• search hit 7 of 444
Back to Result List

Optimierung Guanidin-basierter RNA-Spalter für den Einsatz in der Bioanalytik: von einer Rarität zur Routine

  • Trotz der Verfügbarkeit von siRNA, dem aktuellen Goldstandard zur Generierung von RNAInterferenz-vermitteltem Gen-silencing, stellen unerwünschte Immunantworten des Organismus auf doppelsträngige RNA exogenen Ursprungs noch immer ein fundamentales Problem dar, besonders mit Hinblick auf die Entwicklung Oligonukleotid-basierter Wirkstoffe. Durch das begrenzte Repertoire an Modifikationen, welches durch die Abhängigkeit von zelleigenen Faktoren unter anderem zur Steigerung der intrazellulären Stabilität und zur Reduktion unerwünschter Effekte zur Verfügung steht, konnte bis dato nur einer überschaubaren Anzahl entsprechender Oligonukleotide eine offizielle Zulassung für die therapeutische Anwendung in der Medizin erteilt werden. Hier bergen künstliche Ribonukleasen, welche die Umesterungsreaktion unabhängig von der zellinternen Maschinerie ebenfalls effizient und sequenzspezifisch bewerkstelligen können, großes Potential als eine Alternative. Während Metall-basierte Systeme in der Regel auf unphysiologisch hohe Konzentrationen zweiwertiger Übergangsmetallionen, wie beispielsweise Lanthanoide oder auch Kupfer, angewiesen sind, könnten metallfreie Katalysatoren dahingehend eine wesentlich flexiblere Option darstellen. Die Optimierung Guanidin-basierter RNA-Spalter für den Einsatz in der Bioanalytik und Medizin stellt seit geraumer Zeit eines der obersten Ziele unseres Arbeitskreises dar. Unter diesen bewährte sich vor allem das Tris(2-aminobenzimidazol), welches in Form von Konjugaten mit Antisense-Oligonukleotiden kurze Modellsubstrate sequenzspezifisch spaltet. Neben der äußerst mühseligen, vielstufigen Synthese eines konjugierbaren Tris(2-aminobenzimidazol)s waren die untersuchten Systeme mit Halbwertszeiten von teilweise über 20 Stunden jedoch viel zu langsam, um auch potentiell beobachtbare Veränderung des Phänotyps in vivo induzieren zu können. Ein weiterer begrenzender Faktor stellte die Konjugationstrategie des Spalters über Aktivester-Chemie und Aminolinker dar, welche eine Kupplungsausbeute von 0 % bis im besten Fall ca. 30 % lieferte. Um eine Methode zu erhalten, welche routinemäßig zur sequenzspezifischen Spaltung einer Vielzahl verschiedener RNA-Substrate genutzt werden kann, war folglich eine praktikablere Synthesestrategie zur Darstellung der Spalterkonjugate einerseits und zudem eine Erhöhung der Katalysatoraktivität andererseits notwendig, um auch kurzlebige Ziel-RNAs wirkungsvoll ausschalten zu können. In diesem Zusammenhang wurde eine neue Syntheseroute erarbeitet, welche den für die Konjugation funktionalisierten Spalter über wenige Stufen in Mengen von über 10 g lieferte. Daran anschließend konnte die Synthese eines Phosphoramidits realisiert werden, welches in einer manuellen Kupplungsprozedur die Darstellung von 5‘-Konjugaten des Tris(2-aminobenzimidazol)s in exzellenten Ausbeuten und, im Vergleich zur vorherigen Methode, wesentlich kürzeren Kupplungszeiten ermöglichte. Die vollständige Kompatibilität des Phosphoramidits mit der automatisierten Festphasensynthese konnte im Rahmen dieser Arbeit jedoch nicht erreicht werden. Während die manuelle Prozedur Konjugationsausbeuten von über 90 % lieferte, wurden an einem handelsüblichen Oligonukleotid-Synthesizer auch nach Modifikation der Kupplungsprotokolle und bei erhöhtem Amiditverbrauch lediglich 65 %erzielt. Durch Inkorporation von LNA-Nukleotiden in zwei gegen die PIM1-mRNA gerichtete 15mer DNA-Konjugate ließ sich eine Reduktion der Halbwertszeit von Cy5-markierten 22mer Modellsubstrate auf unter 4 h erreichen, wobei dieses Resultat auch anhand eines 412mer Modellsubstrats und in Gegenwart hoher Phosphatkonzentrationen reproduziert werden konnte. Darüber hinaus wurde die besondere Rolle des closing base pairs, sowohl bezüglich der Selektivität als auch der Kinetik der Spaltung, offensichtlich. Während stärker hybridisierende GC-Basenpaare generell eine hohe Präzision gewährleisteten, trat im Falle von AT-Basenpaaren fraying auf, d. h. es konnte auch innerhalb des vermeintlichen Duplex Spaltung beobachtet werden. Genauere Studien zur Positionierung von LNA-Nukleotiden ergaben bei unmittelbarer Lokalisation am 5‘-Terminus von AT-closing base pairs zwar einen selektivitätssteigernden Effekt, überraschenderweise konnte in diesem Fall jedoch auch eine Inhibierung der Spaltungskinetik festgestellt werden. Durch Verschiebung in die vorletzte Position konnte die Aktivität des Konjugats ohne Präzisionsverlust jedoch wiederhergestellt werden. Erste Experimente zur intrazellulären Stabilität der Spalterkonjugate ergaben quantitative, stufenweise Zersetzung, sowohl des DNA- als auch der Mixmer-Konjugate nach wenigen Stunden, was die Notwendigkeit weiterer stabilitätssteigernder Modifikationen zur Vorbereitung auf in vivo-Experimente impliziert. Auf der Suche nach neuen Spaltern stellte sich vor allem das 2-Aminoimidazol als einer der aussichtsreichsten Kandidaten für genauere Untersuchungen heraus. Das korrespondierende Tris(2-aminoimidazol) konnte über eine Marckwald-Synthese in wenigen Stufen dargestellt werden. Erste Spaltexperimente ergaben vor allem in niedrigen Konzentrationen (10 μM) eine im Vergleich zum Benzimidazol-Analogon vielfach höhere Aktivität. Obwohl die Synthese eines funktionalisierten Bisimidazol-benzimidazols gelang, steht dessen Konjugation mit Oligonukleotiden und deren Aktivitätsbestimmung noch aus.

Download full text files

  • Dissertation_Felix_Zellmann.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Felix ZellmannGND
URN:urn:nbn:de:hebis:30:3-624117
Referee:Michael GöbelORCiDGND, Alexander HeckelORCiDGND
Advisor:Michael Göbel
Document Type:Doctoral Thesis
Language:German
Year of Completion:2021
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/06/10
Release Date:2021/11/04
Page Number:207
First Page:1
Last Page:193
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:511087179
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG