In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus

  • In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS) ice crystal number concentrations of up to 8.3 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in-situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established in order to give a parameterisation for modelling. A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles result from activation of the present aerosol, yielded low activation ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Wiebke Frey, Stephan Borrmann, Daniel Kunkel, Ralf Weigel, Marian de Reus, Hans Schlager, Anke Roiger, Christiane Voigt, Peter HoorORCiDGND, Joachim CurtiusORCiD, Martina Krämer, Cornelius Schiller, C.-Michael Volk, Carine Dorianne Homan, Federico Fierli, Guido Di Donfrancesco, Alexey Ulanovsky, Fabrizio Ravegnani, Nicolay M. Sitnikov, Silvia Viciani, Francesco D'Amato, Genrikh N. Shur, Gennady Belyaev, Kathy S. Law, Francesco Cairo
Parent Title (English):Atmospheric chemistry and physics / Discussions, 11.2011, S. 745-812
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Date of Publication (online):2011/01/10
Date of first Publication:2011/01/10
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/03/20
Page Number:68
First Page:745
Last Page:812
© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung 3.0