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Abstract
The problem of vocalization, or diacritization, is essential to many tasks in Arabic NLP. Arabic is generally written without the short

vowels, which leads to one written form having several pronunciations with each pronunciation carrying its own meaning(s). In the

experiments reported here, we define vocalization as a classification problem in which we decide for each character in the unvocalized

word whether it is followed by a short vowel. We investigate the importance of different types of context. Our results show that the

combination of using memory-based learning with only a word internal context leads to a word error rate of 6.64%. If a lexical context

is added, the results deteriorate slowly.

1. Introduction
The problem of vocalization, or diacritization, is essential

to many tasks in Arabic NLP. Arabic is generally written

without the short vowels, which leads to one written form

having several pronunciations with each pronunciation car-

rying its own meaning(s). The word form ’mskn’ is an

example for a highly ambiguous word. Its possible pro-

nunciations include ’maskan’ (home), ’musakkin’ (anal-

gesic), ’masakn’ (they-fem. have held), or ’musikn’ (they-

fem. have been held). The importance of vocalization be-

come clear when we look at how Google Translate renders

’A$tryt Almskn mn AlSydlyp’ (I bought a pain killer from

the pharmacy): as ’I bought the home from the pharmacy’.

This error would not occur if the input to the translation

system were vocalized in a first step before the actual trans-

lation process. However, vocalization is far from trivial:

the example above shows that the vocalized words of a sin-

gle unvocalized form differ in their parts-of-speech as well

as in their meaning. This shows that vocalization performs

implicit POS tagging and word sense disambiguation. It is

also obvious that word forms cannot be vocalized in iso-

lation, the task is heavily dependent on the context of the

word.

In the experiments reported here, we investigate the impor-

tance of different types of context. We follow (Zitouni et

al., 2006) in defining vocalization as a classification prob-

lem in which we decide for each character in the unvocal-

ized word whether it is followed by a short vowel. We in-

vestigate how well the task can be performed if only context

from the same word is available as compared to having ac-

cess to a lexical context of 5 words on each side. We also

investigate which types of features are the most important

ones. Lastly, we investigate the learning curve to determine

how much training data we need for reliable results.

2. Previous Research
The first approaches to the vocalization of Arabic defined

the problem word-based, i.e. the task was to determine

for each word the complete vocalized form. (Gal, 2002)

uses a bigram HMM model for vocalizing the Qur’an and

achieves a word error rate (WER) of 14%. His error anal-

ysis showed that the errors resulted mostly from unknown

words. (Kirchhoff et al., 2002) extend a unigram model

by a heuristic for unknown words, which retrieves the most

similar unlexicalized word and then applies edit distance

operations to turn it into the unknown word. They reach

a WER of 16.5% on conversational Arabic. (Nelken and

Shieber, 2005) tackle the problem with weighted finite-state

transducers. For known words, morphological units are

used for retrieving the vocalization while unknown words

are vocalized based on the sequence of characters. They

reach a WER of 12.8%. (Zitouni et al., 2006) use a maxi-

mum entropy model in combination with a character based

classification. Their features are based on single charac-

ters of the focus word, morphological segments, and POS

tags. They reach a WER of 7.9%. A comparison of the dif-

ferent approaches shows that the definition of vocalization

as inserting vowels between characters results in the low-

est WER. However, this study leaves the lexical context of

words completely unexplored. In the present study, we will

investigate this area of research.

3. Experimental Setup
3.1. Data
We used the Penn Arabic Treebank (Bies and Maamouri,

2003) as the data source. The treebank is encoded in Buck-

walter transliteration (Buckwalter, 2002) and is available in

a vocalized and an unvocalized version. From the treebank,

we extracted 170 000 words from the AFP section (part 1

v 2.0) and approximately 160 000 words from the Ummah

section (part 2 v2.0).

As mentioned previously, we defined vocalization as a clas-

sification problem: For each character in the focus word,

the learner needs to decide whether the character is fol-

lowed by a short vowel and what the short vowel is. We will

call this character the focus charcter. The task also involves

the restoration of the shadda (double consonant, long con-

sonant, gemination) but, at present, it does not include case

endings.



w−5 w−4 w−3 w−2 w−1 c−5 c−4 c−3 c−2 c−1 c c1 c2 c3 c4 c5 w1 w2 w3 w4 w5 v

kl ”$y” tgyr fy HyAp A l m t $ r styfn knt EndmA Evrt Ely

kl ”$y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely

kl ”$y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely u

kl ”$y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely a

kl ”$y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely a

kl ”$y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely ĩ

Table 1: The word ’Almt$rd’ represented with one instance per word; the class represents the vowel to be inserted after the

character.

The features used for determining the short vowel following

the focus character consist of the focus character itself (c),

its local context in terms of neighboring characters within

the focus word, and a more global context of neighboring

words. For the local context, 5 characters to the left (c−5

. . . c−1), 5 characters to the right (c1 . . . c5) are used; for

the lexical context, 5 words to the left (w−5 . . . w−1), and 5

words to the right (w1 . . . w5). The last value in the vector

(v) provides the correct classification, i.e. the short vowel

to be inserted after c, or - in cases where no vowel is in-

serted in that position. The instance for the Arabic word

’Almt$rd’, for example, is shown in Table 1.

For most of the experiments, we used 10-fold cross valida-

tion, the only exception is the experiment concerning the

size of the training set. In order to simulate a real-life situa-

tion, we did not build the folds randomly but rather sequen-

tially, thus ensuring that a single fold contains consecutive

articles, which may cover different topics from the other

folds. However, we made sure that all instances of a word

were put in the same fold.

3.2. Methods
For classification, we used a memory-based learner,

TiMBL (Daelemans et al., 2007). Memory-based learning

is a lazy-learning paradigm, which assumes that learning

does not consist of abstraction of the training instances into

rules or probabilities. Instead, the learner uses the train-

ing instance directly. As a consequence, training consists

in storing the instances in an instance base, and classifica-

tion finds the k nearest neighbor in the instance base and

chooses their most frequent class as the class for the new

instance. Memory-based learning has been proven to have

a suitable bias for many NLP problems (Daelemans et al.,

1999). One of the reasons for this success is that natural

language exhibits a high percentage of subregularities or ir-

regularities, which cannot be distinguished from noise. Ea-

ger learning paradigms smooth over all these cases while

memory-based learning still has access to the original in-

stance. Thus, if a new instance is similar enough to one

of these irregular instances, it can be correctly classified as

such.

Memory-based learning was chosen for two reasons: First,

this approach weights features based on information gain

or gain ratio (Daelemans et al., 2007), thus giving some

indication of the most and the least important features. Ad-

ditionally, it is a paradigm that is capable of handling sym-

bolic features with a high number of different feature val-

ues. This allows us to use complete context words as fea-

tures.

CER WER

baseline – 47.2

character context 2.22 6.64

left word context 2.26 7.06

word context 2.35 6.86

Table 2: The results of the vocalization experiments with

TiMBL.

Parameter settings for TiMBL were determined first. The

best results were obtained for all experiments with the IB1

algorithm with similarity computed as weighted overlap,

relevance weights computed with gain ratio, and the num-

ber of k nearest neighbors (or in TiMBL’s case, nearest dis-

tances) equal to 1.

4. Results
The results of our experiments with regard to different con-

texts as well the baseline are shown in Table 2. We evalu-

ate the error rate based on characters (CER) and based on

words (WER). The baseline experiment was set up so that

the classifier was presented with 11 words: the focus word,

5 context words to its left, and 5 context words to its right.

The results for the baseline show that vocalization is a dif-

ficult task even in our data set where a word on average has

only 1.67 vocalizations. This figure is considerably lower

than the average on normal texts. (Debili et al., 2002) found

that on average, each unvocalized word type has 2.9 vo-

calized versions, and there is an average of 11.6 vocalized

versions per word token in a text.

Relevant features. The next three lines in Table 2 reports

the results for the experiments in which we define the task

as deciding for each character whether it is followed by a

vowel. The experiment in line 2 uses only a character con-

text of 5 characters to each side of the focus character but

ignores the context words, i.e. the features from c−5 to c5

in Figure 1 are used. The next experiment uses the lexical

context to the left of the focus word in addition to the char-

acter context but ignores the context words on the right, i.e.

the features from w−5 to c5 are used. Finally, the last ex-

periment uses all features shown in Figure 1, i.e. it uses the

character context as well as the lexical feature to the left

and to the right of the focus word. When going from classi-

fying complete words to classifying characters separately,

the results improve dramatically. This method results in a

WER of 6.64%; to our knowledge, the highest reported re-

sult (but notice that (Zitouni et al., 2006) use a different

training set). Surprisingly, adding the context words does



Figure 1: The learning curve.

not improve the classification results. On the contrary, it

results in a lower WER. This is unexpected, we would have

expected that at least in cases where the vocalizations have

different parts of speech, the lexical context would provide

important information. One possible explanation for these

negative results may be data sparseness. However, if we

use the lexical context on both sides of the focus word, the

CER is lower but the WER is higher than in the experiment

with the left context only. This shows that the individual

decisions concerning single vowels become more difficult

but the recognition of complete words becomes more sta-

ble. Thus, in some cases, the lexical context does improve

classification. This also becomes evident when we compare

the results of single folds in the 10-fold setting. Some of the

folds have better results in the left context setting, and some

in the full context setting.

Next, we look at the weights that TiMBL assigns to the dif-

ferent features in the character based experiments. Here,

the results are very stable. If we look at the gain ratio

weights, in all experiments over all folds, we get the same

ordering of features. The feature with the highest weight

is the character following the focus character, c1. The next

most important feature is the focus character, c. The third

most important character is the next character to the left,

c−1, followed by all its preceding characters c−5 to c−2,

followed by all the characters to the right of c1: c2, c5, c3,

and c4.

Size of the training set. The next question to investigate

concerns the importance of the training set size. In order to

investigate how much training data we need for the task, we

conducted an experiment in which we started with a small

training set containing 1000 character instance, and then

continually increased the training set size to the full training

set size of 1 230 723 character instances. The test set was

kept stable, we used one of the folds for testing. In order

to ensure reliable results, we chose a fold that resulted in

average results in the ten-fold experiments reported above.

All the experiments were performed with the best feature

set determined in the previous experiments, i.e. with char-

acters from the focus word as the only features. The learn-

ing curve is shown in Figure 1. When training on a set of

only 1 000 characters, the WER is 47%, but raising the size

of the training set reduces the WER to 27%. The satura-

tion point is reached at approximately 700 000 characters

(which corresponds to 5 folds), with a WER of 6.9%. Af-

ter this point, there are only minor improvements, and the

WER reaches 6.64% for the whole training set1.

5. Conclusion and Future Work
In the experiments reported here, we have investigated the

vocalization of Arabic. The results show that the word in-

ternal context provides enough information for vocalizing

a high percentage correctly. The best parameter and fea-

ture setting results in an error rate of 6.64%, which is more

than one percent point lower than the results presented by

(Zitouni et al., 2006) even though our system did not have

access to either word segments or POS tags. Adding lexi-

cal context as additional features did not increase the per-

formance of the memory-based classifier TiMBL. Interest-

ingly, the most informative feature is the character follow-

ing the focus character although in general, the left charac-

ter context within the focus word is more informative than

the right character context. The learning curve shows that at

least in the experiments with features only from within the

focus word, a training set of 700 000 characters is sufficient

for reliable results. For the future, we are planning to use a

stemmer for Arabic to reduce the lexical features to stems

in order to alleviate the sparse data problem concerning the

lexical features. Additionally, we will follow (Zitouni et

al., 2006) and include part of speech information for all the

words as well. Since the tagset of the Penn Arabic treebank

is rather fine grained, we expect to reach the best results by

reducing the tagset to a manageable level, following (Diab,

2007). A further line of investigation concerns the use of

previous classification within a word for the classification

of the next character.
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