soft” twisting de-

grees of freedom, which have been transformed accordingly. q̃si and p̃
s
i are canonical

conjugated coordinates. lχ, lφ and lψ in Eqs. (4.12)-(4.13) is the number of the χ,

φ and ψ degrees of freedom in the system. Note, that ls = lχ + lφ + lψ.

Integrals in Eqs. (4.9)-(4.11) can be evaluated analytically, while for the inte-

gration over the angles χ, φ and ψ in Eqs. (4.12)-(4.13) the knowledge of the exact

potential energy surface of the polypeptide is necessary. However the potential en-

ergy of the polypeptide corresponding to the twisting degrees of freedom χ does not

depend on the conformation of the polypeptide in case of neutral non-polar radicals

in simple amino acids (i.e. alanine, glycine) [105]. Thus, the twisting degrees of

freedom corresponding to the variations of angles χ have a minor influence on the

α-helix↔random coil phase transition. The potential energy of the polypeptide in

respect to these degrees of freedom is well described by the following function, as

follows from the molecular mechanics potential Eq. (4.1):

U(χi) = kχi [1 + cos (3χi)] , (4.14)

where kχi is the stiffness parameter of the potential. Since kχi = kχ, substituting

Eq. (4.14) into Eq. (4.12) and integrating over 2π one obtains:

Z4 =

[
2π exp

(
− kχ
kT

)
I0

(
kχ
kT

)]lχ
= (2π)lχB(kT ), (4.15)

where I0(x) is the the modified Bessel function of the first kind, and B(kT ) =[
exp

(
− kχ
kT

)
I0

(
kχ
kT

)]lχ
.

Substituting Z1-Z5 into Eq. (4.8) one obtains the expression for the partition

function of a polypeptide in a particular conformational state j:
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Zj =

Vj ·M3/2 ·
√
I
(1)
j I

(2)
j I

(3)
j

∏ls
i=1

√
µsi

(2π)
ls
2
−lχπ~3N

∏lh
i=1 ωi

B(kT ) · (kT )3N−3− ls
2 ·

·
∫ π

−π
. . .

∫ π

−π
e−

U({φ,ψ})
kT dφ1 . . . dφn dψ1 . . . dψn =

= Aj ·B(kT ) · (kT )3N−3− ls
2 ·

·
∫ π

−π
. . .

∫ π

−π
e−

U({φ,ψ})
kT dφ1 . . . dφn dψ1 . . . dψn, (4.16)

Aj denotes the factor in the square brackets. Note, that generalized masses µhi are

reduced during the integration and do not enter into the expression of the partition

function.

Since a polypeptide exist in different conformational states, one needs to sum

over the contributions of all possible conformations Zj in order to calculate the

complete partition function of the polypeptide. For an ensemble of N noninteracting

polypeptides the partition function reads as

Z =

(
ξ∑
j=1

Zj

)N

=

(
B(kT ) · (kT )3N−3− ls

2

ξ∑
j=1

Aj

·
∫ π

−π
. . .

∫ π

−π
e−

U({φ,ψ})
kT dφ1 . . . dφn dψ1 . . . dψn

)N

, (4.17)

where Zj is defined in (4.16) and ξ is the total number of possible conformations in a

polypeptide. Equation (4.17) has been derived with a minimum number of assump-

tions about the system. It is general, however, its use for a particular molecular

systems is not so straightforward. Expression (4.17) can be further simplified, if one

makes additional assumptions about the structure of the system.

For the sake of simplicity, further equations are written for only one polypeptide

instead of N. Generalization for the case of N statistically independent polypeptides

can always be done according to (4.17).

One can expect that the factors Aj in (4.17) depend on the chosen conformation

of the polypeptide. However, due to the fact that the values of specific volumes,

momenta of inertia and frequencies of normal vibration modes of the polypeptide in

different conformations are expected to be close [107], the values of Aj in all these
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conformations can be considered as equal, at least in the zero order approximation.

Thus Aj ≡ A.

The amino acids can be treated as statistically independent in any conformation

of the polypeptide. This fact is not obvious and it was not systematically investi-

gated so far. The statistical independence of small neutral non-polar amino acids

(alanine, glycine, etc) in a polypeptide was studied in [75] with the use of time-

correlation functions between different amino acids. In chapter 5, following chapter

of the thesis, this question is addressed for alanine polypeptides and determined

the degree to which amino acids in the polypeptide can be treated as statistically

independent.

With the assumptions made, the partition function of polypeptide reduces to:

Z = A ·B(kT ) · (kT )3N−3− ls
2

ξ∑
j=1

n∏
i=1

∫ π

−π

∫ π

−π
exp

(
−ϵ

(j)
i (φ, ψ)

kT

)
dφdψ, (4.18)

where ϵ
(j)
i (φ, ψ) is the potential energy of i-th amino acid in the polypeptide, being

in one of its ξ conformations denoted with j. The potential energy of the amino

acid is calculated as a function of its twisting degrees of freedom φ and ψ.

In equation (4.18) the partition function is summed over all conformations of the

polypeptide. However, in the case of the α-helix to random coil transition of the

polypeptide, the summation over the polypeptide conformations has to be performed

only over the conformations involved in the transition.

Note that Eq. (4.18) is rather general and can be used for the description of the

folding process in proteins. Indeed, the partition function in Eq. (4.18) is deter-

mined by the potential energy surfaces of amino acid in the native state of a protein

and in the random coil conformation. The potential energy surfaces can be calcu-

lated on the basis of ab initio DFT, combined with molecular mechanics theories as

demonstrated in chapter 5 of the thesis.

Further simplifications of the partition function (4.18) for polypeptide consisting

of the identical amino acids can be achieved if one assumes that each amino acid

in the polypeptide can occupy two states only, below referred as the bounded and

unbounded states. The amino acid is considered to be in the bounded state when

it forms one hydrogen bond with the neighboring amino acids. In the unbounded

state amino acids do not have hydrogen bonds. When the α-helix is formed, all

amino acids are in the bounded state, while in the case of random coil all amino
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acids occupy the unbounded states.

All possible conformations of the polypeptide experiencing the α-helix↔random

coil phase transition can be divided in four different groups:

I. completely folded state of the polypeptide (α-helix), in which all the amino

acids occupy bounded states.

II. partially folded states of the polypeptide (phase co-existence), in which the

core of λ amino acids of the polypeptide occupy bounded states, and n − λ

boundary amino acids are in unbounded states.

III. completely unfolded state of a polypeptide (random coil), in which all the

amino acids are in unbounded states.

IV. phase mixing, in which two or more fragments of a polypeptide are in an α-

helix state, while the amino acids between the fragments are in the random

coil state.

With the assumptions outlined above and assuming the polypeptide to consist of

n identical amino acids the partition function (4.18) of the system can be rewritten

as follows:

Z = A ·B(kT ) · (kT )3N−3− ls
2

[
βZn−1

b Zu + β
n−4∑
i=1

(i+ 1)Zn−i−1
b Z i+1

u + Zn
u+

+

(n−3)/2∑
i=2

βi
n−i−3∑
k=i

(k − 1)!(n− k − 3)!

i!(i− 1)!(k − i)!(n− k − i− 3)!
Zk+3i
b Zn−k−3i

u

 (4.19)

Here the first and the third terms in the square brackets describe the partition func-

tion of the polypeptide in the α-helix and in the random coil phases respectively,

while the second term in the square brackets accounts for situation of the phase

co-existence. The summation in the second term in (4.19) is performed up to n− 4,

because the shortest α-helix consists of 4 amino acids. The last term in the square

brackets accounts for the polypeptide conformations in which a number of amino

acids being in the helix conformation are separated by amino acids being in the ran-

dom coil conformation. The first summation in this term goes over the separated

helical fragments of the polypeptide, while the second summation goes over indi-

vidual amino acids in the corresponding fragment. Polypeptide conformations with
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two or more helical fragments are energetically unfavorable. This fact is discussed

in chapter 5. As shown in the following chapter, the contribution to the partition

function represented by the fourth term in the square brackets in Eq. (4.19) is sig-

nificantly small when compared to the first three terms, for polypeptides containing

less than 100 of amino acids. Therefore, it can be omitted in the construction of the

partition function. Zb and Zu are the contributions to the partition function from a

single amino acid being in the bounded or unbounded states respectively, they read

as:

Zb =

∫ π

−π

∫ π

−π
exp

(
−ϵ

(b)(φ, ψ)

kT

)
dφdψ (4.20)

Zu =

∫ π

−π

∫ π

−π
exp

(
−ϵ

(u)(φ, ψ)

kT

)
dφdψ (4.21)

β =

(∫ π

−π

∫ π

−π
exp

(
−ϵ

(b)(φ, ψ) + ϵ(u)(φ, ψ)

kT

)
dφdψ

)3

, (4.22)

where ϵ(b)(φ, ψ) and ϵ(u)(φ, ψ) are the potential energies of a single amino acid being

in the bounded or in the unbounded states respectively calculated versus the twisting

degrees of freedom φ and ψ. β is a factor accounting for the entropy loss of the helix

initiation. Substituting (4.20), (4.21) and (4.22) into equation (4.19) one obtains

the final expression for the partition function of a polypeptide undergoing an α-

helix↔random coil phase transition. This result can be used for the evaluation of

all thermodynamical characteristics of the system.

ϵ(b)(φ, ψ) and ϵ(u)(φ, ψ) determine the partition function of a polypeptide. These

quantities can be calculated on the basis of ab initio DFT, combined with molecular

mechanics theories as demonstrated in chapter 3 of the thesis.

4.5 Thermodynamical characteristics of a poly-

peptide chain

The first order phase transition is characterized by an abrupt change of the internal

energy of the system with respect to its temperature. In the first order phase

transition the system either absorbs or releases a fixed amount of energy while heat

capacity as a function of temperature has a sharp peak [73,106] (see Fig. 4.1).

The peak in the heat capacity is characterized by the transition temperature

T0, the maximal value of the heat capacity C0, the temperature range of the phase
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Figure 4.1: Temperature dependence of the heat capacity for a system experiencing
a phase transition. The Fig. is adopted from [95].

transition ∆W and the specific heat Q, which is also referred as the latent heat of

the phase transition (see Fig. 4.1).

All these quantities can be calculated if the dependence of the heat capacity on

temperature is known. The temperature dependence of the heat capacity is defined

by the partition function as follows [106]:

C(T ) = kT
∂2T lnZ
∂T 2

. (4.23)

The characteristics of the phase transition are determined by the following equations:

dC(T )

dT

∣∣∣∣
T=T0

= 0 (4.24)

C0 = C(T0) (4.25)

C(T0 ±∆W ) =
C0

2
(4.26)

Q =

∫ ∞

0

C(T )dT. (4.27)

Unfortunately it is not possible to obtain analytical expressions for T0, C0, ∆W and

Q with partition function defined in (4.19) because the integrals in (4.20) and (4.21)
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can not be treated analytically. However, the qualitative behavior of these quantities

can be understood if one assumes that all conformational states of a polypeptide in a

certain phase have the same energy. This model is usually referred to in literature as

the two-energy-level model [108] and it turns out to be very useful for the qualitative

analysis of the phase transitions in polypeptide chains. If one considers the phase

transition between two such phases, the partition function can then be constructed

as follows:

Z ≈ Z0

[
1 + A

η2
η1
e−

∆E
kT

]
, (4.28)

where Z0 is the partition function of the system in the first phase, ∆E = E2−E1 is

the energy difference between the states of the polypeptide in two different phases,

η1 and η2 are the numbers of isomeric states of the polypeptide in the first and in

the second phases respectively. They can also be considered as the population of

the two phases. A = A2/A1 is the coefficient depending on masses, specific volumes,

normal vibration modes frequencies and momenta of inertia of the polypeptide in

the two phases. Substituting equation (4.28) into equation (4.23) one obtains the

expression for the heat capacity in the framework of the two-energy-level model:

C(T ) =
Aη2
η1
∆E2e−(

∆E
kT )

kT 2
(
1 + Aη2

η1
e−(

∆E
kT )
)2 . (4.29)

Substituting equation (4.29) into equations (4.24)-(4.27) and solving them one ob-

tains the expressions for T0, C0, ∆W and Q, which read as:

T0 ≈ ∆E

k ln
(
Aη2
η1

) =
∆E

∆S
, (4.30)

C0 ≈ k

4

[
ln

(
A
η2
η1

)]2
=

∆S2

4k
, (4.31)

∆W ≈
√

64 ln 2

π

∆E

k
[
ln
(
Aη2
η1

)]2 =

√
64 ln 2

π

k∆E

∆S2
, (4.32)

Q =

∫
C(T )dT = ∆E. (4.33)

Here ∆S = k lnAη2−k ln η1 is the entropy change in the system. ∆S and ∆E are the

major thermodynamical parameters in the considered problem, since they determine
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the behavior of the phase transition characteristics. From equations (4.30)-(4.32)

follows, that T0 ∼ ∆E
∆S

, C0 ∼ ∆S2, Q ∼ ∆E and ∆W ∼ ∆E
∆S2 .

The numerical calculation and analysis of various thermodynamical characteris-

tics such as the latent heat or the heat capacity is done in the following chapter of

the thesis.



Chapter 5

Phase transitions in polypeptides

5.1 Introduction

In the previous chapter a novel and general theoretical method for the description of

phase transitions in finite complex molecular systems was introduced. In particular,

it was demonstrated that for polypeptide chains, i.e., chains of amino acids, one can

identify specific twisting degrees of freedom responsible for the folding dynamics of

these amino acid chains. In other words, these degrees of freedom characterize the

transition from a chain in a random coil state into that in an α-helix structure and

vice versa.

The essential domains of the potential energy surface (PES) of polypeptides with

respect to these twisting degrees of freedom have been calculated and thoroughly

analyzed on the basis ab initio density functional theory (DFT). In chapter 4 of the

thesis, it was shown that knowing the PES, one can construct a partition function

of a polypeptide chain, from which it is then possible to extract all essential ther-

modynamical variables and properties, such as the heat capacity, phase transition

temperature, free energy, etc.

In this chapter, the above introduced formalism is further explored and ap-

plied to a detailed analysis of the α-helix↔random coil phase transition in alanine

polypeptides of different lengths. This system was chosen because it has been widely

investigated both theoretically [15,109–124] and experimentally [125–128] during the

last five decades (for review see, e.g. [73,108,129,130]) and thus is a perfect system

for testing a novel theoretical approach.

The theoretical studies of the helix-coil transition in polypeptides have been per-

formed both with the use of statistical mechanics methods [15,109–113,120–124,130]
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and of MD [116–120]. Previous attempts to describe the helix-coil transition in

polypeptide chains using the principles of statistical mechanics were based on the

models suggested in 1960s [15,109–111]. These models were based on the construc-

tion of the polypeptide partition function depending on several parameters and were

widely used in Refs. [73,120–124,129,130] for the description of the helix-coil tran-

sition in polypeptides.

For a comprehensive overview of the relevant work see recent reviews [108, 129,

130] and the book [73].

Experimentally, extensive studies of the helix-coil transition in polypeptides have

been conducted [125–128]. In Ref. [125], the enthalpy change of an α-helix to ran-

dom coil transition for the Ac-Y(AEAAKA)8F-NH2 peptide in water was determined

calorimetrically. The dependence of the heat capacity of the polypeptide on temper-

ature was measured using differential scanning calorimetry. In Refs. [126, 127], UV

resonance Raman spectroscopy was performed on the MABA-[A]5-[AAARA]3-ANH2

peptide. Using circular dichroism methods, the dependence of helicity on temper-

ature was measured. In Ref. [128], the kinetics of the helix-coil transition of the

21-residue alanine polypeptide was investigated by means of infrared spectroscopy.

In this chapter, the PES of polyalanines of different lengths were calculated with

respect to their twisting degrees of freedom. This was done within the framework of

classical molecular mechanics. However, to scrutinize the accuracy of these calcula-

tions, was performed a comparison of the resultant molecular mechanics potential

energy landscapes with those obtained using ab initio density functional theory

(DFT). The comparison was only performed for alanine tripeptide and hexapeptide,

since for larger polypeptides, the DFT calculation becomes increasingly compu-

tationally demanding. Hence for these larger systems, only molecular mechanics

simulations have been used.

The calculated PES was then used to construct a parameter-free partition func-

tion of the polypeptide using the statistical method outlined in the chapter 4. This

partition function was then used to derive various thermodynamical characteristics

of alanine polypeptides as a function of temperature and polypeptide length. The

temperature dependence of the heat capacity, latent heat and helicity of alanine

polypeptides consisting of 21, 30, 40, 50 and 100 amino acids was calculated and

analyzed. A correspondence between the presented ab initio method with the results

of the semiempirical approach of Zimm and Bragg [15] was also established and an-

alyzed. Thus, the key parameters of the Zimm-Bragg theory were determined using
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the presented approach.

Finally, the heat capacity, latent heat and helicity of alanine polypeptides were

calculated using molecular dynamics and the obtained results were compared with

those using the statistical approach. Comparison between the two methods allows

one to establish the accuracy of the statistical method for relatively small molecular

systems, and lets us gauge the feasibility of extending the description to larger molec-

ular objects for which it is especially essential in those cases where MD simulations

are hardly possible due to computational limitations.

The chapter is organized as follows. In section 6.2.1 the final expressions obtained

within the formalism described in chapter 4 are presented and the basic equations

and the set of parameters, which have been used in MD calculations, are introduced.

The results of this chapter are published in [41]. In section 5.3 the results of computer

simulations obtained with the use of developed theoretical method are presented and

discussed. Then the results are compared with results of MD simulations. The work

presented in Sec. 5.3 is published in [42].

5.2 Molecular dynamics simulations

Molecular dynamics (MD) is an approach which is widely used for the study of

dynamics of macromolecular systems [131–133]. Within the framework of MD, one

has to solve the equations of motion for all particles in the system interacting via a

given potential. Since the technique of MD is well known and described in numerous

textbooks [132, 134, 135], here are presented only the basic equations and ideas

underlying this method.

MD simulations usually imply the numerical solution of the Langevin equation

[135–137]:

miai = mir̈i = −∂U(R)

∂ri
− βivi +Ω(t). (5.1)

Here mi, ri, vi and ai are the mass, radius vector, velocity and acceleration of the

i-th atom. U(R) is the potential energy of the system. The second term on the right

hand side describes the viscous force which is proportional to the particle velocity.

The proportionality constant βi = miγ, where γ is the damping coefficient. The

third term is the random force term originating from collisions of the molecule with

atoms in the medium. In the MD formalism the system of Langevin equations for

all particles is being integrated over time.



76 Phase transitions in polypeptides

In this chapter the CHARMM27 force field [18] is used to describe the interac-

tions between atoms. This is a common empirical force field for treating polypep-

tides, proteins and lipids [18, 131, 138, 139]. The set of the parameters used in the

simulations can be found in Refs. [131, 132, 134, 135]. All simulations were per-

formed using the NAMD molecular dynamics program [132], while visualization of

the results was done with VMD [140].

The polypeptide was considered in the NVT canonical ensemble and the heat

capacity of the system was calculated using two different approaches. The first

approach is based on the calculation of the heat capacity from the derivative of the

average energy of the system:

Cv =
∂⟨E⟩
∂T

∣∣∣∣
V=const

, (5.2)

where T is the temperature of the system and ⟨E⟩ is the time-averaged value of the

polypeptide energy. Knowing the value of ⟨E⟩ the heat capacity of the polypeptide

can be calculated. However, since the MD simulations are performed for a limited

number of different temperatures and for the finite time the direct numeric differ-

entiation of ⟨E⟩ can lead to large numerical artifacts in the heat capacity. For a

better analysis the values of ⟨E⟩ can either be interpolated and smoothed using a

standard numerical procedure (see e.g. Ref. [141]).

⟨E⟩ can also be calculated from the partition function of the system as follows:

⟨E⟩ =
∑

iEie
− Ei
kT∑

i e
− Ei
kT

, (5.3)

where Ei is the energy of the ith state, and k is the Bolzmann factor. The summation

in Eq. (5.3) is performed over all accessible states of the system. Substituting

Eq. (5.3) into Eq. (5.2) and performing differentiation one obtains:

Cv =

∑
iE

2
i e

− Ei
kT

∑
i e

− Ei
kT −

∑
iEie

− Ei
kT

∑
iEie

− Ei
kT

kT 2
(∑

i e
− Ei
kT

)2 =

=
⟨E2⟩ − ⟨E⟩2

kT 2
, (5.4)

where ⟨E2⟩ is the average value of the energy square, which is defined as:
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⟨E2⟩ =
∑

iE
2
i e

− Ei
kT∑

i e
− Ei
kT

. (5.5)

Equation (5.4) shows that the heat capacity of a polypeptide can be defined from the

energy fluctuations in the system. In section 5.4 the discussed methods are applied

for the study of heat capacity in alanine, valine and leucine polypeptides.

5.3 α-helix↔random coil phase transition in poly-

alanine

In this section are presented the results of calculations obtained using the statis-

tical mechanics approach and those from the MD simulations. In subsection 5.3.1

is discussed the accuracy of Molecular Mechanics force field as applied to alanine

polypeptides. In subsection 5.3.2 are presented the PESs for different amino acids

in alanine polypeptide calculated versus the twisting degrees of freedom φ and ψ

(see Fig. 3.1). In subsection 5.4.2, the statistical mechanics approach is used for the

description of the α- helix↔random coil phase transition. Here, the results of the

statistical mechanics approach are compared to those obtained fromMD simulations.

In subsection 5.3.7 the statistical independence of amino acids in the polypeptide is

discussed.

5.3.1 Accuracy of the molecular mechanics potential

The PES of alanine polypeptides was calculated using the CHARMM27 force field

[18] that has been parameterized for the description of proteins, in particular poly-

peptides, and lipids. Nevertheless, the level of its accuracy when applied to alanine

polypeptides cannot be taken for granted and has to be investigated. Therefore, the

PESs for alanine tri- and hexapeptide calculated using the CHARMM27 force field

are compared with those calculated using ab initio density functional theory (DFT).

In the DFT approach, the PES of alanine tri- and hexapeptides were calculated as

a function of the twisting degrees of freedom, φ and ψ in the central amino acid of

the polypeptide(see Fig. 3.1). All other degrees of freedom were frozen.

To establish the accuracy of the CHARMM27 force field, were calculated the

PESs of alanine polypeptides in its β-sheet conformation. The geometry of ala-

nine tri- and hexapeptide used in the calculations are shown in Fig. 3.2a and
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Fig. 3.2b respectively. The ab initio calculations were performed in section 3.2.2

using B3LYP, Becke’s three-parameter gradient-corrected exchange functional [63]

with the gradient-corrected correlation functional of Lee, Yang and Parr [65]. The

wave function of all electrons in the system was expanded using a standard basis

set B3LYP/6-31G(2d,p). The PESs calculated within the DFT approach have been

analyzed in section 3.2.4.

The difference between the PESs calculated with the CHARMM27 force field

and with the B3LYP functional is shown in Fig. 5.1 for the alanine tripeptide (left

plot) and for the alanine hexapeptide (right plot).

Figure 5.1: Difference between the PESs calculated with the CHARMM27 force field
and with the B3LYP functional (see Fg. 3.4) for the alanine tripeptide (left) and the
alanine hexapeptide (right). The relative energies are given in eV. The equipotential
lines are shown for the energies -0.10, -0.05 0, 0.05 and 0.1 eV. The Fig. is adopted
from [41].

From Fig. 5.1, one can conclude that the energy difference between the PESs

calculated with the CHARMM27 force field and with the B3LYP functional is less

than 0.15 eV. To describe the relative deviation of the PESs, the relative error of

the two methods is introduced as follows:

η =
2
∫
|EB3LY P (φ, ψ)− ECHARMM27(φ, ψ)|dφdψ∫
|EB3LY P (φ, ψ) + ECHARMM27(φ, ψ)|dφdψ

· 100%, (5.6)
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where EB3LY P (φ, ψ) and ECHARMM27(φ, ψ) are the potential energies calculated

within the DFT and molecular mechanics methods respectively. Calculating η for

alanine tri- and hexapeptide, one obtains: η3×Ala = 27.6 % and η6×Ala = 23.4 %

respectively. These values show that the molecular mechanics approach is reasonable

for a qualitative description of the alanine polypeptide. Note however, that the PES

obtained for alanine hexapeptide within the molecular mechanics method is closer

to the PES calculated within the DFT approach. This occurs because the PESs

ECHARMM27(φ, ψ) and EB3LY P (φ, ψ) of alanine hexapeptide were calculated for the

structure optimized within the DFT approach, while the PESs ECHARMM27 and

EB3LY P of alanine tripeptide were calculated for the structure optimized within the

molecular mechanics method and the DFT approach respectively.

The analysis shows that the molecular mechanics potential can be used to de-

scribe qualitatively the structural and dynamical properties of alanine polypeptides

with an error of about 20 %. The thermodynamical properties of alanine polypep-

tides were calculated with the use of MD method and were compared with the results

obtained from the statistical approach. However, ab initio MD calculations of ala-

nine polypeptides are hardly possible on the time scales when the α-helix↔random

coil phase transition occurs, even for systems consisting of only 4-5 amino acids

(See discussion in Sec. 3.1). Therefore, the MD simulations for alanine polypeptides

were performed using molecular mechanics forcefield. In order to establish the ac-

curacy of the statistical mechanics approach, the PES used for the construction of

the partition function was also calculated with the same method.

5.3.2 Potential energy surface of alanine polypeptide

To construct the partition function (See Eq. (4.19)), one needs to calculate the

PES of a single amino acid in the bounded, ϵ(b)(φ, ψ), and unbounded, ϵ(u)(φ, ψ),

conformations versus the twisting degrees of freedom φ and ψ (see Fig. 3.1). The

potential energies of alanine in different conformations determine the Zb and Zu

contributions to the partition function, defined in Eqs. (4.20)-(4.21).

The PES of an alanine depends both on the conformation of the polypeptide

and on the amino acid index in the chain. The PES for different amino acids of the

21-residue alanine polypeptide calculated as a function of twisting dihedral angles

φ and ψ are shown in Fig. 5.2. These surfaces were calculated with the use of the

CHARMM27 forcefield for a polypeptide in the α-helix conformation. The PESs a),
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Figure 5.2: PESs for different amino acids of alanine polypeptide consisting of 21
amino acids calculated as the function of twisting dihedral angles φ and ψ in: a)
second alanine, b) third alanine, c) fourth alanine d) fifth alanine and e) tenth ala-
nine. Amino acids are numbered starting from the NH2 terminal of the polypeptide.
Energies are given with respect to the lowest energy minimum of the PES in eV.
The equipotential lines are shown for the energies 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4
and 0.2 eV. The Fig. is adopted from [41].

b), c), d) and e) in Fig. 5.2 correspond to the variation of the twisting angles in the

second, third, fourth, fifth and tenth amino acids of the polypeptide respectively.

Amino acids are numbered starting from the NH2 terminal of the polypeptide. The

PES for the amino acids at boundary is not presented because the angle φ is not

defined for it.

On the PES corresponding to the tenth amino acid in the polypeptide (see

Fig. 5.2e), one can identify a prominent minimum at φ = −81◦ and ψ = −71◦. This

minimum corresponds to the α−helix conformation of the corresponding amino acid,

and energetically, the most favorable amino acid configuration. In the α−helix con-

formation the tenth amino acid is stabilized by two hydrogen bonds (see Fig. 5.3).
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With the change of the twisting angles φ and ψ, these hydrogen bonds become bro-

ken and the energy of the system increases. The tenth alanine can form hydrogen

bonds with the neighboring amino acids only in the α−helix conformation, because

all other amino acids in the polypeptide are in this particular conformation. This

fact is clearly seen from the corresponding PES Fig. 5.2e, where all local minima

have energies significantly higher than the energy of the global minima (the energy

difference between the global minimum and a local minimum with the closest energy

is ∆E=0.736 eV, which is found at φ = 44◦ and ψ = −124◦).

Figure 5.3: Alanine polypeptide in the α-helix conformation. Dashed lines show
the hydrogen bonds in the system. Fig. shows that the second alanine forms only
one hydrogen bond, while the fifth alanine forms two hydrogen bonds with the
neighboring amino acids. The Fig. is adopted from [41].

The PES depends on the amino acid index in the polypeptide. This fact is clearly

seen from Fig. 5.2. The three boundary amino acids in the polypeptide form a single

hydrogen bond with their neighbors (see Fig. 5.3) and therefore are more weakly

bounded than the amino acids inside the polypeptide. The change in the twisting

angles φ and ψ in the corresponding amino acids leads to the breaking of hydrogen

bonds, hence increasing the energy of the system. However, the boundary amino

acids are more flexible then those inside the polypeptide chain, and therefore their

PESs are smoother.

Fig. 5.2 shows that the PESs calculated for the fourth, fifth and the tenth amino

acids are very close and have minor deviations from each other. Therefore, the PESs

for all amino acids in the polypeptide, except the boundary ones can be considered
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identical.

Each amino acid inside the polypeptide forms two hydrogen bonds. However

since these bonds are shared by two amino acids, there is only effectively one hydro-

gen bond per amino acid (see Fig. 5.3). Therefore, to determine the potential energy

surface of a single amino acid in the bounded, ϵ(b)(φ, ψ), and unbounded, ϵ(u)(φ, ψ),

conformations is used the potential energy surface calculated for the second amino

acid of the alanine polypeptide (see Fig. 5.2a), because only this amino acid forms

single hydrogen bond with its neighbors (see Fig. 5.3).

The PES of the second amino acid Fig. 5.2a has a global minimum at φ =

−81◦ and ψ = −66◦, that corresponds to the bounded conformation of the alanine.

Therefore the part of the PES in the vicinity of this minimum corresponds to the

PES of the bounded state of the polypeptide, ϵ(b)(φ, ψ). The potential energy of

the bounded state is determined by the energy of the hydrogen bond, which for

an alanine is equal to EHB =0.142 eV. This value is obtained from the difference

between the energy of the global minimum and the energy of the plateaus at φ ∈
(−90◦.. − 100◦) and ψ ∈ (0◦..60◦) (see Fig. 5.2a). Thus, the part of the potential

energy surface which has an energy less then EHB corresponds to the bounded

state of alanine, while the part with energy greater then EHB corresponds to the

unbounded state.

In Fig. 5.4 are presented the potential energy surfaces for alanine in both the

bounded (plot a) and unbounded (plot b) conformations. Both PESs were calculated

from the PES for the second amino acid in the polypeptide, which is shown in plot

c) of Fig. 5.4.

5.3.3 Internal energy of alanine polypeptide

Knowing the PESs for all amino acids in the polypeptide, one can construct the

partition function of the system using Eq. (4.19). Plots a) and b) in Fig. 5.4 show

the dependence of ϵ(b)(φ, ψ) and ϵ(u)(φ, ψ) on the twisting angles φ and ψ, while

ϵ(b) and ϵ(u) define the contributions of the bounded and unbounded states of the

polypeptide to the partition function of the system (see Eqs. (4.20)-(4.21)). The

expressions for Zb and Zu are integrated numerically and the partition function of

the polypeptide is evaluated according to Eq. (4.19). The partition function defines

all essential thermodynamical characteristics of the system as discussed in chapter 4.

The first order phase transition is characterized by an abrupt change of the
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Figure 5.4: PESs for alanine in α−helix (plot a) and random coil conformation
(plot b). The potential energy surface for the second amino acid of the polypeptide
is shown in plot c) and is used to determine the PESs for alanine in α−helix and
random coil conformations. The part of the PES shown in plot c, with energy
less then EHB corresponds to the α−helix conformation (bounded state) of the
alanine, while the part of the potential energy surface with energy greater then EHB
corresponds to the random coil conformation (unbounded state). The energies are
given in eV. The equipotential lines in plot a) are shown for the energies 0.05 and
0.1 and 0.15 eV; in plot b) for the energies 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9 eV; in plot c) for the energies 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4 and 0.2 eV. The
Fig. is adopted from [41].
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internal energy of the system with respect to its temperature. In the first order phase

transition the system either absorbs or releases a fixed amount of energy while the

heat capacity as a function of temperature has a pronounced peak [73,75,106,108].

The manifestation of these peculiarities is studied for alanine polypeptide chains of

different lengths.

Fig. 5.5 shows the dependencies of the internal energy on temperature calculated

for alanine polypeptides consisting of 21, 30, 40, 50 and 100 amino acids. The thick

solid lines correspond to the results obtained using the statistical approach, while

the dots show the results of MD simulations. From Fig. 5.5 it is seen that the

internal energy of alanine polypeptide rapidly increases in the vicinity of a certain

temperature corresponding to the temperature of the first order phase transition.

The value of the step-like increase of the internal energy is usually referred as the

the latent heat of the phase transition denoted as Q. The latent heat is the energy

that the system absorbs at the phase transition. Fig. 5.5 shows that the latent heat

increases with the growth of the polypeptide length. This happens because in the

α-helix state, long polypeptides have more hydrogen bonds than short ones and, for

the formation of the random coil state, more energy is required.

The characteristic temperature region of the abrupt change in the internal en-

ergy (half-wight of the heat capacity peak) characterizes the temperature range of

the phase transition. This quantity is denoted as ∆T . With the increase of the

polypeptide length the dependence of the internal energy on temperature becomes

steeper and ∆T decreases. Therefore, the phase transition in longer polypeptides is

more pronounced. In the following subsection is discussed in detail the dependence

of ∆T on the polypeptide length.

With the molecular dynamics, one can evaluate the dependence of the total en-

ergy of the system on temperature, which is the sum of the potential, kinetic and

vibrational energies. Then the heat capacity can be factorized into two terms: one,

corresponding to the internal dynamics of the polypeptide and the other, to the po-

tential energy of the polypeptide conformation. The conformation of the polypeptide

influences only the term related to the potential energy and the term corresponding

to the internal dynamics is assumed to be independent of the polypeptides confor-

mation.

This factorization allows one to distinguish from the total energy the poten-

tial energy term corresponding to the structural changes of the polypeptide. The

formalism of this factorization is discussed in detail in Sec. 4.4. The energy term
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Figure 5.5: Dependencies of the internal energy on temperature calculated for the
alanine polypeptide chains consisting of 21, 30, 40, 50 and 100 amino acids. Thick
solid lines correspond to the results obtained within the framework of the statis-
tical model. Dots correspond to the results of MD simulations, which are fitted
using Eq. (5.7). The fitting functions are shown with thin solid lines. The fitting
parameters are compiled in Tab. 5.1. The Fig. is adopted from [41].

corresponding to the internal dynamics of the polypeptide neither influence the

phase transition of the system, nor grows linearly with temperature. The term cor-

responding to the potential energy of the polypeptide conformation has a step-like

dependence on temperature that occurs at the temperature of the phase transition.

Since the work is focused on the manifestation of the phase transition, linear term

is subtracted from the total energy of the system and only its non-linear part is

considered. The slope of the linear term was obtained from the dependencies of the

total energy on temperature in the range of 300-450 K◦, which is far beyond the

phase transition temperature (see Fig. 5.5). Note that the dependence shown in

Fig. 5.5 corresponds only to the non-linear potential energy terms.

The heat capacity of the system is defined as the derivative of the total energy
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on temperature. However, as seen from Fig. 5.5 the MD data is scattered in the

vicinity of a certain expectation line. Therefore, the direct differentiation of the

energy obtained within this approach will lead to non-physical fluctuations of the

heat capacity. To overcome this difficulty a fitting function for the total energy of

the polypeptide is defined as follows:

E(T ) = E0 +
∆E

π
arctan

[
T − T0
γ

]
+ aT, (5.7)

where E0, ∆E, T0, γ and a are the fitting parameters. The first and the second terms

are related to the potential energy of the polypeptide conformation, while the last

term describes the linear increase of the total energy with temperature. The fitting

function Eq. (5.7) was used for the description of the total energy of polypeptides

in earlier papers [119,142]. The results of fitting are shown in Fig. 5.5 with the thin

solid lines. The corresponding fitting parameters are compiled in Tab. 5.1.

n E0 ∆E/π γ T0 a
21 11.38±0.24 1.37±0.10 79.4±7.6 670.0±2.0 0.0471±0.0003
30 13.61±0.58 1.50±0.16 37.9±7.3 747.4±3.3 0.0699±0.0008
40 16.80±0.39 1.991±0.083 26.6±2.2 785.7±1.8 0.0939±0.0005
50 19.94±0.79 2.59±0.21 29.4±5.5 786.6±2.9 0.118±0.0010
100 29.95±0.67 4.00±0.16 10.5±2.0 801.1±1.1 0.2437±0.0009

Table 5.1: Parameters used in Eq. (5.7) to fit the results of MD simulations.

Fig. 5.5 shows that the results obtained using the MD approach are in a rea-

sonable agreement with the results obtained from the the statistical mechanics for-

malism. The fitting parameter ∆E corresponds to the latent heat of the phase

transition, while the temperature width of the phase transition is related to the

parameter γ. With the increase of the polypeptides length, the temperature width

of the phase transition decreases (see γ in Tab. 5.1), while the latent heat increases

(see ∆E in Tab. 5.1). These features are correctly reproduced in MD and in the

statistical mechanics approach.

Furthermore, MD simulations demonstrate that with an increase of the polypep-

tide length, the temperature of the phase transition shifts towards higher temper-

atures (see Fig. 5.5). The temperature of the phase transition is described by the

fitting parameter T0 in Tab. 5.1. Note also, that the increase of the phase tran-

sition temperature is reproduced correctly within the framework of the statistical
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mechanics approach, as seen from Fig. 5.5.

Nonetheless, the results of MD simulations and the results obtained using the

statistical mechanics formalism have several discrepancies. As seen from Fig. 5.5 the

latent heat of the phase transition for long polypeptides obtained within the frame-

work of the statistical approach is higher than that obtained in MD simulations.

This happens because within the statistical mechanics approach, the potential en-

ergy of the polypeptide is underestimated. Indeed, long polypeptides (consisting of

more than 50 amino acids) tend to form short-living hydrogen bonds in the random

coil conformation. These hydrogen bonds lower the potential energy of the polypep-

tide in the random coil conformation. However, the ”dynamic” hydrogen-bonds are

neglected in the present formalism of the partition function construction.

Additionally, the discrepancies between the two methods arise due to the limited

MD simulation time and to the small number of different temperatures at which the

simulations were performed. Indeed, for alanine polypeptide consisting of 100 amino

acids 26 simulations were performed, while only 3-5 simulations correspond to the

phase transition temperature region (see Fig. 5.5).

5.3.4 Heat capacity of alanine polypeptide

The dependence of the heat capacity on temperature for alanine polypeptides of

different lengths is shown in Fig. 5.6. The results obtained using the statistical

approach are shown with the thick solid line, while the results of MD simulations

are shown with the thin solid line. Since the classical heat capacity is constant at

low temperatures, this constant value is subtracted out for a better analysis of the

phase transition in the system. The constant contribution to the heat capacity is

denoted as C300 and it is calculated as the heat capacity value at 300 K◦. The C300

values for alanine polypeptides of different length are compiled in the second column

of Tab. 5.2.

As seen from Fig. 5.6, the heat capacity of the system as a function of tem-

perature acquires a sharp maximum at a certain temperature corresponding to the

temperature of the phase transition. The peak in the heat capacity is characterized

by the transition temperature T0, the maximal value of the heat capacity C0, the

temperature range of the phase transition ∆T and the latent heat of the phase tran-

sition Q. These parameters have been extensively discussed in Sec. 4.5. Within the

framework of the two-energy level model describing the first order phase transition,
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Figure 5.6: Dependencies of the heat capacity on temperature calculated for the
alanine polypeptides consisting of 21, 30, 40, 50 and 100 amino acids. The results
obtained using the statistical approach are shown with the thick solid line, while
the results of MD simulations are shown with the thin solid line. Dashed lines show
the heat capacity as a function of temperature calculated within the framework of
the Zimm-Bragg theory [15]. C300 denotes the heat capacity at 300 K◦, which are
compiled in table 5.2. The Fig. is adopted from [41].

n C300 (meV/K) T0 (K) C0 (eV/K) ∆T (K) Q (eV)
21 1.951 740 0.027 90 1.741
30 2.725 780 0.051 75 2.727
40 3.584 805 0.084 55 3.527
50 4.443 815 0.123 50 4.628
100 8.740 835 0.392 29 8.960

Table 5.2: Parameters, characterizing the heat capacity peak in Fig. 5.6 calculated
using the statistical approach. Heat capacity at 300 K, C300, the transition temper-
ature T0, the maximal value of the heat capacity C0, the temperature range of the
phase transition ∆T and the specific heat Q are shown as a function of polypeptide
length, n.
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it is shown that:

T0 ∼ ∆E

∆S
= const

C0 ∼ ∆S2 ∼ n2 (5.8)

Q ∼ ∆E ∼ n

∆T ∼ ∆E

∆S2
∼ 1

n
.

Here ∆E and ∆S are the energy and the entropy changes between the α−helix and

the random coil states of the polypeptide, while n is the number of amino acids in

the polypeptide. Fig. 5.7 shows the dependence of the α-helix↔random coil phase

transition characteristics on the length of the alanine polypeptide. The maximal

heat capacity C0 and the temperature range of the phase transition ∆T are plotted

against the squared number of amino acids (n2) and the inverse number of amino

acids ( 1
n
) respectively, while the temperature of the phase transition T0 and the latent

heat of the phase transition Q are plotted against the number of amino acids (n).

Squares and triangles represent the phase transition parameters calculated using the

statistical approach and those obtained from the MD simulations respectively.

The results obtained within the framework of the statistical model are in a good

agreement with the results obtained on the basis of MD simulations. The relative

deviation of the phase transition parameters calculated in both methods is on the

order of 10% for short polypeptides and 5% for long polypeptides, as follows from

Fig. 5.7. However, since the MD simulations are computationally time demanding

it is difficult to simulate phase transition in large polypeptides. The difficulties arise

due to the large fluctuations which appear in the system at the phase transition

temperature and to the large time scale of the phase transition process. The relative

error of the phase transition temperature obtained on the basis of MD approach is

in the order of 3− 5%, while the relative error of the heat capacity is about 30% in

the vicinity of the phase transition (see Fig. 5.6).

At present, there are no experiments devoted to the study of phase transition

of alanine polypeptides in vacuo, but such experiments are feasible and are already

planned 1. In Ref. [123] the temperature of the α-helix↔random coil phase transition

was calculated. Depending on the parameter set, the temperature of the transition

1Helmut Haberland, Private communication.
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Figure 5.7: Phase transition parameters C0, ∆T , T0 and Q calculated as a func-
tion of polypeptide length. Squares and triangles represent the phase transition
parameters calculated using the statistical approach and those obtained from the
MD simulations respectively. The Fig. is adopted from [41].

ranges from 620 K◦ to 650 K◦ for right-handed α-helix, and from 730 K◦ to 800 K◦

for a left-handed α-helix.

The heat capacity peak is asymmetric. The heat capacity at higher temperatures,

beyond the heat capacity peak, is not zero and forms a plateau (see Fig. 5.6).

The plateau is formed due to the conformations of the amino acids with larger

energies (See Sec. 3.2.5). At T=1000 K◦), the difference in the heat capacity of

the polypeptide is 7.6 · 10−4, 1.2 · 10−3, 1.6 · 10−3, 2.1 · 10−3 and 4.3 · 10−3 eV/K◦

for the Ala21, Ala30, Ala40, Ala50 and Ala100 peptides respectively. The magnitude

of the plateau increases with the growth of the polypeptide length. This happens

because the number of energy levels with high energies rapidly increases for longer

polypeptide chains.
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5.3.5 Calculation of the Zimm-Bragg parameters

An alternative theoretical approach for the study of α-helix↔random coil phase

transition in polypeptides was introduced by Zimm and Bragg [15]. It is based on

the construction of the partition function of a polypeptide involving two parameters

s and σ, where s describes the contribution of a bounded amino acid relative to that

of an unbounded one, and σ describes the entropy loss caused by the initiation of

the α-helix formation.

The Zimm-Bragg theory [15] is semiempirical because it is parameter dependent.

The theoretical method described in the preceding chapter of the thesis (chapter 4)

and which is used in the present chapter is different as it does not include any

parameters and the construction of the partition function is based solely on the PES

of a polypeptide. Therefore, the construction of the partition function as described

in the thesis is free of any parameters, and this is what makes it different from the

models suggested previously. Assuming that the polypeptide has a single helical

region, the partition function derived within the Zimm-Bragg theory, reads as:

Q = 1n + σ
n−3∑
k=1

(n− k − 2)sk, (5.9)

where n+1 is the number amino acids in the polypeptide, s and σ are the parameters

of the Zimm-Bragg theory. The partition function, which is used in the present work

Eq. (4.19) can be rewritten in a similar form:

Z =

1 + βs(T )3
(n−1)−3∑
k=1

(n− k − 3)s(T )k

 ξ(T ). (5.10)

Here n is the number of amino acids in the polypeptide and the functions s(T ) and

ξ(T ) are defined as:

s(T ) =

∫ π
−π

∫ π
−π exp

(
− ϵ(b)(φ,ψ)

kT

)
dφdψ∫ π

−π

∫ π
−π exp

(
− ϵ(u)(φ,ψ)

kT

)
dφdψ

(5.11)

ξ(T ) =

[∫ π

−π

∫ π

−π
exp

(
−ϵ

(u)(φ, ψ)

kT

)
dφdψ

]n
, (5.12)

where ϵ(b)(φ, ψ) and ϵ(u)(φ, ψ) are the potential energies of a single amino acid in the

bounded and unbounded conformations respectively calculated versus its twisting
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degrees of freedom φ and ψ. By comparing Eqs. (5.9) and (5.10), one can evaluate

the Zimm-Bragg parameters as:

σ(T ) = β(T )s(T )3, (5.13)

where β(T ) is defined in Eq. (4.22).

The dependence of the Zimm-Bragg parameters s and σ on temperature is shown

in Fig. 5.8a and Fig. 5.8b respectively. The function −RT ln(s) grows linearly with

an increase in temperature, as seen in Fig. 5.8a. The zero of this function corresponds

to the temperature of the phase transition in an infinitely long polypeptide. In the

present calculation it is 860 K◦ (see black line in Fig. 5.8a). Parameter σ is shown in

the logarithmic scale and has a maximum at T = 560 K◦. Note, that this maximum

does not correspond to the temperature of the phase transition.

The parameters of the Zimm-Bragg theory were considered in earlier papers [120,

123, 143]. In Fig. 5.8a is presented the dependence of parameter s on temperature

calculated in [123] (see squares, triangles and stars in Fig. 5.8b) using a matrix

approach described in Ref. [110]. The energies of different polypeptide conformations

were calculated using the force field described in Ref. [144]. Squares, triangles and

stars correspond to three different force field parameter sets used in Ref. [123], which

are denoted as sets A, B and C. Fig. 5.8a shows that the results obtained in the

thesis are closer to the results obtained using the parameter set C. This figure also

illustrates that the Zimm-Bragg parameter s depends on the parameter set used.

Therefore, the discrepancies between the presented calculation and the calculation

performed in Ref. [123] arise due to the utilization of different force fields.

The Zimm-Bragg parameter σ was also calculated in Ref. [123]. However, it was

not systematically studied for the broad range of temperatures, and therefore it is

not plot in Fig. 5.8b. In Ref. [123] the parameter σ was calculated only for the

temperature of the α-helix↔random coil phase transition ranging from 620 K◦ to

800 K◦. In Ref. [123], it was also demonstrated that parameter σ is very sensitive

to the force field parameters, being in the range 10−9.0 − 10−3.6. In the performed

calculation σ = 10−3.4 at 860 K◦. The dependence of the parameter σ on the force

field parameters was extensively discussed in Ref. [123], where it was demonstrated

that this parameter does not have a strong influence on the thermodynamical char-

acteristics of phase transition.

If the parameters s and σ are known, it is possible to construct the partition



5.3 α-helix↔random coil phase transition in polyalanine 93

Figure 5.8: Dependence of the parameters of the Zimm-Bragg theory [15] s (plot
a) and σ (plot b) on temperature. Parameter s describes the contribution to the
partition function of a bounded amino acid relative to that of an unbounded one.
The parameter σ describes the entropy loss caused by the initiation of the α-helix
formation. Parameter s was also calculated in Ref. [123] using three different force
fields, shown with stars, triangles and squares in plot a. The Fig. is adopted
from [41].

function of the polypeptide in the form suggested by Zimm and Bragg [15], and on

its basis calculate all essential thermodynamic characteristics of the system. The

dependence of the heat capacity calculated within the framework of the Zimm-Bragg

theory is shown in Fig. 5.6 by dashed lines for polypeptides of different length.

From Fig. 5.6 it is seen that results obtained on the basis of the Zimm-Bragg

theory are in a perfect agreement with the results of the statistical approach. The

values of the phase transition temperature and of the maximal heat capacity in both

cases are close. The comparison shows that the heat capacity obtained within the

framework of the Zimm-Bragg model at temperatures beyond the phase transition

window is slightly lower than the heat capacity calculated within the framework of

the statistical model.
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An important difference of the Zimm-Bragg theory from the theory described in

the thesis arises due to the accounting for the states of the polypeptide with more

than one α−helix fragment. These states are often referred to as multihelical states

of the polypeptide. However, their statistical weight in the partition function is

suppressed. The suppression arises because of entropy loss in the boundary amino

acids of a helical fragment. The boundary amino acids have weaker hydrogen bonds

than amino acids in the central part of the α-helix. At the same time the entropy

of such amino acids is smaller than the entropy of an amino acids in the coil state.

These two factors lead to the decrease of the statistical weight of the multihelical

states.

The contribution of the multihelical states to the partition function leads to the

broadening of the heat capacity peak while the maximal heat capacity decreases.

The multihelical states become important in longer polypeptide chains that consist

of more than 100 amino acids. As seen from Fig. 5.6, the maximal heat capacity

obtained within the framework of the Zimm-Bragg model for Ala100 polypeptide is

10% lower than that obtained using the suggested statistical approach. For alanine

polypeptide consisting of less than 50 amino acids the multihelical states of the

polypeptide can be neglected as seen from the comparison performed in Fig. 5.6.

Omission of the multihelical states significantly simplifies the construction and eval-

uation of the partition function.

5.3.6 Helicity of alanine polypeptides

Helicity is an important characteristic of the polypeptide which can be measured

experimentally [125–128]. It describes the fraction of amino acids in the polypep-

tide that are in the α-helix conformation. With the increase of temperature the

fraction of amino acids being in the α−helix conformation decreases due to the α-

helix↔random coil phase transition. The helicity of a polypeptide can be defined

as follows:

fα =

∑n−4
i=0 (i+ 1)(n− i− 1)Zi+1

u Zn−i−1
b

n
(
Zn
u + β

∑n−4
i=1 (i+ 1)Zn+1

u Zn−i−1
b + βZn−1

b Zu
) ,

where n is the number of amino acids in the polypeptide, Zb, Zu are the contri-

butions to the partition function from amino acids in the bounded and unbounded

states defined in Eqs. (4.20) and (4.21) respectively. The dependencies of helicity
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on temperature obtained using the statistical approach for alanine polypeptides of

different length are shown in Fig. 5.9.

Figure 5.9: Dependency of the helicity on temperature obtained using the statistical
approach for alanine polypeptide chains consisting of 21, 30, 40, 50 and 100 amino
acids. The helicity for alanine polypeptide consisting of 21 amino acids obtained
within a framework of MD approach is shown in the inset. The Fig. is adopted
from [41].

On the basis of MD simulations, it possible to evaluate the dependence of helicity

on temperature. Helicity can be defined as the ratio of amino acids being in the α-

helix conformation to the total number of amino acids in the polypeptide, averaged

over the MD trajectory. The amino acid is considered to be in the conformation of an

α-helix if the angles describing its twisting are within the range of φ ∈ [−72◦;−6◦]

and ψ ∈ [0◦;−82◦]. This region was chosen from the analysis of angles φ and

ψ distribution at 300 K◦. The helicity for alanine polypeptide consisting of 21

amino acids obtained within the framework of MD approach is shown in the inset

to Fig. 5.9. From this plot it is seen that at T ≈ 300 K◦, which is far beyond the

temperature of the phase transition, the helicity of the Ala21 polypeptide is 0.82.

The fact that at low temperatures the helicity of the polypeptide obtained within
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the MD approach is smaller than unity arises due to the difficulty of defining the

α-helix state of an amino acid. Thus, the helicity obtained within the MD approach

rolls off at lower temperatures compared to the helicity of the polypeptide of the

same length obtained using the statistical mechanics approach.

The kink in the helicity curve corresponds to the temperature of the phase transi-

tion of the system. As seen from Fig. 5.9, with an increase of the polypeptide length,

the helicity curve is becomes steeper as the phase transition is getting sharper. In

the limiting case of an infinitely long polypeptide chain, the helicity should behave

like a step function. This is yet another feature of a first-order phase transition.

5.3.7 Correlation of different amino acids in the polypeptide

An important question concerns the statistical independence of amino acids in the

polypeptide at different temperatures. The influence of a particular conformation

of one amino acids on the PESs of other amino acids is analyzed in this subsection.

In Fig. 5.10 are presented the deviations of angles φ and ψ from the twisting angles

φ10 and ψ10 in the 10 − th amino acid of alanine polypeptide. These results were

obtained on the basis of MD simulations of the Ala21 polypeptide at 300 K◦ and at

1000 K◦. The deviation of angles φ and ψ is defined as follows:

RMSD(φi) =

j<=M∑
j=1

√
1

M
(φi − φ10)2 (5.14)

RMSD(ψi) =

j<=M∑
j=1

√
1

M
(ψi − ψ10)2,

where i is the amino acid index in the polypeptide and M is the number of MD

simulation steps. Note, that the plots shown in Fig. 5.10 do not depend on the

reference amino acid (the middle amino acid in the polypeptide was used).

The top plot in Fig. 5.10 was obtained at 300 K◦. At this temperature, all

amino acids in the polypeptide are in the α−helix conformation, and the deviation

of angles φ and ψ is less than 16◦ for all amino acids except the boundary ones,

where the relative deviation of the angles φ and ψ is 28◦ and 34◦ respectively. This

happens because, while the boundary amino acids are loosely bounded, the central

amino acids in the polypeptide are close to the minimum that corresponds to an

α−helix conformation. In the α−helix state, all central amino acids are stabilized
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Figure 5.10: The root mean square deviation of angles φ and ψ calculated with
the use of Eq. (5.14) for alanine polypeptide consisting of 21 amino acids. The
calculations were done in respect to the tenth amino acid of the polypeptide for 300
K (top plot) and for 1000 K (bottom plot). The Fig. is adopted from [41].

by two hydrogen bonds, while the boundary amino acids form only one hydrogen

bond.

At 1000 K◦ the polypeptide is, to large extent, found in the random coil phase and

therefore becomes more flexible. In the random coil phase, the stabilizing hydrogen

bonds are broken, and the deviation of angles φ and ψ significantly increases. This

fact is clearly seen in the bottom plot of Fig. 5.10. However at 1000 K, the deviation

of angles φ and ψ in the central and in the boundary amino acids is almost the same,

confirming the assumption that in the random coil phase, short alanine polypeptides

do not build hydrogen bonds.

Another important fact which is worth mentioning is that in the random coil

phase (and in the central part of the α−helix), the deviation of angles φ and ψ

does not depend on the distance between amino acids in the polypeptide chain. For

instance, the deviation between angles in the 10 − th and in the 11 − th amino



98 Phase transitions in polypeptides

acid is almost the same as the deviation between angles in the 10 − th and in the

17 − th amino acid. This fact allows one to conclude that in a certain phase of

the polypeptide (α-helix or random coil), amino acids can be treated as statistically

independent.

5.4 Phase transitions in polypeptides: analysis of

energy fluctuations

The molecular dynamics (MD) approach (an alternative to using statistical physics)

has been widely used during the last decades for studying structural transitions

in polypeptides. Full atomistic molecular dynamics [116–118, 145, 146] and Monte-

Carlo based techniques [119,120,147–149] were used for studying alanine tripeptide

[116], alanine pentapeptide [117], alanine 13- and 15-peptide [145, 150], alanine 21-

peptide [118,120], mixed alanine-rich peptide [147] and Alax peptide (with x=21, 30,

40, 50, 100) (See Sec: 5.4.2). The molecular dynamics simulations were carried out

within the framework of classical mechanics with an empirical Hamiltonian usually

referred as a forcefield.

MD simulations allow one to calculate thermodynamical characteristics of a sys-

tem. Thus, the dependence of the heat capacity on temperature is of primary impor-

tance because it can be measured experimentally and reveals important features of

a phase transition (i.e. the phase transition temperature, temperature range for the

phase transition, the maximum heat capacity). The heat capacity of a system can

be calculated as the derivative of the system’s internal energy or derived from the

energy fluctuations. Both methods have been used [119, 145–149], but no compari-

son between them have been made so far. It is not clear which one is more accurate

and thus preferable. The present section is devoted to the discussion of this ques-

tion and elucidation of the limitations of both theoretical approaches by considering

phase transitions in polypeptides. For this purpose is studied the helix↔random coil

transition in alanine, valine and leucine polypeptides consisting of 30 amino acids

and calculated the heat capacity as a function of temperature. The discrepancies

between the results obtained with the use of the two different theoretical methods

are analyzed.

It is also shown that in the course of the helix↔random coil phase transition the

polypeptide chain can experience several sequential structural changes leading to the

emergence of additional peaks in the temperature dependence of the heat capacity. It
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is illustrated on the example of the Val30 polypeptide, where two phase transitions

can be observed. The origin of both transitions is elucidated by demonstration

that the main transition has all the features of the phase transition leading to the

destruction of the polypeptide secondary structure, while another one is associated

with the order↔disorder transition in side chain radicals.

5.4.1 Fluctuations of internal energy and heat capacity

In this section are presented the results of molecular dynamics simulations performed

for alanine, valine and leucine polypeptides consisting of 30 amino acids. At certain

temperatures all polypeptides undergo the helix↔random coil transition, which can

be understood as a first order phase transition in finite systems.

The structure of the alanine, valine and leucine amino acids is shown in Fig. 5.11.

The three amino acids are neutral and non-polar, and differ from each other by the

side chain radical, which is CH3-, C3H7- and C4H9- in the case of alanine, valine and

leucine respectively.

Figure 5.11: Structure of alanine (a), valine (b) and leucine (c) amino acids. The
Fig. is adopted from [42].

In spite of similarities of the alanine, valine and leucine, the polypeptides con-

sisting of these amino acids have different conformations in their ground states.

Therefore in vacuo alanine polypeptides undergo the α-helix↔random coil tran-

sition, while valine and leucine ones undergo the π-helix↔random coil transition.

These processes are discussed in subsections 5.4.2, 5.4.3 and 5.4.4 respectively.
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Figure 5.12: Dependence of transition energy, Eq. (5.15), on temperature calculated
for the Ala30 polypeptide (a) and corresponding dependence of the heat capacity on
temperature (b). In (a): the squares show the results obtained from MD simulations
and the solid line shows the cubic B-spline interpolation. In (b): the dots show
dependence of the heat capacity calculated via the analysis of polypeptide’s energy
fluctuations; the solid line corresponds to the derivative of the interpolating function
of the transition energy on temperature. The Fig. is adopted from [42].

5.4.2 α-helix↔random coil transition in alanine polypeptide

For the study of helix-coil transition in polypeptides one needs to calculate the

transition energy which is defined as:

Etrans = Etotal − 2Ekinetic, (5.15)

where Etotal is the total energy of the polypeptide and Ekinetic is its kinetic en-

ergy. The transition energy is a convenient characteristic of structural transitions

of a molecular systems as it behaves nonlinearly in the vicinity of the transition

temperature. If all the interactions within the system are harmonic (the potential

energy is proportional to the squared displacement from the equilibrium position)

the average (over time) potential energy is equal to the average kinetic energy of

the system. For harmonic systems the total (internal) energy is proportional to the

temperature. Therefore, transition energy characterizes the deviation of the system

from harmonicity, which is a signature of structural changes in the system, such as

α-helix↔random coil transition.

Figure 5.12a shows the dependence of transition energy on temperature calcu-
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lated for the Ala30 polypeptide. The squares correspond to the results obtained

with MD simulations, while the solid line shows the fitting of MD simulation results

by a cubic B-spline. Figure 5.12a shows that the transition energy of the alanine

polypeptide rapidly increases in the vicinity of certain temperature corresponding

to the temperature of the first order like phase transition. The value of the step-like

growth of the transition energy is the latent heat of the phase transition. It is equal

to the energy absorbed by the system in the course of the phase transition.

The heat capacity of the system can be obtained either as a derivative of the

internal energy with respect to temperature or from analysis of the energy fluctu-

ations (see Sec. 5.2). In Fig. 5.12b is shown dependence of the heat capacity on

temperature calculated using both approaches. As seen from Fig. 5.12b, the heat

capacity of the system as a function of temperature acquires a sharp maximum at

a certain temperature corresponding to the temperature of the phase transition.

The α-helix↔random coil transition in alanine polypeptides has been widely

studied, because alanine polypeptide is a relatively simple system comparing to other

polypeptides (see e.g. Refs. [116,124,125,127] and references therein). According to

the CHARMM27 forcefield the temperature of the α-helix↔random coil transition

in Ala30 polypeptide is 780 K (see Fig. 5.12b). During 500 ns (see the details of

performed MD simulations in appendix 5.4.5.) the polypeptide continuously changes

its conformation between different states with a characteristic transition time of

∼10 ns for the α-helix→random coil and backward transitions. This results in

approximately 50 α-helix↔random coil transitions during the performed simulation

leading to a good statistics of energy fluctuations.

5.4.3 π-helix↔random coil transition in valine polypeptide

The α-helix conformation is not the global energy minimum for valine polypeptide

in vacuo, since π-helix conformation has lower energy, according to the CHARMM27

[18] forcefield. Therefore in this subsection is studied the π-helix↔random coil tran-

sition in valine polypeptide consisting of 30 amino acids. In the π-helix conformation

the N-H group of an amino acid forms a hydrogen bond with the C=O group of an-

other amino acid being placed five residues away, while in the α-helix conformation

this hydrogen bond is formed between the amino acids being four residues away

from each other.

In Fig. 5.13b is shown the dependence of transition energy, Eq. (5.15), on tem-
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Figure 5.13: Dependence of transition energy, Eq. (5.15), on temperature calculated
for the Val30 polypeptide. The squares show the results obtained from MD simula-
tions and the thin line shows the interpolating function. Part (b) shows the results
of the total simulation (see appendix 5.4.5), while part (a) represents the results
obtained in a simulation being of 16 times shorter duration. The Fig. is adopted
from [42].

perature calculated for the Val30 polypeptide (see the details of performed MD

simulations in appendix 5.4.5). The simulation time should be chosen to be long

enough in order to ensure that the heat capacity does not depend on the simulation

time. In Fig. 5.13a are shown the results obtained in a simulation, for which the

simulation time was 16 times shorter than in the case Fig. 5.13b. From the results

of MD simulations presented in Fig. 5.13a and Fig. 5.13b it is possible to calculate

the heat capacity of the system and compare the results of different methods of

its calculation (fluctuation of the energy in the system and differentiation of the

energy).

The dependence of heat capacity on temperature is shown in Fig. 5.14. Fig-

ure 5.14b shows that for the Val30 polypeptide there are two well pronounced peaks,

while in Fig. 5.14a (shorter simulation), the first peak is not clearly seen. In Fig. 5.14,

the dots show the temperature dependence of the heat capacity obtained from the

analysis of polypeptide’s energy fluctuations, while the solid line corresponds to the

derivative of the interpolating function of the transition energy on temperature. The

oscillations of the heat capacity in Fig. 5.14a allow one to estimate the accuracy of
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Figure 5.14: Dependence of the heat capacity on temperature calculated for the
Val30 polypeptide. Plots (a) and (b) correspond to the energy dependencies shown
in Fig. 5.13a and Fig. 5.13b respectively. The dots show dependence of the heat
capacity obtained from the analysis of polypeptides energy fluctuations; the solid
line corresponds to the derivative of the interpolating function of the transition
energy on temperature. The Fig. is adopted from [42].

the methods as being both on the order of 20%.

The energy fluctuation approach is more general than the method based on differ-

entiation of the internal energy on temperature. It does not depend on the number

of data points (simulations at different temperatures) and allows one to determine

the absolute values of the heat capacity. Indeed, for the Val30 polypeptide, 5-9 sim-

ulations are sufficient to reproduce both peaks in the heat capacity on temperature

dependence, whereas the method based on differentiating of the energy of the sys-

tem requires at least twice as many data points. Therefore the energy fluctuations

method is more convenient for calculation of the heat capacity of polypeptides.

As it is seen from Fig. 5.14 the heat capacity of the Val30 polypeptide acquires

two peaks. Each peak is a result of certain structural transformation. The peak at

higher temperature is due to the π-helix↔random coil transition of the polypeptide.

This is accompanied by the breaking of hydrogen bonds in the backbone of the

polypeptide chain. The smaller peak at lower temperature can be explained by

the dynamics of side chain radicals. At low temperature the side chain radicals of

the Val30 polypeptide form the ordered state in which they are aligned along the
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Figure 5.15: Dependence of the average value of the structure parameter ϑi =
⟨cos(ζ(i) − ζ0(i))⟩ calculated for different amino acids along the chain of the Val30
polypeptide at different temperatures. Temperatures are given in Kelvin near each
curve. Figure in the inset gives the definition of angle ζ, with ζ0 being the value of
ζ for equilibrated structure. The Fig. is adopted from [42].

backbone of the polypeptide. With the increase of temperature the ordering of side

chains becomes broken and the radicals rotate. The transition from the ordered

state of side chains to a disordered state can be interpreted as a phase transition.

In order to clarify the nature of the structural transition involving the side chain

radicals the structure parameter of the system is introduced as follows:

ϑi = ⟨cos(ζ(i)− ζ0(i))⟩. (5.16)

Here ζ(i) is the angle between the radical of central amino acid (15-th) and the

radical of i-th amino acid of Val30 polypeptide. The definition of angle ζ is shown

in the inset to Fig. 5.15. The angle ζ0(i) is the value of ζ(i) for the equilibrated

structure. In Fig. 5.15 is shown the dependence of the average value of the structure

parameter ϑi calculated for different amino acids along the chain of Val30 polypeptide

at different temperatures. The structure parameter ϑi characterizes the relative
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alignment of the side chain radicals. For each i, ϑi has a limiting value at low

and at high temperatures (two attractors). For temperatures 0 − 315 K, ϑi ≈ 1,

while for temperatures 660− 1100 K, ϑ is approaching a certain limiting value (see

Fig. 5.15). Note that the distribution of these limiting values oscillate as a function

of amino acid index. These oscillations are due to the secondary structure motif of

the polypeptide.

Temperatures at which ϑi are in between the two limiting values correspond to

the temperature range of the structural transition. Thus, for the Val30 polypep-

tide this temperature range is equal to 465 − 565 K, which is the same range of

temperature as it follows from the heat capacity analysis presented in Fig. 5.14.

Note that there is no second peak in the heat capacity dependence of Ala30

and Leu30 polypeptides (see subsections 5.4.2 and 5.4.4). This can be explained as

follows. In alanine polypeptides the side chain radicals are small and thus weakly

bound. In leucine polypeptides the side chain radicals are larger and therefore the

structural transition is shifted towards higher energies and takes place simultane-

ously with the π-helix↔random coil of the backbone of the chain.

Let us now analyze dependence of the numerical error of the heat capacity on

MD simulation time. For this purpose the following quantity is introduced:

χ(τ) =
∑
i

(
Ci(τ)− Cref

i

)2
. (5.17)

Here the summation is performed over all data points. Ci(τ) is the value of heat

capacity obtained from MD simulation of duration τ . Cref
i is the reference value

of the heat capacity. In the present work it corresponds to the longest simulation

(see appendix 5.4.5). Assuming that χ(τ) obeys the power law, Eq. (5.17) can be

parameterized as follows.

lg(χ) = α+ β lg(τ), (5.18)

where α and β are coefficients, τ is the simulation time. In Fig. 5.16 are shown

the fluctuations of the heat capacity as a function of the simulation time (note the

double decimal logarithm scale). From this figure it is seen that in the central part

of the plot the dependence of lg(χ) on lg(τ) is linear and described by Eq. (5.18).

The corresponding coefficients are: α = 1.39± 0.29, β = −0.89± 0.06, leading to a

conclusion that χ ∼ 1/τ . The deviations from the linear behavior can be attributed

to the following facts: at lg τ < 4.2 the simulation time is too short and insufficient
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Figure 5.16: Dependence of squared deviations of heat capacity χ, Eq. (5.17), as a
function of simulation time τ . Squares show the results of MD simulations, while
the dashed line corresponds to the linear fit, Eq. (5.18), of the relevant data. The
Fig. is adopted from [42].

for statistical description of the system; at lg τ > 4.6 the deviations arise due to the

remaining statistical errors in the reference heat capacity curve Cref .

5.4.4 π-helix↔random coil transition in leucine polypeptide

Similar analysis was performed for leucine polypeptide consisting of 30 amino acids.

Figure 5.17a shows the dependence of the transition energy on temperature which

also shows a step-like dependence, characteristic for the first order like phase tran-

sition. In the case of leucine polypeptide in vacuo this transition corresponds to the

π-helix↔random coil transition.

In Fig. 5.17b is shown the heat capacity on temperature dependence calculated

from the energy fluctuations (dots) and from the differentiation of the energy inter-

polating function (solid line). The use of energy interpolating function allows one to
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Figure 5.17: Dependence of transition energy, Eq. (5.15), on temperature calculated
for the Leu30 polypeptide (a) and the corresponding dependence of the heat capacity
on temperature (b). In (a): the squares show the results of MD simulation, and the
solid line shows the corresponding interpolating function. In (b): the dots show the
dependence of the heat capacity calculated from the energy fluctuations, the solid
line corresponds to the derivative of the energy interpolating function with respect
to temperature. The Fig. is adopted from [42].

reduce the simulation time needed for the description of the phase transition. The

heat capacity on temperature dependence obtained with this method can be used

to identify the ”temperature regions of interest”. In these regions additional more

systematic analysis of heat capacity should be performed with the use of energy

fluctuations method.

Figure 5.17 shows that the phase transition in the leucine polypeptide is more

pronounced than in the alanine and the valine polypeptides. For leucine the height

of the peak C0 is the largest, while the temperature range of the phase transition

∆T are similar for the three polypeptides. Indeed, in both the alanine and the

leucine polypeptide ∆T ≃ 80 K, while C0 = 0.048 eV/K and C0 = 0.078 eV/K for

alanine and leucine polypeptides respectively. This happens because leucine side

chain radical is larger than in alanine and therefore the peak in the heat capacity is

stronger expressed.
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5.4.5 Appendix: parameters of MD simulation

In this appendix are presented the details of MD simulations performed in the

present section. In the case of the Ala30 polypeptide were performed 75 simulations

within the temperature range between 15 K and 1250 K, where simulations were

performed with the temperature step size of 10 K for the 550-950 K and 25 K

otherwise. The simulations in the temperature region 550-950 K were performed for

500 ns, and for 100 ns at other temperatures.

For the Val30 polypeptide were performed 70 simulations within the tempera-

ture range between 15 K and 1250 K. These simulations were performed with the

temperature step size of 10 K for the 600-900 K and 25 K otherwise. Simulations

in the temperature region 600-900 K were performed for 500 ns, and for 100 ns at

other temperatures.

79 of the Leu30 polypeptide were performed, where 32 simulations were done for

the temperature range of 590-910 K and 47 for temperatures 15-565 and 925-1500

K. The simulation time was 100 ns for the temperatures in the range 600-900 K and

20 ns otherwise.

To analyze the results of MD simulations cubic B-splines for energy interpolation

were used, splines were smoothed over the whole temperature range as described in

Ref. [141].



Chapter 6

Folding of proteins in aqueous
environment

6.1 Introduction

Proteins are biological polymers consisting of elementary structural units, amino

acids. Being synthesized at ribosome, proteins are exposed to the cell interior,

where they fold into their unique three dimensional structure. The correct folding

of protein is of crucial importance for the protein’s proper functioning. The current

state-of-the-art in experimental and theoretical studies of the protein folding process

are described in recent reviews and references therein [9, 16,129,151,152].

In this chapter, a novel theoretical method for the description of the protein

folding process is developed. The presented statistical mechanics model treats the

folding↔unfolding phase transition in single-domain proteins as a first-order phase

transition in a finite system. The suggested method is based on the theory developed

for the helix↔coil transition in polypeptides discussed in the previous chapters 3,4,5

of the thesis. A way to construct a parameter-free partition function for a system ex-

periencing α-helix↔random coil phase transition in vacuo was studied in chapter 4.

In chapter 5 were calculated the potential energy surfaces (PES) of polyalanines of

different lengths with respect to their twisting degrees of freedom. This was done

within the framework of classical molecular mechanics. The calculated PES were

then used to construct a parameter–free partition function of a polypeptide and to

derive various thermodynamical characteristics of alanine polypeptides as a function

of temperature and polypeptide length.

In this chapter the partition function of a protein in vacuo is constructed, which

is the further generalization of the formalism developed in section 4.4 of the thesis,



110 Folding of proteins in aqueous environment

accounting for folded, unfolded and prefolded states of the protein. This way of the

construction of the partition function is consistent with nucleation-condensation sce-

nario of protein folding, which is a very common scenario for globular proteins [153]

and implies that at the early stage of protein folding the native-like hydrophobic

nucleus of protein is formed, while at the later stages of the protein folding process

all the rest of amino acids also attain the native-like conformation. This chapter is

based on the work published in [43,44].

For the correct description of the protein folding in water environment it is

of primary importance to consider the interactions between the protein and the

solvent molecules. The hydrophobic interactions are known to be the most important

driving forces of protein folding [154]. In the thesis a way of how one can construct

the partition function of the protein accounting for the interactions with solvent,

i.e., accounting for the hydrophobic effect is presented. The most prominent feature

of the developed approach is that it is developed for concrete systems in contrast to

various generalized and toy-models of protein folding process.

The hydrophobic interactions in the system are treated using the statistical me-

chanics formalism developed in [155] for the description of the thermodynamical

properties of the solvation process of aliphatic and aromatic hydrocarbons in wa-

ter. However, accounting solely for hydrophobic interactions is not sufficient for

the proper description of the energetics of all conformational states of the protein

and one has to take electrostatic interactions into account. In the present work

the electrostatic interactions are treated within a similar framework as described

in [156].

The developed statistical mechanics model of protein folding was applied to two

globular proteins, namely, staphylococcal nuclease and metmyoglobin. These pro-

teins have simple two-stage-like folding kinetics and demonstrate two folding↔un-

folding transitions, refereed as heat and cold denaturation [157,158]. The comparison

of the results of the theoretical model with that of the experimental measurements

shows the applicability of the suggested formalism for an accurate description of

various thermodynamical characteristics in the system, e.g., heat denaturation, cold

denaturation, increase of the reminiscent heat capacity of the unfolded protein, etc.

This chapter is organized as follows. In Sec. 6.2.1 the formalism for the construc-

tion of the partition function of the protein in water environment is presented and

the assumptions made on the system’s properties are justified. In Section 6.3 the

results obtained with the theoretical model for the description of folding↔unfolding
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transition in staphylococcal nuclease and metmyoglobin are discussed.

6.2 Theoretical methods

6.2.1 Partition function of a protein

To study thermodynamic properties of the system one needs to investigate its poten-

tial energy surface with respect to all the degrees of freedom. For the description of

macromolecular systems, such as proteins, efficient model approaches are necessary.

The most relevant degrees of freedom in the protein folding process are the

twisting degrees of freedom along its backbone chain as discussed in chapters 3,4.

These degrees of freedom are defined for each amino acid of the protein except for

the boundary ones and are described by two dihedral angles φi and ψi (for definition

of φi and ψi see Fig. 3.1).

A Hamiltonian of a protein is constructed as a sum of the potential, kinetic and

vibrational energy terms. Assuming the harmonic approximation for the stiff degrees

of freedom it is possible to derive in analogy to Eq. (4.17)the following expression

for the partition function of a protein in vacuo being in a particular conformational

state j :

Zj = Aj(kT )
3N−3− ls

2

∫
φ∈Γj

...

∫
ψ∈Γj

e−ϵj({φ,ψ})/kTdφ1...dφndψ1...dψn, (6.1)

where T is the temperature, k is the Boltzmann constant, N is the total number of

atoms in the protein, ls is the number of soft degrees of freedom, Aj is defined as

follows:

Aj =

Vj ·M3/2 ·
√
I
(1)
j I

(2)
j I

(3)
j

∏ls
i=1

√
µ
s(j)
i

(2π)
ls
2 π~3N

∏3N−6−ls
i=1 ω

(j)
i

 . (6.2)

Aj is a factor which depends on the mass of the protein M , its three main momenta

of inertia I
(1,2,3)
j , specific volume Vj, the frequencies of the stiff normal vibrational

modes ω
(j)
i and on the generalized masses µ

s(j)
i corresponding to the soft degrees of

freedom (See Sec. 4.3). ϵi in Eq. (6.1) describes the potential energy of the system

corresponding to the variation of soft degrees of freedom. Integration in Eq. (6.1)

is performed over a certain part of a phase space of the system (a subspace Γj)
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corresponding to the soft degrees of freedom φ and ψ. The form of the partition

function in Eq. (6.1) allows one to avoid the multidimensional integration over the

whole coordinate space and to reduce the integration only to the relevant parts of

the phase space. ϵj in Eq. (6.1) denotes the potential energy surface of the protein as

a function of twisting degrees of freedom in the vicinity of protein’s conformational

state j. Note that in general the proper choice of all the relevant conformations of

protein and the corresponding set of Γj is not a trivial task.

One can expect that the factors Aj in Eq. (6.1) depend on the chosen confor-

mation of the protein. However, due to the fact that the values of specific volumes,

momenta of inertia and frequencies of normal vibration modes of the system in

different conformations are expected to be close [107], the values of Aj in all con-

formations become nearly equal, at least in the zero order harmonic approximation,

i.e. Aj ≡ A. Another simplification of the integration in Eq. (6.1) comes from

the statistical independence of amino acids: within each conformational state j all

amino acids can be treated statistically independently, i.e. the particular conforma-

tional state of i-th amino acid characterized by angles φi ∈ Γj and ψi ∈ Γj does

not influence the potential energy surface of all other amino acids, and vice versa.

This assumption is well applicable for rigid conformational states of the protein such

as native state. For the native state of a protein all atoms of the molecule move

in harmonic potential in the vicinity of their equilibrium positions. However, in

unfolded states of the protein the flexibility of the backbone chain leads to signif-

icant variations of the distances between atoms, and consequently to a significant

variation of interactions between atoms. Accurate accounting (both analytical and

computational) for the interactions between distant atoms in the unfolded state of a

protein is extremely difficult (see Ref. [159] for analytical treatment of interactions

in unfolded states of a protein). In this work all amino acids in unfolded state of a

protein are considered as moving in the identical mean field created by all the amino

acids. The corrections to this approximation is left for further considerations.

With the above mentioned assumptions the partition function of a protein Zp

(without any solvent) reads as:

Zp = A · (kT )3N−3− ls
2

ξ∑
j=1

a∏
i=1

∫ π

−π

∫ π

−π
exp

(
−ϵ

(j)
i (φi, ψi)

kT

)
dφidψi, (6.3)

where the summation over j includes all ξ statistically relevant conformations of the

protein, a is the number of amino acids in the protein and ϵ
(j)
i is the potential energy
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surface as a function of twisting degrees of freedom φi and ψi of the i-th amino acid

in the j-th conformational state of the protein. The exact construction of ϵ
(j)
a (φi, ψi)

for various conformational states of a particular protein will be discussed below. The

angles φ and ψ are considered as the only two soft degrees of freedom in each amino

acid of the protein, and therefore the total number of soft degrees of freedom of the

protein ls = 2a.

Partition function in Eq. (6.3) can be further simplified if one assumes (i) that

each amino acid in the protein can exist only in two conformations: the native state

conformation and the random coil conformation; (ii) the potential energy surfaces

for all the amino acids are identical. This assumption is applicable for both the

native and the random coil state. It is not very accurate for the description of ther-

modynamical properties of single amino acids, but is reasonable for the treatment

of thermodynamical properties of the entire protein. The judgment of the quality

of this assumption could be made on the basis of comparison of the results obtained

with its use with experimental data. Such comparison is performed in Sec. 6.3 of

the thesis.

Amino acids in a protein being in its native state vibrate in a steep harmonic

potential. vibrate in a steep harmonic potential. The potential energy profile of an

amino acid in the native conformation should not be very sensitive to the type of

amino acid and thus can be taken as, e.g., the potential energy surface for an alanine

amino acid in the α-helix conformation (see Fig. 5.2). Using the same arguments the

potential energy profile for an amino acid in unfolded protein state can be approxi-

mated by e.g. the potential of alanine in the unfolded state of alanine polypeptide

(see Sec. 5.3.2 for discussion of alanine’s potential energy surfaces). Indeed, for

an unfolded state of a protein it is reasonable to expect that once neglecting the

long-range interactions all the differences in the potential energy surfaces of various

amino acids arise from the steric overlap of the amino acids’s radicals. This is clearly

seen on alanine’s potential energy surface at values of φ > 0◦ presented in Fig. 5.2).

But the part of the potential energy surface at φ > 0◦ gives a minor contribution

to the entropy of amino acid at room temperature. This fact allows one to neglect

all the differences in potential energy surfaces for different amino acids in an un-

folded protein, at least in the zero order approximation. This assumption should

be especially justified for proteins with the rigid helix-rich native structure. The

staphylococcal nuclease, which is studied here has definitely high α-helix content.

Another argument which allows to justify the assumption made for a wider family
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of proteins is the rigidity of the protein’s native structure. Below, the assumptions

made are validated by the comparison of the results of the theoretical model with

the experimental data for α/β rich protein metmyoglobin obtained in [158].

For the description of the folding ↔ unfolding transition in small globular pro-

teins obeying simple two-state-like folding kinetics the protein is considered to exist

in one of three states: completely folded state, completely unfolded state and par-

tially folded state where some amino acids from the flexible regions with no promi-

nent secondary structure are in the unfolded state, while other amino acids are in

the folded conformation. With this assumption the partition function of the protein

reads as:

Zp = Z0 +
a∑

i=a−κ

κ!

(i− (a− κ))!(a− i)!
Zi, (6.4)

where Zi is defined in Eq. (6.1), Z0 is the partition function of the protein in com-

pletely unfolded state, a is the total number of amino acids in a protein and κ is the

number of amino acids in flexible regions. The factorial term in Eq. (6.4) accounts

for the states in which various amino acids from flexible regions independently attain

the native conformation. The summation in Eq. (6.4) is performed over all partially

folded states of the protein, where a − κ is the minimal possible number of amino

acids being in the folded state. The factorial term describes the number of ways to

select i− (a− κ) amino acids from the flexible region of the protein consisting of κ

amino acids attaining native-like conformation.

Finally, the partition function of the protein in vacuo has the following form:

Zp = Z̃p · A(kT )3N−3−a, (6.5)

where

Z̃p = Za
u +

a∑
i=a−κ

κ!Zi
bZ

a−i
u exp (i · E0/kT )

(i− (a− κ))!(a− i)!
(6.6)

Zb =

∫ π

−π

∫ π

−π
exp

(
−ϵb(φ, ψ)

kT

)
dφdψ (6.7)

Zu =

∫ π

−π

∫ π

−π
exp

(
−ϵu(φ, ψ)

kT

)
dφdψ. (6.8)

Here was omitted the trivial factor describing the motion of the protein center of

mass, which is of no significance for the problem considered, ϵb(φ, ψ) (b stands for
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bound) is the potential energy surface of an amino acid in the native conformation

and ϵu(φ, ψ) (u stands for unbound) is the potential energy surface of an amino

acid in the random coil conformation. The potential energy profile of an amino

acid is calculated as a function of its twisting degrees of freedom φ and ψ. ϵ0b
and ϵ0u denote the global minima on the potential energy surfaces of an amino acid

in folded and in unfolded conformations respectively. The potential energy of an

amino acid then reads as ϵ0u,b + ϵu,b(φ, ψ). E0 in Eq. (6.6) is defined as the energy

difference between the global energy minima of the amino acid potential energy

surfaces corresponding to the folded and unfolded conformations, i.e. E0 = ϵ0u − ϵ0b .

The potential energy surfaces for amino acids as functions of angles φ and ψ were

calculated and thoroughly analyzed in chapter 5.

In nature proteins perform their function in the aqueous environment. There-

fore the correct theoretical description of the folding↔unfolding transition in water

environment should account for solvent effects.

6.2.2 Partition function of a protein in water environment

In this section E0 is evaluated and the partition function for the protein in water

environment is constructed.

The partition function of the infinitely diluted solution of proteins Z can be

constructed as follows:

Z =

ξ∑
j=1

Z̃(j)
p Z

(j)
W , (6.9)

where Z
(j)
W is the partition function of all water molecules in the j-th conformational

state of a protein and Z̃
(j)
p is the partition function of the protein in its j-th con-

formational state, in which the factor describing the contribution of stiff degrees

of freedom in the system is further omitted. This is done in order to simplify the

expressions, because stiff degrees of freedom provide a constant contribution to the

heat capacity of the system since the heat capacity of the ensemble of harmonic

oscillators is constant. Below for the simplicity of notations is put Z̃p ≡ Zp.

There are two types of water molecules in the system: (i) molecules in pure

water and (ii) molecules interacting with the protein. Only the water molecules

being in the vicinity of the protein’s surface can be considered as involved in the

folding↔unfolding transition, because they are affected by the variation of the hy-
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drophobic surface of a protein. This surface is equal to the protein’s solvent accessi-

ble surface area (SASA) of the hydrophobic amino acids. The number of interacting

molecules is proportional to SASA and include only the molecules from the first

protein’s solvation shell. This area depends on the conformation of the protein.

The main contribution to the energy of the system caused by the variation of the

protein’s SASA is associated with the side-chain radicals of amino acids because the

contribution to the free energy assosiated with solvation of protein’s backbone is

small [73]. Thus, main attention is payed to the accounting for the SASA change

arising due to the solvation of side chain radicals.

All water molecules are treated as statistically independent, i.e. the energy

spectra of the states of a given molecule and its vibrational frequencies do not depend

on a particular state of all other water molecules. Thus, the partition function of

the whole system Z can be factorized and reads as:

Z =

ξ∑
j=1

Z(j)
p ZYc(j)

s ZNt−Yc(j)
w , (6.10)

where ξ is the total number of states of a protein, Zs is the partition function of a

water molecule affected by the interaction with the protein and Zw is the partition

function of a water molecule in pure water. Yc(j) is the number of water molecules

interacting with the protein in the j-th conformational state. Nt is the total number

of water molecules in the system.To simplify the expressions, the water molecules

that do not interact with the protein in any of its conformational states are not

accounted in further equations, i.e. Nt = maxj{Yc(j)}.
The construction of the partition function of water is based on the formalism

developed in [155]. Here only to the most essential details of that work are presented.

The partition function of a water molecule in pure water reads as:

Zw =
4∑
l=0

[ξlfl exp(−El/kT )] , (6.11)

where the summation is performed over 5 possible states of a water molecule (the

states in which water molecule has 4,3,2,1 or 0 hydrogen bonds with the neighboring

molecules). El are the energies of these states and ξl are the combinatorial factors

being equal to 1,4,6,4,1 for l = 0, 1, 2, 3, 4, respectively. They describe the number

of choices to form a given number of hydrogen bonds. fl in Eq. (6.11) describes
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Number of hydrogen bonds 0 1 2 3 4
Energy level, Ei (kcal/mol) 6.670 4.970 3.870 2.030 0
Energy level, Es

i (kcal/mol) 6.431 4.731 3.631 1.791 -0.564

Translational frequencies, ν
(T )
i , cm−1 26 86 61 57 210

Librational frequencies, ν
(L)
i , cm−1 197 374 500 750 750

Table 6.1: Parameters of the partition function of water according to [155]

the contribution due to the partition function arising due to the translation and

libration oscillations of the molecule. In the harmonic approximation fl are equal

to:

fl =
[
1− exp(−hν(T )l /kT )

]−3 [
1− exp(−hν(L)l /kT )

]−3

, (6.12)

where ν
(T )
l and ν

(L)
l are translation and libration motions frequencies of a water

molecule in its l-th state, respectively. These frequencies are calculated in Ref. [155]

and are given in Table 6.1. The contribution of the internal vibrations of water

molecules is not included in Eq. (6.11) because the frequencies of these vibrations

are practically not influenced by the interactions with surrounding water molecules.

The partition function of a water molecule from the protein’s first solvation shell

reads as:

Zs =
4∑
l=0

[ξlfl exp(−Es
l /kT )] , (6.13)

where fl are defined in Eq. (6.12) and Es
l denotes the energy levels of a water

molecule interacting with aliphatic hydrocarbons of protein’s amino acids. Values

of energies Es
l are given it Table 6.1. For simplicity all side-chain radicals of a pro-

tein are treated as aliphatic hydrocarbons because most of the protein’s hydropho-

bic amino acids consist of aliphatic-like hydrocarbons. It is possible to account for

various types of side chain radicals by using the experimental results of the mea-

surements of the solvation free energies of amino acid radicals from Ref. [14] and

associated works. However, this correction will imply the reparametrization of the

theory presented in [155] and will lead to the introduction of ∼ 20 · 5 additional

parameters. Here such a task is not performed since this kind of improvement of

the theory would smear out the understanding of the principal physical factors un-

derlying the protein folding↔unfolding transition.
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The theoretical model also accounts for the electrostatic interaction of protein’s

charged groups with water. The presence of electrostatic field around the protein

leads to the reorientation of H2O molecules in the vicinity of charged groups due to

the interaction of dipole moments of the molecules with the electrostatic field. The

additional factor arising in the partition function (6.11) of the molecules reads as:

ZE =

(
1

4π

∫
exp

(
−E · d cos θ

kT

)
sin θdθdφ

)α
, (6.14)

where E is the strength of the electrostatic field, d is the absolute value of the

H2O molecule dipole moment, α is the ratio of the number of water molecules that

interact with the electrostatic field of the protein (NE) to the number of water

molecules interacting with the surface of the amino acids from the inner part of the

protein while they are exposed to water when the protein is being unfolded (Nw),

i.e. α = NE/Nw. Note that the effects of electrostatic interaction turn out to be

more pronounced in the folded state of the protein. This happens because in the

unfolded state of a protein opposite charges of amino acid’s radicals are in average

closer in space due to the flexibility of the backbone chain, while in the folded state

the positions of the charges are fixed by the rigid structure of a protein.

Integrating Eq. (6.14) allows to write the factor ZE for the partition function of

a single H2O molecule in pure water in the form:

ZE =

(
kT sinh

[
Ed
kT

]
Ed

)α

. (6.15)

This equation shows how the electrostatic field enters the partition function. In

general, E depends on the position in space with respect to the protein. However,

here this dependence is neglected and instead the parameter E is treated as an

average, characteristic electrostatic field created by the protein.

Let us denote by Ns the number of water molecules interacting with the proteins

surface in its folded state i.e. Nt = Ns + Nw; where Nt is defined in Eq (6.10).

The number of water molecules interacting with the protein (Yc) can be considered

as being linearly dependent on the number of amino acids being in the unfolded

conformation, i.e. Yc = Ns + iNw/a, where i is the number of the amino acids in

the unfolded conformation and a is the total number of amino acids in the protein.

Thus, the partition function (6.10) with the accounting for the factor (6.15) reads

as:
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Z = ZNs
s ·

ξ∑
j=1

(
ZbZ

Nw/a
w Z

Nw/a
E exp (i · E0/kT )

)i(j) (
ZuZ

Nw/a
s

)a−i(j)
, (6.16)

where i(j) denotes the number of the amino acids being in the folded conformation

when the protein is in the j-th conformational state. Accounting for the statistical

factors for amino acids being in the folded and unfolded states, similarly to how

it was done for the vacuum case (see Eq. (6.6)), one derives from Eq. (6.16) the

following final expression:

Z = (Zs)
Ns × (6.17)

×

[
Za
uZ

Nw
s +

a∑
i=a−κ

κ! exp (i · E0/kT )

(i− (a− κ))!(a− i)!

(
ZbZ

Nw/a
w Z

Nw/a
E

)i
(ZuZ

Nw/a
s )a−i

]
,

where the term in the square brackets accounts for all statistically significant con-

formational states of the protein.

Having constructed the partition function of the system one can evaluate with

its use all thermodynamic characteristics of the system, such as e.g. entropy, free

energy, heat capacity, etc. The free energy (F ) and heat the capacity (c) of the

system can be calculated from the partition function as follows:

F (T ) = −kT lnZ(T ), (6.18)

c(T ) = −T ∂
2F (T )

∂T 2
. (6.19)

In this chapter the dependence of protein’s heat capacity on temperature is

analyzed and the predictions of the model with available experimental data are

compared.

6.3 Results and discussion

In this section the dependencies of the heat capacity on temperature is calculated

for two globular proteins metmyoglobin and staphylococcal nuclease and the results

are compared with experimental data from [157,158].

The structures of metmyoglobin and staphylococcal nuclease proteins are shown

in Fig. 6.1. These are relatively small globular proteins consisting of ∼150 amino
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acids. Under certain experimental conditions (salt concentration and pH) the met-

myoglobin and the staphylococcal nuclease experience two folding↔unfolding tran-

sitions, which induce two peaks in the dependency of heat capacity on temperature

(see further discussion). The peaks at lower temperature are due to the cold denat-

uration of the proteins. The peaks at higher temperatures arise due to the ordinary

folding↔unfolding transition. The availability of experimental data for the heat ca-

pacity profiles of the mentioned proteins, the presence of the cold denaturation and

simple two-stage-like folding kinetics are the reasons for selecting these particular

proteins as case studies for the verification of the developed theoretical model.

Figure 6.1: a) Structure of staphylococcal nuclease (PDB ID 1EYD [160]), and b)
horse heart metmyoglobin (PDB ID 1YMB [161]). Images have been rendered using
VMD program [140]. The Fig. is adopted from [44].

6.3.1 Heat capacity of staphylococcal nuclease

Staphylococcal or micrococcal nuclease (S7 Nuclease) is a relatively nonspecific en-

zyme that digests single-stranded and double-stranded nucleic acids, but is more

active on single-stranded substrates [162]. This protein consists of 149 amino acids.

It’s structure is shown in Fig. 6.1a.

To calculate the SASA of staphylococcal nuclease in the folded state the 3D struc-

ture of the protein was taken from the Protein Data Bank [22] (PDB ID 1EYD).

Using CHARMM27 [18] forcefield and NAMD program [132] the structural opti-
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mization of the protein was performed and SASA was calculated with the solvent

probe radius 1.4 Å.

The value of SASA of the side-chain radicals in the folded protein conformation is

equal to Sf =6858 Å2. In order to calculate SASA for an unfolded protein state, the

value of all angles φ and ψ were put equal to 180◦, corresponding to a fully stretched

conformation. Then, the optimization of the structure with the fixed angles φ and

ψ was performed. The optimized geometry of the stretched molecule has a minor

dependence on the value of dielectric susceptibility of the solvent, therefore the

value of dielectric susceptibility was chosen to be equal to 20, in order to mimic the

screening of charges by the solvent. SASA of the side-chain radicals in the stretched

conformation of the protein is equal to Su =15813 Å2.

The change of the number of water molecules those interacting with the protein

due to the unfolding process can be calculated as follows:

Nw = (Su − Sf )n
2/3, (6.20)

where Su = 15813 Å2 and Sf = 6858 Å2 are the SASA of the protein in unfolded and

in folded conformations, respectively and n is the density of the water molecules.

The volume of one mole of water is equal to 18 cm3, therefore n ≈ 30 Å−3

To account for the effects caused by the electrostatic interaction of water mole-

cules with the charged groups of the protein it is necessary to evaluate the strength

of the average electrostatic field E in Eq. (6.15). The strength of the average field

can be estimated as E · d = kT , where d is the dipole moment of a water molecule,

k is Bolzmann constant and T=300 K is the room temperature. According to this

estimate the energy of characteristic electrostatic interaction of water molecules is

equal to the thermal energy per degree of freedom of a molecule.

The total number of water molecules that interact with the electrostatic field of

the protein can be estimated from the known Debye screening length of a charge in

electrolyte as follows:

NE = Nq
4πρ

3
λ3d, (6.21)

whereNq is the number of charged groups in the protein, ρ is the density of water and

λ is the Debye screening length. Debye screening length of the symmetric electrolyte

can be calculated as follows [163]:
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λd =

√
ϵϵ0kT

2NAe2I
, (6.22)

where ϵ0 is the permittivity of free space, ϵ is the dielectric constant, NA is the

Avogadro number, e is the elementary charge and I is is the ionic strength of the

electrolyte.

The experiments on denaturation of staphylococcal nuclease and metmyoglobin

were performed in 100 mM ion buffer of sodium chloride and 10mM buffer of sodium

acetate respectively [157, 158]. The Debye screening length in water with 10 mM

and 100 mM concentration of ions is λd =30 Å and λd =10 Å at room temperature

respectively.

The described method allows to estimate the number of water molecules (NE)

interacting with electric filed created by the charged groups of a protein. It should

be considered as qualitative estimate since the average electric field was assumed

to be constant within a sphere of the radius λd, but in fact it experiences some

variations. Thus, at the distances ∼15 Å from the point charge the interaction

energy of a H2O molecule with the electric field becomes equal to ∼ 0.02 kT (for

this estimate the linear growing distance-dependent dielectric susceptibility ϵ = 6R

was used as derived in [164] for the atoms fully exposed to the solvent). However,

the more accurate analysis accounting for the spatial variation of the electric field

will not change significantly the results of the analysis reported here, because it is

based on the physically correct picture of the effect and the realistic values of all

the physical quantities. At physiological conditions staphylococcal nuclease has 8

charged residues [165]. The value of α for this protein varies within the interval

from 1.29 to 31.27 for λd ∈[10..30] Å. In the numerical analysis the characteristic

value of α equal to 2.5 was used.

Note that number of molecules interacting with the electrostatic field NE and the

strength of the electrostatic field E should be considered as the effective parame-

ters of the model. In this work the accurate accounting for the spatial dependence

of the electrostatic field is not performed. Instead, the parameters α and E are

introduced. These parameters can be interpreted as effective values of the number

of H2O molecules and the strength of the electrostatic field correspondingly. Men-

tion, that the number of water molecules α and the strength of the field E are not

independent parameters of the model because by choosing the higher value of E and

smaller value of α or vice versa one can derive the same heat capacity profile.
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pH value 7.0 5.0 4.5 3.88 3.23

E0 (kcal/mol) 0.789 0.795 0.803 0.819 0.890

Table 6.2: Values of E0 for staphylococcal nuclease at different values of pH of the
solvent

The dependencies of the heat capacity profiles on the values of the parameters

α and E are not investigated in the present work. Below the investigation of the

dependence of the protein heat capacity on the energy E0 is performed at the fixed

value of α and E equal to 2.5 and 0.58 kcal/mol respectively.

An important parameter of the model is the energy difference between the two

states of the protein normalized per one amino acid, E0 introduced in Eq. (6.6). This

parameter describes both the energy loss due to the separation of the hydrophobic

groups of the protein which attract in the native state of the protein due to Van-

der-Waals interaction and the energy gain due to the formation of Van-der-Waals

interactions of hydrophobic groups of the protein with H2Omolecules in the protein’s

unfolded state. Also, the difference of the electrostatic energy of the system in the

folded and unfolded states is accounted for in E0. The difference of the electrostatic

energy may depend on various characteristics of the system, such as concentration

of ions in the solvent and its pH, on the exact location of the charged sites in the

native conformation of the protein and on the probability distribution of distances

between charged amino acids in the unfolded state. Thus, exact calculation of E0

is rather difficult. It is a separate task which is not addressed in the present thesis.

Instead, in the current study the energy difference between the two phases of the

protein is considered as a parameter of the model. E0 is treated as being dependent

on external properties of the system, in particular on the pH value of the solution.

Another characteristic of the protein folding↔unfolding transition is its cooper-

ativity. In the model it is described by the parameter κ in Eq. (6.4). κ describes

the number of amino acids in the flexible regions of the protein. The staphylococcal

nuclease possesses a prominent two-stage folding kinetics, therefore only 5-10% of

amino acids is in the protein’s flexible regions. Thus, the value of κ for this protein

is small. It can be estimated as being equal to 149 · 7% ≈ 10 amino acids.

The values of E0 for staphylococcal nuclease at different values of pH are given

in Table 6.2.

For the analysis of the variation of the thermodynamic properties of the system
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during the folding process one can omit all the contributions to the free energy of

the system that do not alter significantly in the temperature range between -50◦C

and 150◦. Therefore, from the expression for the total free energy of the system F

one can subtract all slowly varying contributions F0 as follows:

δF = F − F0 = −(kT lnZ − kT lnZ0) = −kT ln

(
Z

Z0

)
. (6.23)

From Eq. (6.23) follows that the subtraction of F0 corresponds to the division of the

total partition function Z by the partition function of the subsystem (Z0) with slowly

varying thermodynamical properties. Therefore, in order to simplify the expressions,

one can divide the partition function in Eq. (6.17) by the partition function of fully

unfolded conformation of a protein (by Za
uZ

Nw
s ) and by the partition function of Ns

free water molecules (by ZNs
w ). Thus, Eq. (6.17) can be rewritten as follows:

Z =

(
Zs
Zw

)Ns (
1 +

a∑
i=a−κ

κ! exp (i · E0/kT )

(i− (a− κ))!(a− i)!

(
Zb
Zu

)i(
ZwZE
Zs

)iNw/a)
. (6.24)

With the use of Eq. (6.19) on can calculate the heat capacity of the system as

follows:

c(T ) = A+B(T − T0)− T
∂2F (T )

∂T 2
, (6.25)

where the factors A and B are responsible for the absolute value and the inclination

of the heat capacity curve respectively. These factors account for the contribution

of stiff harmonic vibrational modes in the system (factor A) and for the unharmonic

correction to these vibrations (factors B and T0). The contribution of protein’s

stiff vibrational modes and the heat capacity of the fully unfolded conformation of

protein is also included into these factors. In the numerical analysis the values of A,

B and T0 were adjusted in order to match experimental measurements. However,

factors A, B and T0 should not be considered as parameters of the model since their

values are not related to the thermodynamic characteristics of the folding↔unfolding

transition and depend not entirely on the properties of the protein but also on the

properties of the solution, protein and ion concentrations, etc.

In the calculations for staphylococcal nuclease the values of A = 1.25 JK−1g−1,

B = 6.25 · 10−3 JK−2g−1 and T0 =323 ◦K were used in Eq. (6.25).
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The dependencies of heat capacity on temperature calculated for staphylococcal

nuclease at different pH values are presented in Fig. 6.3.1 by solid lines. The results

of experimental measurements form Ref. [157] are presented by symbols. From

Fig. 6.3.1 it is seen that staphylococcal nuclease experience two folding↔transitions

in the range of pH between 3.78 and 7.0. At the pH value 3.23 no peaks in the heat

capacity is present. It means that the protein exists in the unfolded state over the

whole range of experimentally accessible temperatures.

Figure 6.2: Dependencies of the heat capacity on temperature for staphylococcal
nuclease (see Fig. 6.1a) at different values of pH. Solid lines show results of the
calculation, while symbols present experimental data from Ref. [157]. The Fig. is
adopted from [44].

Comparison of the theoretical results with experimental data shows that the the-

oretical model reproduces experimental behavior better for the solvents with higher

pH. The heat capacity peak arising at higher temperatures due to the standard

folding↔unfolding transition is reproduced very well for pH values being in the re-

gion 4.5-7.0. The deviations at low temperatures can be attributed to the inaccuracy
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of the statistical mechanics model of water in the vicinity of the freezing point.

The accuracy of the statistical mechanics model for low pH values around 3.88

is also quite reasonable. The deviation of theoretical curves from experimental ones

likely arise due to the alteration of the solvent properties at high concentration of

protons or due to the change of partial charge of amino acids at pH values being far

from the physiological conditions.

Despite some difference between the predictions of the developed model and the

experimental results arising at certain temperatures and values of pH the overall

performance of the model can be considered as extremely good for such a complex

process as structural folding transition of a large biological molecule.

6.3.2 Heat capacity of metmyoglobin

Metmyoglobin is an oxidized form of a protein myoglobin. This is a monomeric

protein containing a single five-coordinate heme whose function is to reversibly form

a dioxygen adduct [166]. Metmyolobin consists of 153 amino acids and it’s structure

is shown in Fig. 6.1 on the right.

In order to calculate SASA of side chain radicals of metmyoglobin exactly the

same procedure as for staphylococcal nuclease was performed (see discussion in the

previous subsection). SASA in the folded and unfolded states of the protein has

been calculated and is equal 6847 Å2 and 16926 Å2 respectively. Thus, there are 984

H2O molecules interacting with protein’s hydrophobic surface in its unfolded state.

The electrostatic interaction of water molecules with metmyoglobin was ac-

counted for in the same way as for staphylococcal nuclease. The parameter α in

Eq. (6.15) was chosen to be equal to 2.5. 10950 H2O molecules involve in the inter-

action with the electrostatic field of metmyoglobin in its folded state. The strength

of the field was chosen the same as for staphylococcal nuclease.

The parameter κ for metmyoglobin in Eq. (6.4), describing the cooperativity of

the folding↔unfolding transition, differs significantly from that for staphylococcal

nuclease. The transition in metmyoglobin is less cooperative than the transition

in staphylococcal nuclease because metmyoglobin has intermediate partially folded

states [167]. Thus, while the rigid native-like core of the protein is formed, a sig-

nificant fraction of amino acids in the flexible regions of the protein can exist in

the unfolded state. 1/3 of metmyoglobin’s amino acids can considered as being in

flexible regions of the protein, i.e. the parameter κ in Eq. (6.4) equal to 50.
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pH value 4.10 3.70 3.84 3.5
E0 (kcal/mol) 1.128 1.150 1.165 1.2

Table 6.3: Values of E0 for metmyoglobin at different values of solvent pH.

The values of E0 in Eq. (6.6) differ from that for staphylococcal nuclease and

are compiled in Table 6.3. In the calculations for metmyoglobin the values of A =

1.6 JK−1g−1, B = 8.25 · 10−3 JK−2g−1 and T0=323 ◦K were adjusted in Eq. (6.25).

Figure 6.3: Dependencies of the heat capacity on temperature for horse heart met-
myoglobin (see Fig. 6.1b) at different values of pH. Solid lines show the results of
the calculation. Symbols present the experimental data from Ref. [158] The Fig. is
adopted from [44].

Solid lines in Fig. 6.3 show the dependence of the metmyoglobin’s heat capacity

on temperature calculated using the developed theoretical model. The experimental

data from Ref. [158] are shown by symbols.

Metmyoglobin experiences two folding↔unfolding transitions at the pH values

exceeding 3.5 which can be called as cold and heat denaturations of the protein.
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The dependence of the heat capacity on temperature therefore has two characteristic

peaks, as seen in Fig. 6.3. Figure 6.3 shows that at pH lower than 3.84 metmyoglobin

exists only in the unfolded state.

The comparison of predictions of the developed theoretical model with the exper-

imental data on heat capacity shows that the theoretical model is well applicable for

metmyoglobin case as well. The good agreement of the theoretical and experimental

heat capacity profiles over the whole range of temperatures and pH values shows

that the model treats correctly the thermodynamics of the protein folding process.

The presented theory includes a number of parameters, namely the energy dif-

ference between two phases E0, strength of the electrostatic field E, number of

interacting H2O molecules α, the parameter describing the cooperativity of the

phase transition κ, as well as other parameters introduced in Ref. [155] to treat

the partition function of water. Three parameters, E, E0 and κ, are dependent on

the properties of a particular protein and on the pH of the solvent. the values of

these parameters were adjusted in order to reproduce the experimental data. All

other parameters of the model describing the structure of energy levels of water

molecules, their vibrational and librational frequencies, etc. are considered as fixed,

being universal for all proteins.

In spite of the model features of the presented approach, let us stress that the

complex behavior and the peculiarities in dependencies of the heat capacity on

temperature are all very well reproduced by the developed model with only a few

parameters. This was demonstrated for two proteins and this result can be considred

as a significant achievement. This fact supports the conclusion that the developed

model can be used for the prediction of new features of phase transitions in various

biomolecular systems. Indeed, from Figs. 6.3.1 and 6.3 one can extract a lot of

useful information on the heat capacity profiles: the concave bending of the heat

capacity profile for a completely unfolded protein, the temperature of the cold and

heat denaturation, the absolute values of the heat capacity at the phase transition

temperature, the broadening of heat capacity peaks. Another peculiarity which

is well reproduced by the statistical mechanics model is the decrease of the heat

capacity of the folded state of the protein in comparison with that for unfolded

state and asymmetry of the heat capacity peaks.
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Summary and conclusions

This work is devoted to the theoretical study of the conformational transitions in

polypeptides and proteins using the methods of statistical physics. The confor-

mational transitions or folding of polypeptides and proteins are treated as phase

transitions in a finite system. The thesis begins with the analysis of the potential

energy surfaces of alanine and glycine tri- and hexapeptides calculated using the ab

initio methods of the Density Functional Theory. Analysis of the potential energy

surfaces of the polypeptides allowed to distinguish two separate types of degrees

of freedom in the system: ”hard” and ”soft” degrees of freedom, corresponding

to the vibrations along covalent bonds in the polypeptide and to twisting along

the polypeptide’s backbone, respectively. This separation provided the possibility

to construct the partition function of a polypeptide experiencing helix↔coil phase

transition knowing its potential energy surface as a function of only twisting degrees

of freedom.

In chapter 4 of the thesis a novel ab initio theoretical method for treating the

α-helix↔random coil phase transition in polypeptide chains is introduced. The sug-

gested method is based on the construction of a parameter-free partition function

for a system undergoing a first order phase transition. All the necessary information

for the construction of such a partition function can be calculated on the basis of ab

initio DFT, combined with molecular mechanics theories. The suggested method is

considered as an efficient alternative to the existing theoretical approaches for the

study of helix-coil transition in polypeptides since it does not contain any model pa-

rameters. It gives a universal recipe for statistical mechanics description of complex

molecular systems. The partition function of polypeptide is written with a mini-

mum number of assumptions about the system which makes the presented theoret-
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ical method much more general and universal in comparison with other theoretical

approaches.

The detailed analysis of the α-helix↔random coil transition in alanine polypep-

tides of different lengths is performed in chapter 5. The potential energy surfaces of

polypeptides were calculated with respect to their twisting degrees of freedom and

a parameter-free partition function of the polypeptide was constructed. From this

partition function, the temperature dependencies of the heat capacity, latent heat

and helicity of alanine polypeptides consisting of 21, 30, 40, 50 and 100 amino acids

were derived and analyzed. Alternatively, the same thermodynamical characteris-

tics were obtained with the use of molecular dynamics simulations. The results of

molecular dynamics simulations were compared with the results of the statistical

mechanics approach. The comparison proved the validity of the presented method

and established its accuracy. It was demonstrated that the heat capacity of alanine

polypeptides has a peak at a certain temperature. The parameters of this peak (i.e.

the maximal value of the heat capacity, the temperature of the peak, the width

at half maximum, the area of the peak) were analyzed as a function of polypeptide

length. Based on the predictions of the two energy-level model, it was demonstrated

that the α-helix↔random coil transition in alanine polypeptide is a first order phase

transition.

In the work is established the correspondence of the developed method with the

results of the semiempirical approach suggested by Zimm and Bragg [15]. For this

purpose the key parameters of the Zimm-Bragg semiempirical statistical theory were

determined. The calculated parameters of the Zimm-Bragg theory were compared

with the results of earlier calculations from reference [123].

The second part of chapter 5 is devoted to the study of the helix↔random coil

transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids

in vacuo using the Langevin molecular dynamics approach. It was shown that in the

course of the helix↔random coil phase transition the polypeptide chain can expe-

rience several sequential structural changes leading to the emergence of additional

peaks in the temperature dependence of the heat capacity. This was illustrated

by the example of the Val30 polypeptide. In this polypeptide, the most prominent

heat capacity peak is associated with the breakage of the π-helix secondary struc-

ture, while the smaller peak is associated with the structural transition in side chain

radicals. The heat capacities of the polypeptides were calculated by two different

methods, namely as the derivative of the internal energy with respect to tempera-
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ture and on the basis of the energy fluctuations in the system. The results obtained

by these methods were compared and their accuracy and convergence were estab-

lished. This analysis revealed that the method based on energy fluctuations can be

considered as more general and is, therefore, preferable in most cases. Analysis of

the dependence of the accuracy of the heat capacity calculation on duration of MD

simulations shows that the accuracy of the simulations is nearly proportional to the

simulation time. Although the chapter 5 is devoted the study of three particular

polypeptides, the discussed methods are general and can be applied to the study of

more complex systems, such as larger polypeptide chains, proteins, DNA molecules,

etc. The suggested formalism can be also applied for the analysis of folding dynamics

of polypeptide chains (and proteins) in solution.

In the chapter 6 of the thesis a novel statistical mechanics model for the descrip-

tion of folding↔unfolding processes in globular proteins is presented. The model is

based on the construction of the partition function of the system as a sum over all

statistically significant conformational states of a protein. The partition function of

each state is a product of partition function of a protein in a given conformational

state, partition function of water molecules in pure water and a partition function

of H2O molecules interacting with the protein.

The introduced model includes a number of parameters responsible for certain

physical properties of the system. The parameters were obtained from available

experimental data and three of them (energy difference between two phases, co-

operativity of the transition and the average strength of the protein’s electrostatic

field) were considered as being variable depending on a particular protein and on

pH of the solvent.

The predictions of the developed model were compared with the results of ex-

perimental measurements of the dependence of the heat capacity on temperature

for staphylococcal nuclease and metmyoglobin. The experimental results were ob-

tained at various pH of the solvent. The suggested model is capable to reproduce

well within a single framework a large number of peculiarities of the heat capacity

profile, such as the temperatures of cold and heat denaturations, the corresponding

maximum values of the heat capacities, the temperature range of the cold and heat

denaturation transitions, the difference between heat capacities of the folded and

unfolded states of the protein.

The good agreement of the results of calculations obtained using the developed

formalism with the results of experimental measurements demonstrates that it can
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be used for the analysis of thermodynamical properties of many biomolecular sys-

tems. Further development of the model can be focused on its advance and appli-

cation for the description of the influence of mutations on protein stability, analysis

of assembly and stability of protein complexes, protein crystallization process, etc.
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