• search hit 18 of 56
Back to Result List

Funktionelle Expression von Channelrhodopsin-2 (ChR2) in der methylotrophen Hefe Pichia pastoris und biophysikalische Charakterisierung

Functional expression of Channelrhodopsin-2 (ChR2) in the methylotrophic yeast Pichia pastoris and biophysical characterization

  • Chlamydomonas reinhardtii ist eines der bekanntesten Modellsysteme der Forschung, um photo-, zell- und molekularbiologische Fragestellungen zu untersuchen. Die phototaktischen Reaktionen dieser einzelligen Grünalge werden durch mikrobielle Rhodopsine, sogenannte Photorezeptoren initiiert, deren Chromophor all-trans-Retinal ist. Eines dieser Rhodopsine ist Channelrhodopsin 2 (ChR2). Ein Sequenzvergleich mit anderen mikrobiellen Rhodopsinen aus Archaebakterien, wie z.B. der lichtgetriebenen Protonenpumpe Bakteriorhodopsin, zeigt eine Homologie von bis zu 20 %. Aus diesem Grund kann angenommen werden, dass die hydrophobe N-terminale Hälfte mit circa 300 von 737 Aminosäuren ebenso aus einem Siebentransmembranhelixmotiv besteht, wie dies für Rhodopsinmoleküle typisch ist. Seit der Entdeckung 2003 durch Nagel et al. ist bekannt, dass es sich bei ChR2 um einen lichtgetriebenen, kationenselektiven Ionenkanal handelt, der in dieser Form bisher nicht bekannt war. Diese biophysikalische Charakteristik konnte durch detaillierte elektrophysiologische Daten erhoben werden. Sie lieferten zudem die Erkenntnis, dass ChR2 als „Werkzeug“ in der Neurobiologie verwendet werden kann, da die lichtinduzierte Depolarisation zum Feuern von Aktionspotentialen in ChR2-exprimierenden Neuronen führt. Die vorliegende Arbeit sollte dazu beitragen, die molekularen Mechanismen von ChR2 aufzuklären, indem elektrophysiologische, spektroskopische und biochemische Daten miteinander korreliert wurden. Dazu wurde ChR2 funktionell in der methylotrophen Hefe Pichia pastoris exprimiert. Ein Glykosylierungstest konnte belegen, dass Pichia pastoris in der Lage ist, die für ChR2 erforderliche N-Glykosylierung durchzuführen. Mit einer 90%igen Expression war es somit möglich, ausreichend Protein für eine Metallchelat-Affinitätschromatographie zu gewinnen. Weiterhin konnte die bestehende Funktionalität nach der Isolierung von ChR2 nachgewiesen werden. Dies erfolgte zum einen über Messungen des charakteristischen Photostroms mittels der BLM-Technik. Zum anderen konnte dies durch spektroskopische Messungen der spezifischen Absorption von ChR2 bei 480 nm bestätigt werden. Die zeitaufgelöste Laserblitzabsorptionsspektroskopie lieferte zudem Differenzspektren des isolierten ChR2, die erstmalig das Vorhandensein eines spektral verschiedenen Intermediats bei 540 nm zeigten. Zusammen mit dem Zeitverlauf aller vier korrespondierenden Intermediate und der Hinzunahme elektrophysiologischer Daten konnte somit ein linearer Photozyklus bestehend aus vier Zuständen erstellt werden (erstellt durch Dr. Christian Bamann). Die ersten drei Intermediate des Photozyklus P1-P3 werden demnach durch die rotverschobene Spezies beschrieben, mit einer Relaxationszeit von unter einer Millisekunde. Dieses rote Intermediat spiegelt die Konformationsänderung des Retinals wider und geht mit dem Öffnen des Kanals einher. Die Zustände P2 und P3 konnten beide als kationenleitende Zustände identifiziert werden. Das Schließen des Kanals wird durch den Übergang von P3 zu P4 (spektral mit dem Grundzustand gleich) vermittelt. Das Zurückkehren in den Grundzustand folgt einem langsamen Prozess im Bereich von mehreren Sekunden. Biochemische, spektroskopische und elektrophysiologische Daten haben damit erfolgreich zur weiteren Aufklärung der molekularen Funktionsweise von ChR2 beigetragen. Mit diesen Ergebnissen ist nun die Erschließung neuer Informationen über die verschiedenen Signaltransduktionswege von Membranproteinen möglich.
  • In 2003, channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii was discovered to be a light-gated cation channel, and since that time the channel became an excellent tool to control by light neuronal cells in culture as well as in living animals with high temporal and spatial resolution in a noninvasive manner. However, little is known about the spectral properties and their relation to the channel function. We have expressed ChR2 in the yeast Pichia pastoris and purified the protein. Flash-photolysis data were combined with patch-clamp studies to elucidate the photocycle. The protein absorbs maximally at approximately 480 nm before light excitation and shows flash-induced absorbance changes with at least two different photointermediates. Four relaxation processes can be extracted from the time course that we have analysed in a linear model for the photocycle leading to the kinetic intermediates P(1) to P(4). A short-lived photointermediate at 400 nm, suggesting a deprotonation of the retinal Schiff base, is followed by a red-shifted (520 nm) species with a millisecond lifetime. The first three kinetic intermediates in the photocycle, P(1) to P(3), are described mainly by the red-shifted 520-nm species. The 400-nm species contributes to a smaller extent to P(1) and P(2). The fourth one, P(4), is spectroscopically almost identical with the ground state and lasts into the seconds time region. We compared the spectroscopic data to current measurements under whole-cell patch-clamp conditions on HEK 293 cells. The lifetimes of the spectroscopically and electrophysiologically determined intermediates are in excellent agreement. The intermediates P(2) and P(3) (absorbing at 520 nm) are identified as the cation permeating states of the channel. Under stationary light, a modulation of the photocurrent by green light (540 nm) was observed. We conclude that the red-shifted spectral species represents the open channel state, and the thermal relaxation of this intermediate, the transition from P(3) to P(4), is coupled to channel closing.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Taryn Kirsch
URN:urn:nbn:de:hebis:30-56318
Referee:Ernst BambergGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2008/07/15
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2008/07/11
Release Date:2008/07/15
Tag:Chalydomonas; Channelrhodopsin; Microbielle rhodopsine
Channelrhodopsin; Chlamydomonas
GND Keyword:Rhodopsin; Sensorrhodopsin; Blitzlicht; Blitzlicht-Photolyse; Pichia pastoris; Aufreinigung; IMAC
Source:J Mol Biol. 2008 Jan 18;375(3):686-94. Epub 2007 Nov 1.
HeBIS-PPN:202115518
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht