Dancing above the abyss : environmental effects and dark matter signatures in inspirals into massive black holes
- In this dissertation, we look at environmental effects in extreme and intermediate mass ratio inspirals into massive black holes. In these systems, stellar mass compact objects orbit massive black holes and lose orbital energy due to gravitational wave emission and other dissipative forces. We explore environmental interactions with dark matter spikes, stellar distributions, accretion disks, and combine and compare them. We discuss the existence and properties of dark matter spikes in the presence of these environmental effects. The signatures of the environmental effects, such as the phase space flow, dephasing, deshifting of the periapse, and alignment with accretion disks, are examined. These signatures are quantified in isolated spike systems, in dry, and in wet inspirals. We generally find dark matter effects to be subdominant to the other environmental effects, but their impact on the waveform is still observable and identifiable. Lastly, the rates of inspirals and the impact of spikes are estimated. All of these results are obtained with the help of a code imripy that is published alongside. If dark matter spikes exist, they should be observable with space-based gravitational wave observatories.