Characterization of PKS II systems from entomopathogenic bacteria

  • This work deals with the characterization of three different type II polyketide synthase systems (PKS II) from the Gram-negative bacteria Xenorhabdus and Photorhabdus. Particular attention was paid to a biochemically underexplored class of aryl polyene (APE) pigments. Bioinformatic analysis of enzymes involved in the biosynthesis and the in vitro reconstruction proved that the synthesis of APEs involves an unusual fatty acid-like elongation mechanism. Furthermore, the discovery of unexpected protein-protein interactions provided new insights into the multienzyme complex formation of this unusual PKS II system. Through collaboration with the groups from Prof. Michael Groll and junior Prof. Nina Morgner, two protein complexes were structurally solved and several native protein multimerization events were identified and allowed us to suggest a possible protein-interaction network. The results are summarized in publication ‘An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments’ (first author; J. Am. Chem. Soc.). In addition to in vitro-analysis, in vivo-studies were used to investigate the APE compound produced by X. doucetiae in more detail. The activation of the silent biosynthetic gene cluster (BGC) led to the detection of the APE compound in the homologous host. Further combination of homologous expression and targeted deletions of the APE BGC revealed an APE-lipid-like structure. MS-based analyses and purification of intermediates allowed us to deduce structural building blocks of the APE-lipid, which is composed of an APE structural core, a glucosamine residue and an unusual long-chain fatty acid with unusual conjugated double bonds and a phosphoethanolamine head group. In combination with the above stated in vitro-data, we assumed a plausible biosynthetic mechanism of the APE-lipid. The results are summarized in the section ‘Additional Results: Tracing the Full-length APE’. The biosynthesis of isopropylstilbene (IPS) has already been well-studied by the Bode laboratory and the group of Prof. Ikuro Abe. Studies with Photorhabdus laumondii TT01 by the Bode group revealed the distributed locations and functions of the genes involved in biosynthesis, which originate from two pathways. Particularly, the Bode group first demonstrated that an unusual ketosynthase/cyclase (StlD) catalyzes the condensation of 5-phenyl-2,4-pentadienoyl-ACP and isovaleryl-beta-ketoacyl-ACP via a Michael addition. Such a pathway for stilbene formation is distinct from those widespread in plants. The Abe group solved the structure and biochemical mechanism of StlD and further investigated the aromatization reaction of the aromatase StlC. However, the generation of the required cinnamoyl-precursor 5-phenyl-2,4-pentadienoyl-ACP as a Michael acceptor for this cyclization reaction remained elusive. In this work, we were able to reconstitute the synthesis of the Michael acceptor in vitro, by the action of enzymes from the fatty acid biosynthesis. With the knowledge about the crucial cross-talk from primary and specialized metabolism, we further determined the minimal endowment for stilbene production in a heterologous host. Here, the discovered AasS enzyme StlB is responsible for the generation of cinnamoyl-ACP and among others, plFabH plays a key role as gatekeeper enzyme for further processing. With this information in hand, we were able to obtain IPS production in E. coli. These results are presented in the manuscript ‘Biosynthesis of the Multifunctional Isopropylstilbene in Photorhabdus laumondii Involves Cross-talk Between Specialized and Primary Metabolism’ (co-first author, manuscript). The biosynthesis of the orange-to-red-pigmented anthraquinones (AQs) is the best-studied type II PKS system according to preliminary results. While several investigations by Brachmann et al. discovered the BGC and the overall product spectrum of the main AQ-256 and its methylated derivatives, data of Quiqin Zhou (Bode group) performed biochemical in vitro analysis paired with in vivo heterologous expression of the ant-genes antA-I. This led to the identification of shunt products that indicated an AQ-scaffold derived from an octaketide intermediate that gets shortened to a heptaketide by the hydrolase AntI, resulting in the main anthraquinone AQ-256. This PKS-shortening mechanism was further confirmed by the protein crystal structure of AntI by the Groll group (publication, minor contributions, co-author, Chem Sci. ‘Molecular Mechanism of Polyketide Shortening in Anthraquinone Biosynthesis of Photorhabdus luminescens’). Further substrate analysis of the P. luminescens AQ-producer and mutants revealed an inhibitory effect of cinnamic acid against the hydrolase AntI. Cinnamic acid might therefore be involved in regulation of AQ biosynthesis (‘Anthraquinone Production is Influenced by Cinnamic Acid’, first author, manuscript). Biochemical analysis from Quiqin Zhou with the minimal PKS of the AQ-synthase further revealed the exclusive activation of the AQ-ACP by the PPTase AntB. The PPTase is insoluble alone but gets stabilized by the CoA-ligase, most likely inactive, working as a chaperone. Thus, the minimal PKS endowment to produce the octaketide scaffold compromises, besides the ACP, the KS:CLF heterodimer and the MCAT, the co-occurrence of the PPTase AntB and the CoA-ligase AntG. For the first time, X-ray crystallography depicted a minimal PKS in action, by obtaining the structural data of native complexes from an ACP:KS:CLF, the KS:CLF alone and an ACP:MCAT in their non-active and active forms. It was possible to confirm a KS-bound hexaketide, which was built upon heterologous expression of the KS:CLF. Mutagenesis with amino-acids proposed to be involved in protein-protein interactions in the ACP:KS:CLF complex revealed some interesting protein-interaction sites. Additionally, an induced-fit mechanism of the MCAT with the ACP during the malonylation reaction confirmed a monodirectional transfer reaction (‘Structural Snapshots of the Minimal PKS System Responsible for Octaketide Biosynthesis’ co-author, manuscript under review).

Download full text files

Export metadata

Author:Gina Luisa Carina Grammbitter
Place of publication:Frankfurt am Main
Referee:Helge Björn BodeORCiDGND, Martin GriningerORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2021/02/10
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/04/28
Release Date:2021/02/18
Page Number:349
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht