Day-ahead probabilistic model for scheduling the operation of a wind pumped-storage hybrid power station: overcoming forecasting errors to ensure reliability of supply to the grid

  • Variable renewable energy sources (VRES), such as solarphotovoltaic (PV) and wind turbines (WT), are starting to play a significant role in several energy systems around the globe. To overcome the problem of their non-dispatchable and stochastic nature, several approaches have been proposed so far. This paper describes a novel mathematical model for scheduling the operation of a wind-powered pumped-storage hydroelectricity (PSH) hybrid for 25 to 48 h ahead. The model is based on mathematical programming and wind speed forecasts for the next 1 to 24 h, along with predicted upper reservoir occupancy for the 24th hour ahead. The results indicate that by coupling a 2-MW conventional wind turbine with a PSH of energy storing capacity equal to 54 MWh it is possible to significantly reduce the intraday energy generation coefficient of variation from 31% for pure wind turbine to 1.15% for a wind-powered PSH The scheduling errors calculated based on mean absolute percentage error (MAPE) are significantly smaller for such a coupling than those seen for wind generation forecasts, at 2.39% and 27%, respectively. This is even stronger emphasized by the fact that, those for wind generation were calculated for forecasts made for the next 1 to 24 h, while those for scheduled generation were calculated for forecasts made for the next 25 to 48 h. The results clearly show that the proposed scheduling approach ensures the high reliability of the WT–PSH energy source

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Jakub Jurasz, Alexander Kies
Parent Title (English):Sustainability
Place of publication:Basel
Document Type:Article
Year of Completion:2018
Date of first Publication:2018/05/19
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/10/23
Tag:hybrid energy sources; nondispatchability; reliability; scheduling; variable renewable energy sources
Institutes:Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):License LogoCreative Commons - Namensnennung 4.0