In vivo chemical screen identifies novel regulators of pancreatic alpha-cell fate and beta-cell regeneration

  • Glucose homeostasis is tightly regulated by insulin production from ß-cells and glucagon production from α-cells. Changes in the balance of these hormones lead to Diabetes Mellitus (DM), which is foreseen to be the 7th leading cause of death by 2030, warranting a high demand to identify new therapeutics. DM is characterized by a reduction in ß-cell mass and reduced insulin production from ß-cells. α-cell development and fate mainly depend on the activity of the homeodomain-containing transcription factor Aristaless related homeobox (Arx). Conditional loss- of- function of Arx in α-cells leads to their conversion into functional insulin-producing ß-cells and thus an expansion of ß-cell mass. Therefore, inhibition of Arx is an interesting target for the expansion of ß-cells. The zebrafish model provides a fast, cost-effective and reliable translational platform for drug discovery in an in vivo setting. Here, we screened ~6217 small molecules on a transgenic zebrafish line (TgBAC(arxa:Luc2)) in which the arx promoter drives the expression of the luciferase gene which allows a sensitive and quantitative readout of promoter activity. Small molecule screening allowed us to identify 36 candidate repressors of arxa promoter activity. Furthermore, we started to validate these candidates in other assays. Preliminary results showed that DMAT (a potent CK2 inhibitor) and CNS-1102 (NMDA receptor inhibitor) increase functional ß-cell regeneration. By lineage tracing α-cells during ß-cell regeneration, we could show that both DMAT and CNS-1102 promote α- to ß-cell transdifferentiation. Here, we propose that Casein kinase II and NMDA receptor as potential molecular targets that could be exploited for the treatment of diabetes by generating functional beta-cells from the non-beta-cell progenitor, particularly alpha-cells in situ.

Download full text files

  • Thesis-PhD-Brijesh_Kumar-29112017.pdf
  • Abstract-PhD-Brijesh_Kumar-29112017.pdf

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Brijesh Kumar
Referee:Didier Y. R. StainierORCiD, Virginie LecaudeyORCiDGND
Advisor:Didier Y. R. Stainier, Christian Helker
Document Type:Doctoral Thesis
Year of Completion:2017
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/04/09
Release Date:2021/11/04
Page Number:133
First Page:1
Last Page:133
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG