Strategies for sensitizing tumors to Anti-PD-1 immune checkpoint blockade

  • Although immune checkpoint inhibitors such as anti-PD-1 antibodies have shown remarkable clinical success in many different tumor types, the proportion of patients benefiting from this treatment option remains low. Therefore, there is a need to sensitize tumors for immune checkpoint blockade. In this study two approaches were tested, a chemoimmunotherapy approach combining PD-1 checkpoint blockade with doxorubicin (DOX) chemotherapy, and ablation of the sphingosine-1-phosphate (S1P) receptor (S1PR4) based on the following rationale. Chemotherapy was shown to induce immune paralysis which contributes to tumor relapse, while PD-1 signaling was shown to facilitate the acquisition of chemoresistance. Thus, combinatorial chemoimmunotherapy is expected to be beneficial by maintaining or even activating anti-tumor immunity during chemotherapy. S1PR4 is an immune cell specific receptor, whose ablation slowed tumor progression by activating anti-tumor immunity in a mouse model that was previously insensitive to anti-PD-1 monotherapy. This suggested that S1PR4 ablation might pre-activate immunity to sensitize for anti-PD-1 therapy. To test these combinatorial approaches, two tumor mouse models were employed, namely the MC38 murine adenocarcinoma model as well as the transgenic polyoma middle T oncogene (PyMT) breast cancer model. In the MC38 model, a mild synergistic effect of PD-1 immune checkpoint blockade and S1PR4 ablation was observed, indicated by improved tumor progression and survival as compared to the WT control, and an increased number of tumor-free mice compared to anti-PD-1 therapy alone in WT mice. These observations correlated with an enhanced natural killer (NK) cell infiltrate and increased CXCL9 and CXCL10 production in anti-PD-1 treated S1PR4 KO tumors. As noted before, the PyMT model was largely resistant to anti-PD-1 monotherapy in a therapeutic setting. S1PR4 ablation alone showed significant tumor reduction that was not further enhanced by anti-PD-1 treatment. The same was observed when chemotherapy with DOX was added, where WT tumors relapsed, while S1PR4 KO tumor did not. Addition of anti-PD-1 did only mildly increase tumor control in S1PR4 KO mice, indicating that S1PR4 KO per se very efficiently re-activated anti-tumor immunity. Since S1PR4 KO induces type I 12 interferon (IFN-1) over-production in S1PR4 KO PyMT tumors, a link between high IFN-1 levels and tumor immunity was tested by using mice deficient in the IFN-1 receptor (IFNAR1). Unexpectedly, DOX chemotherapy was most efficient in mice with IFNAR ablation only as compared to WT, S1PR4 KO or S1PR4 and IFNAR1 double KO mice, although deficiency in IFNAR signaling is predominantly regarded as tumor promoting. The underlying mechanisms need to be tested in future studies. Interestingly, chemoimmunotherapy in WT mice prevented tumor relapse to a similar extent than S1PR4 KO and was superior to chemotherapy or immune checkpoint blockade alone. To investigate mechanisms of chemoimmunotherapy success compared to monotherapy, whole transcriptome analysis was used, which identified a set of genes that were upregulated specifically upon chemoimmunotherapy. This gene signature and, more specifically, a condensed four-gene signature predicted favorable survival of human mammary carcinoma patients in the METABRIC cohort. Moreover, PyMT tumors treated with chemoimmunotherapy contained higher levels of cytotoxic lymphocytes, particularly NK cells. Gene set enrichment analysis and ELISA measurements revealed increased IL-27 production and signaling in PyMT tumors upon chemoimmunotherapy. Moreover, IL-27 improved NK cell cytotoxicity against PyMT cells in vitro. These data supported recent clinical observations indicating a benefit of chemoimmunotherapy compared to monotherapy in breast cancer and suggested potential underlying mechanisms. Taken together the present work revealed new strategies to reactivate tumor immunity leading to improved chemotherapy response, namely a combination with immune checkpoint blockade and ablation of S1PR4, which activated different lymphocyte compartments within tumors.

Download full text files

Export metadata

Author:Evelyn Nicole Joy Sirait-FischerORCiDGND
Place of publication:Frankfurt am Main
Referee:Andreas WeigertORCiDGND, Peter BaderORCiDGND
Advisor:Andreas Weigert, Catherine Olesch
Document Type:Doctoral Thesis
Date of Publication (online):2021/04/15
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/03/17
Release Date:2021/04/15
Page Number:101
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht