• search hit 20 of 3546
Back to Result List

Zyklotronresonanzen von Ionen im hochfrequenz-modulierten magnetisch fokussierten Elektronenstrahl

  • Ein Prototyp einer Kombination aus Penningfalle und EBIS/T wurde im Rahmen dieser Arbeit entwickelt. Dazu wurde ein Standard NMR­Magnet erfolgreich so umgebaut, daß er in Bezug auf Vakuum, Temperatur und Temperaturbeständigkeit den Erfordernissen einer EBIS/T als Ionenfalle entspricht. Diese Apparatur ermöglicht nun die Untersuchung der in der EBIS/T erzeugten Ionen mit den Methoden der 'Fallenphysik'. Die Anregung der Ionen in der Falle wurde hier erstmals durch Hochfrequenzmodulation des Elektronenstroms über die Wehneltelektrode der Elektronenkanone durchgeführt. Messungen haben gezeigt, daß man in der EBIS/T erzeugte Ionen selektiv nach ihrem Verhältnis von Masse zu Ladung mit der Modulation in Resonanz bringen kann, bis sie den Elektronenstrahl verlassen. Die Ionen besitzen auch im dichten Elektronenstrahl eine charakteristische Eigenfrequenz, die zwar von der Raumladung in der Falle abhängt, mit der jedoch trotzdem eine Resonanzanregung durchgeführt werden kann. Im Experiment bestätigte sich die Vorhersage für die Mindestdauer der Anregung in der Größenordnung von Mikrosekunden und für Relaxionszeiten der kohärenten Ionenbewegungen im Bereich von Millisekunden, was eine grundsätzliche Voraussetzung für eine resonante Separation verschiedener Ionensorten darstellt. Die auftretenden Eigenfrequenzen der unterschiedlichen Ionen lassen sich theoretisch und im Einklang mit numerischen Simulationen beschreiben. Die Anregung der Eigenfrequenzen von Ionen über den Elektronenstrahl funktioniert bis zu so hohen Ionendichten, wie sie in einer EBIS vorkommen. Ionenmanipulationen, wie man sie von den Penningfallen her kennt, lassen sich auf ein Ionenensemble mit bis zu 10 10 Ionen pro cm 3 übertragen. Die gemessenen Verschiebungen der Eigenfrequenzen gegenüber der Zyklotronfrequenz geben darüber hinaus Aufschluß über den Kompensationsgrad des Elektronenstrahls in der EBIS/T und können damit als wichtiges Diagnosehilfsmittel für die Optimierung von Elektronenstrahl­Ionenquellen verwendet werden. Läßt man die Resonanzanregung kontinuierlich einwirken, so tritt überraschenderweise eine Erhöhung des Anteils an hochgeladenen Ionen in der EBIS/T auf. Darüberhinaus konnte experimentell gezeigt werden, daß die hochgeladenen Ionen auf der Achse des Elektronenstrahls konzentriert werden, während niedrig geladene Ionenen dort verschwinden und bevorzugt den äußeren Strahlbereich bevölkern. Die Erklärung dafür ist, daß durch kontinuierliches Entfernen dieser niedrig geladenen Ionen aus dem Elektronenstrahl eine vollständige Kompensation der Raumladung des Elektronenstrahls verhindert wird. Dadurch lassen sich Ionen in der Ionenquelle über einen längeren Zeitraum züchten. Vorteilhafterweise drängt die Anregung über eine Modulation des Elektronenstrahls ­ im Gegensatz zu der normalen Dipolanregung ­ bevorzugt niedrig geladenen Ionen, mit größerer Aufenthaltswahrscheinlichkeit am Rand, aus dem Elektronenstrahl. Dies führt zu einer verstärkten Coulomb­Kühlung der hochgeladenen Ionen und konzentriert diese in der Mitte des Strahls, wo die Anregung fast unwirksam ist. Diese Kühlkraft wirkt als Zusammenspiel der attraktiven radialen Kraft des nicht vollständig raumladungskompensierten Elektronenstrahls und der Coulombstöße der Ionen untereinander. Durch diese Methode der Kühlung der Ionen untereinander können verstärkt Ionen hoher Ladungszustände in der Ionenquelle konzentriert werden. Der Vorgang der Kühlung durch Coulombstöße konnte mit einem Modell beschrieben werden, bei dem die thermische Verteilung aller Ionen im Elektronenstrahl einer Boltzmann­ Verteilung folgt. Das Modell benutzt vier Kräfte: die magnetische Kraft, die elektrische Haltekraft des Elektronenstrahls, die periodische elektrische Anregungskraft und die Reibung der Ionen proportional zu ihrer Geschwindigkeit und ihres Ladungszustandes bzw. die Stöße der Ionen untereinander. Die Resonanzanregung im Raumladungspotential sowie die Aufenthaltsverteilung der Ionen im Elektronenstrahl konnten damit dargestellt werden. Für Präzisionsexperimente an hochgeladenen Ionen bietet sich die Kombination aus einer EBIS/T mit integrierter Penningfalle an. Die Experimente haben gezeigt, daß es möglich ist, Ionenspektren mit einem eingekoppelten Wechselfeld in dem Ionisationsraum der EBIS/T zu separieren und zu reinigen. Für die Zukunft wünscht man sich aber eine größere Effektivität für das vollständige Entfernen bestimmter Ionensorten. Dies kann man erreichen, indem man den Elektronenstrahl noch dichter mit der Ionisationsröhre umschließt. Durch die kontinuierliche Resonanzanregung profitiert man von einer längeren Einschlußzeit für die stufenweise Ionisierung zu höheren Ladungszuständen und/oder eröffnet Elektronenstrahl­Ionenquellen neue Einsatzmöglichkeiten unter schlechteren Vakuumbedingungen. Die verstärkte Kühlung und Zentrierung der Ionen auf der Achse während dieses Betriebsmodus verbessert die Emmitanz von Elektronenstrahl­Ionenquellen. Für die Zukunft kann man sich eine EBIS mit moduliertem Elektronenstrahl auch im Strahlweg niederenergetischer hochgeladener Ionen zum Verbessern deren Emittanz vorstellen. Die im Elektronenstrahl erzeugten und sich selbst kühlenden Ionen wirken durch Coulombstöße als Kühlmedium ohne die Gefahr der Umladung wie bei gasgefüllten hf­Quadrupolen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Bernhard ZipfelGND
URN:urn:nbn:de:hebis:30-0000000049
Referee:R. Becker
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/04/30
Year of first Publication:2000
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2001/05/03
Release Date:2003/04/30
HeBIS-PPN:101228147
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht