• search hit 10 of 285
Back to Result List

Characterization of the Chikungunya virus entry process and the development of novel antiviral strategies

  • The Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. The majority of symptoms disappear after about one week. However, arthritis can last for months or even years (in about 30% of cases), which makes people unable to work during this period. The virus is endemic in Sub-Saharan Africa, the Indian Ocean islands, India, and Southeast Asia. It has additionally caused several large outbreaks in the last few years, affecting millions of people. The mortality rate is very low (0.1%), but the infection rates are high (sometimes 30%) and the number of asymptomatic cases is rare (about 15%). The first CHIKV outbreak in a country with a moderate climate was detected in Italy in 2007. Furthermore, the virus has spread to the Caribbean in late 2013. Due to climate change, globalization, and vector switching, the virus will most likely continue to cause new worldwide outbreaks. Additionally, more temperate regions of the world like Europe or the USA, which have recently reported their first cases, will likely become targets. Alarmingly, there is no specific treatment or vaccination against CHIKV available so far. The cell entry process of CHIKV is also not understood in detail, and was thusly the focus of study for this project. The E2 envelope protein is responsible for cell attachment and entry. It consists of the domain C, located close to the viral membrane, domain A, in the center of the protein, and domain B, at the distal end, prominently exposed on the viral surface. In this work, the important role of cell surface glycosaminoglycans (GAGs) for CHIKV cell attachment was uncovered. GAGs consist of long linear chains of heavily sulfated disaccharide units and can be covalently linked to membrane associated proteins. They play an important role in different cell signaling pathways. So far, solely cell culture passage has revealed an increased GAG-dependency of CHIKV due to mutations in E2 domain A, which was associated with virus attenuation in vivo. However, in this work it could be shown that cell surface GAGs promote CHIKV entry using non-cell culture adapted CHIKV envelope (Env) proteins. Transduction and infection of cell surface GAG-deficient pgsA-745 cells with CHIKV Env pseudotyped vector particles (VPs) and with wild-type CHIKV revealed decreased transduction and replication rates. Furthermore, cell entry and transduction rates of GAG-containing cells were also dose-dependently decreased in the presence of soluble GAGs. In contrast, transduction of pgsA-745 cells with CHIKV Env pseudotyped VPs was enhanced by the addition of soluble GAGs. This data suggests a mechanism by which GAGs activate CHIKV particles for subsequent binding to a cellular receptor. However, at least one GAG-independent entry pathway might exist, as CHIKV entry could not be totally inhibited by soluble GAGs and entry into pgsA-745 was, albeit at a lower rate, still possible. Further binding experiments using recombinant CHIKV E2 domains A, B, and C suggest that domain B is responsible for the GAG binding, domain A possibly for receptor binding, and domain C is not involved in cell binding. These results are in line with the geometry of CHIKV Env on the viral surface. They altogether reveal that GAG binding promotes viral cell entry and that the E2 domain B plays a central role for this mechanism. As no vaccine against CHIKV has been approved so far, another goal of this project was to test new vaccination approaches. It has been published that a single linear epitope of E2 is the target of the majority of early neutralizing antibodies against CHIKV in patients. Artificial E2-derived proteins were created, expressed in E.coli, and successfully purified. They consisted of 5 repeats of the mentioned linear epitope (L), the surface exposed regions of domain A linked by glycine-serine linkers (sA), the whole domain B plus a part of the β-ribbon connector (B+), or a combination of these 3 modules. Vaccination experiments revealed that B+ was necessary and sufficient to induce a neutralizing immune response in mice, with the protein sAB+ yielding the best results. sAB+, as a protein vaccine, efficiently and significantly reduced viral titers in mice upon CHIKV challenge, which was not the case for recombinant Modified Vaccinia virus Ankara (MVA; MVA-CHIKV-sAB+), as a vaccine platform expressing the same protein. These experiments show that a small rationally designed CHIKV Env derived protein might, after optimization of some vaccination parameters, be sufficient as a safe, easy-to-produce, and cheap CHIKV vaccine. Epigallocatechin-3-gallate (EGCG) is a catechin found in green tea and was, in this work, found to inhibit the CHIKV life cycle at the entry state in in vitro experiments using CHIKV Env VPs and wild-type virus. EGCG was recently published to inhibit attachment of several viruses to cell surface GAGs, which is in line with the role for GAGs in CHIKV entry revealed in this work. EGCG might serve as a lead compound for the development of a small molecule treatment against CHIKV.

Download full text files

Export metadata

Metadaten
Author:Christopher Weber
URN:urn:nbn:de:hebis:30:3-366569
Referee:Rolf MarschalekORCiDGND
Advisor:Barbara Schnierle
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/01/26
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/01/12
Release Date:2015/01/30
Tag:Chikungunya
Page Number:192
Last Page:183
HeBIS-PPN:354245988
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht