Nonlinear statistical attribution and detection of anthropogenic climate change using a simulated annealing algorithm

  • The climate system can be regarded as a dynamic nonlinear system. Thus, traditional linear statistical methods fail to model the nonlinearities of such a system. These nonlinearities render it necessary to find alternative statistical techniques. Since artificial neural network models (NNM) represent such a nonlinear statistical method their use in analyzing the climate system has been studied for a couple of years now. Most authors use the standard Backpropagation Network (BPN) for their investigations, although this specific model architecture carries a certain risk of over-/underfitting. Here we use the so called Cauchy Machine (CM) with an implemented Fast Simulated Annealing schedule (FSA) (Szu, 1986) for the purpose of attributing and detecting anthropogenic climate change instead. Under certain conditions the CM-FSA guarantees to find the global minimum of a yet undefined cost function (Geman and Geman, 1986). In addition to potential anthropogenic influences on climate (greenhouse gases (GHG), sulphur dioxide (SO2)) natural influences on near surface air temperature (variations of solar activity, explosive volcanism and the El Nino = Southern Oscillation phenomenon) serve as model inputs. The simulations are carried out on different spatial scales: global and area weighted averages. In addition, a multiple linear regression analysis serves as a linear reference. It is shown that the adaptive nonlinear CM-FSA algorithm captures the dynamics of the climate system to a great extent. However, free parameters of this specific network architecture have to be optimized subjectively. The quality of the simulations obtained by the CM-FSA algorithm exceeds the results of a multiple linear regression model; the simulation quality on the global scale amounts up to 81% explained variance. Furthermore the combined anthropogenic effect corresponds to the observed increase in temperature Jones et al. (1994), updated by Jones (1999a), for the examined period 1856–1998 on all investigated scales. In accordance to recent findings of physical climate models, the CM-FSA succeeds with the detection of anthropogenic induced climate change on a high significance level. Thus, the CMFSA algorithm can be regarded as a suitable nonlinear statistical tool for modeling and diagnosing the climate system.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Andreas Walter, Christian-Dietrich SchönwieseGND
Parent Title (German):Theoretical and applied climatology
Document Type:Article
Year of Completion:2003
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/09/14
First Page:1
Last Page:12
Source:Theor. Appl. Climatol., 76, 1-12 (2003),
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoDeutsches Urheberrecht