Structure and mechanism of the heterodimeric ABC translocation complexes TAP and TmrAB

  • ATP-binding cassette (ABC) transporters constitute an omnipresent superfamily of integral membrane proteins, which catalyze the translocation of a multitude of chemically diverse substrates across biological membranes. In humans, ABC transporters typically act as highly promiscuous exporters, responsible for many physiological processes, multi-drug resistance, and severe diseases, such as hypercholesterolemia, lipid trafficking disorders, and immune deficiency. In all ABC transporters, ATP-driven movements within two highly conserved nucleotide-binding domains (NBDs) are coupled to conformational changes of two transmembrane domains (TMDs), which provide a framework for substrate binding and release on the opposite side of the membrane and enable the transporter to cycle between inward-facing and outward-facing orientations. Several structures of ABC transporters determined either by X-ray crystallography or single-particle electron cryo-microscopy (cryo-EM) have been reported, mostly exhibiting a variation of the inward-facing state, which highlights their dynamic behavior. However, for a complete understanding of the conformational dynamics, further structural information on intermediates is needed – especially for heterodimeric ABC transporters, which are predominant in humans and for which only limited structural information is available. One prime example of such human heterodimeric ABC transport complexes is the transporter associated with antigen processing (TAP). TAP is a key player of the adaptive immune response, because it translocates proteasomal degradation products into the ER lumen for loading of MHC I molecules. Many functional aspects of TAP have been disclosed in recent years. However, structural information is lacking far behind and a major challenge in the field of medical relevant transporters. Recently, the heterodimeric ABC export system TmrAB (Thermus thermophilus multidrug resistance proteins A and B) was identified as an ortholog of TAP, by sharing structural homology with TAP and, intriguingly, being able to restore antigen presentation in human TAP-deficient cells. Thus, TmrAB is a biochemically well-characterized ABC exporter that can be regarded as a functional ortholog of TAP and serves as a model system for (heterodimeric) ABC export systems in general. Thus, to illuminate the molecular basis of substrate translocation by single-particle cryo-EM, one of the main objectives of this work was the generation of stabilizing chaperones (synthetic antibodies, nanobodies, cyclic peptides) to reduce the conformational heterogeneity of TAP and TmrAB. Selected antibodies were analyzed with respect to stable complex formation, conformational trapping, and the ability to serve as alignment tools for structural studies by single-particle cryo-EM. Both antibody types were shown to form sufficiently stable complexes to serve as a rigid body for EM analyses. However, all selected antibodies bound to the inward-facing state exclusively. Hence, for EM studies, various ligands were added to elucidate the full spectrum of conformational states during the catalytic cycle. For TAP, first attempts by negative-stain EM revealed a homogenous distribution of particles on the grid. Surprisingly, no transporter-like features were observed although various attempts were applied to increase the overall sample quality. For TmrAB, in contrast, the complete conformational space in a native-like lipid environment under turnover conditions was mapped. Cryo-EM analysis of TmrAB incubated with ATP-Mg2+ and substrate revealed two distinct inward-facing conformations (IFwide and IFnarrow) as well as two asymmetric conformations with dimerized NBDs, which were markedly different from all previously reported structures. Here, the catalytically active site was slightly wider and contained ADP, while ATP was still bound at the catalytically-inactive site within the NBDs, demonstrating an asymmetric post-hydrolysis state. Intriguingly for the inward-facing conformations, a weak additional density close to residues M139TmrB and W297TmrB was observed in the inward-facing conformation, which displayed a higher degree of cytosolic gate opening (IFwide) indicating the presence of substrate. To verify that this density corresponds to substrate, single alanine mutations of M139TmrB and W297TmrB were introduced, leading to a strong reduction in substrate binding and transport. Since substrate release requires the opening of the extracellular gate, the absence of an outward-facing open conformation indicated that the opening must be highly transient. In order to explore the outward-facing open conformation, a cryo-EM analysis of the catalytically-inactive TmrAE523QB mutant upon incubation with ATP-Mg2+ was performed. Remarkably, within the same dataset, two different outward-facing conformations (occluded and open) were resolved, both in an ATP-bound state, which indicated that binding of ATP is sufficient to drive the large-scale conformational transition from inward-facing to outward-facing open. To explore the effect of nucleotide hydrolysis, TmrAB was trapped by vanadate. Again, two populations were observed, representing the outward-facing open and outward-facing occluded conformation.  Based on several structures of key intermediates, determined under turnover conditions or trapped in the pre-hydrolysis and hydrolysis transition state, for the first time the complete description of the ATP hydrolysis and translocation cycle of a heterodimeric ABC transport complex was elucidated in one single study. By mapping the conformational landscape during active turnover, aided by mutational and chemical modulation of kinetic rates, fundamental and so-far hidden steps of the substrate translocation cycle of asymmetric ABC transporters were resolved and a general template for (heterodimeric) ABC exporter-catalyzed substrate translocation was provided.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Susanne Hofmann
Place of publication:Frankfurt am Main
Referee:Robert TampéORCiDGND, Klaas Martinus PosORCiD
Document Type:Doctoral Thesis
Date of Publication (online):2019/10/22
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/10/22
Release Date:2019/10/24
Page Number:173
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht