EPick: Attention-based multi-scale UNet for earthquake detection and seismic phase picking

  • Earthquake detection and seismic phase picking play a crucial role in the travel-time estimation of P and S waves, which is an important step in locating the hypocenter of an event. The phase-arrival time is usually picked manually. However, its capacity is restricted by available resources and time. Moreover, noisy seismic data present an additional challenge for fast and accurate phase picking. We propose a deep learning-based model, EPick, as a rapid and robust alternative for seismic event detection and phase picking. By incorporating the attention mechanism into UNet, EPick can address different levels of deep features, and the decoder can take full advantage of the multi-scale features learned from the encoder part to achieve precise phase picking. Experimental results demonstrate that EPick achieves 98.80% accuracy in earthquake detection over the STA/LTA with 80% accuracy, and for phase arrival time picking, EPick reduces the absolute mean errors of P- and S- phase picking from 0.072 s (AR picker) to 0.030 s and from 0.189 s (AR picker) to 0.083 s, respectively. The result of the model generalization test shows EPick’s robustness when tested on a different seismic dataset.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wei LiORCiD, Megha ChakrabortyORCiDGND, Darius FennerORCiD, Johannes FaberORCiD, Kai ZhouORCiD, Georg RümpkerORCiD, Horst StöckerORCiDGND, Nishtha SrivastavaORCiD
URN:urn:nbn:de:hebis:30:3-871476
DOI:https://doi.org/10.3389/feart.2022.953007
ISSN:2296-6463
ArXiv Id:http://arxiv.org/abs/2109.02567
Parent Title (English):Frontiers in earth science
Publisher:Frontiers Media
Place of publication:Lausanne
Document Type:Article
Language:English
Date of Publication (online):2022/11/17
Date of first Publication:2022/11/17
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2025/01/10
Tag:attention mechanism; deep learning; earthquake detection; seismic phase picking; u-shape neural network
Volume:10.2022
Issue:953007
Article Number:953007
Edition:10
Page Number:12
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Physik / Physik
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International