Anti-proton to proton ratio in Au+Au collisions at STAR

  • In this thesis the anti-proton to proton ratio in 197Au + 197Au collisions, measured at mid-rapidity, at a center of mass energy of psNN = 200GeV is reported. The value was measured to be ¹p/p = 0.81+-0.002stat +- 0.05syst: in the 5% most central collisions. The ratio shows no dependence on rapidity in the range jyj < 0:5. Furthermore, a dependence on transverse momentum within 0:4< p? < 1:0 GeV/c is not observed. At higher p?, a slight drop in the ratio is observed. In the present analysis, the highest momentum considered is p? = 4:5 GeV/c yielding ¹p=p = 0:645§0:005stat: §0:10syst:. However, the systematic error is higher in this momentum range. A slight centrality dependence was observed, where a decrease from ¹p=p = 0:83§0:002stat:§0:05syst: for most peripheral collisions (less than 80% central) to ¹p=p = 0:78§0:002stat:§0:05syst: for the 5% most central collisions was measured. An estimate of the feed-down contributions fromthe decay of heavier strange baryons results in ¹p=p = 0:77 § 0:05syst:. The measured ratio indicates a » 12:5 times higher value compared to the highest SPS energy of psNN = 17:3 and an \almost net-baryon free" region, at mid- rapidity. The asymmetry of protons and anti-protons may be explained by the contribution ofvalence quarks in a nucleus break-up picture. In such a scenario, the absolute value of the ratio and the fact that the ratio does not depend on rapidity (at mid-rapidity) is well reproduced. Fragmentation of quarks and anti- quarks into protons and anti-protons is assumed. An estimate of the ratio, when feed-down correction is taken into consideration, agrees well with the prediction of a statistical model analysis at a temperature of T = 177 § 7 MeV and a baryon chemical potential of ¹B = 29 § 8 MeV. The temperature achieved is only slightly higher when compared to the top SPS energy, while the baryochemical potential is factor »10 lower. As in the case of the SPS results, these parameters are close to the phase boundary of Figure 1.6. The measurement of the ratio at high transverse momentum was of special in- terest in this analysis, since at RHIC energies, the cross section for hadrons at high transverse momentum is increased with respect to SPS energies. The weak dependence of the ratio on the transverse momentum is well described by the non- perturbative quenched and baryon junction scenario (i.e. Soft+Quench model), where baryon creation is enhanced by baryon junctions. In comparison the ratio does not decrease within the considered momentum range as predicted by pQCD.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Jens BergerGND
Referee:Reinhard StockGND, Dieter RöhrichORCiD
Document Type:Doctoral Thesis
Date of Publication (online):2004/06/29
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/04/05
Release Date:2004/06/29
GND Keyword:Gold-197-Target; Gold-197-Reaktion; Proton; Antiproton; Brookhaven National Laboratory
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht