Lectin affinity plasmapheresis for middle east respiratory syndrome-coronavirus and Marburg virus glycoprotein elimination

  • Background/Aims: Middle East respiratory syndrome coronavirus (MERS-CoV) and Marburg virus (MARV) are among the World Health Organization’s top 8 emerging pathogens. Both zoonoses share nonspecific early symptoms, a high lethality rate, and a reduced number of specific treatment options. Therefore, we evaluated extracorporeal virus and glycoprotein (GP) elimination by lectin affinity plasmapheresis (LAP). Methods: For both MERS-CoV (pseudovirus) as well as MARV (GPs), 4 LAP devices (Mini Hemopurifiers, Aethlon Medical, San Diego, CA, USA) and 4 negative controls were tested. Samples were collected every 30 min and analyzed for reduction in virus infectivity by a flow cytometry-based infectivity assay (MERS-CoV) and in soluble GP content (MARV) by an immunoassay. Results: The experiments show a time-dependent clearance of MERS-CoV of up to 80% within 3 h (pseudovirus). Up to 70% of MARV-soluble GPs were eliminated at the same time. Substantial saturation of the binding resins was detected within the first treatment hour. Conclusion: MERS-CoV (pseudovirus) and MARV soluble GPs are eliminated by LAP in vitro. Considering the high lethality and missing established treatment options, LAP should be evaluated in vivo. Especially early initiation, continuous therapy, and timed cartridge exchanges could be of importance.

Download full text files

Export metadata

Author:Benjamin Florian KochORCiDGND, Patricia Schult-Dietrich, Stefan BüttnerORCiD, Bijan Dilmaghani, Dario Lohmann, Patrick BaerORCiDGND, Ursula Dietrich, Helmut GeigerGND
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/29698959
Parent Title (English):Blood purification
Place of publication:Basel [u. a.] ; München
Document Type:Article
Year of Completion:2018
Date of first Publication:2018/04/26
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/05/02
Tag:Extracorporeal purification; Lectin affinity plasmapheresis; Marburg virus; Middle East respiratory syndrome coronavirus
Page Number:8
First Page:126
Last Page:133
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
Institutes:Medizin / Medizin
Angeschlossene und kooperierende Institutionen / Georg-Speyer-Haus
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung-Nicht kommerziell - Keine Bearbeitung 4.0