• search hit 16 of 275
Back to Result List

Entwicklung optogenetischer Methoden zur Erforschung des Nervensystems des Nematoden Caenorhabditis elegans

  • Um die Bedeutung bestimmter Neurone oder Klassen von Neuronen innerhalb von Nervensystemen zu untersuchen, sind Methoden, die eine Manipulation der Aktivität der Neurone in vivo erlauben, besonders nützlich. Die bisher zur Verfügung stehenden Methoden haben jedoch Einschränkungen in beispielsweise der Zelltypspezifität, der zeitlichen Präzision, der Reversibilität oder der Anwendbarkeit in frei beweglichen Tieren. Im Rahmen dieser Arbeit wurden optogenetische, d.h. auf der Expression lichtempfindlicher Proteine basierende Methoden entwickelt, um eine präzise Manipulation des Membranpotentials definierter Neurone durch Licht zu ermöglichen. Die Techniken wurden daraufhin zur Untersuchung z.B. der Neurotransmission sowie der Funktion kleiner Netzwerke im Nervensystem des Nematoden Caenorhabditis elegans verwendet. Die zelltypspezifische heterologe Expression des lichtgesteuerten Kationenkanals Channelrhodopsin-2 (ChR2) aus der Grünalge Chlamydomonas reinhardtii ermöglichte es, Muskel- oder Nervenzellen der Nematoden durch blaue Beleuchtung innerhalb weniger Millisekunden zu depolarisieren. Dadurch ließen sich spezifische Verhaltensweisen in frei beweglichen Tieren auslösen. Dieser Ansatz wird in Zukunft die Untersuchung der Bedeutung einzelner Neurone innerhalb ihrer Schaltkreise deutlich erleichtern. So konnte hier gezeigt werden, dass die Photostimulation des propriorezeptiven Neurons DVA eine signifikante Erhöhung der mittleren Körperbiegungswinkel während der sinusförmigen Fortbewegung der Tiere zur Folge hatte. Außerdem wurde versucht, die Anwendbarkeit von ChR2 durch die gezielte Manipulation der subzellulären Lokalisation mittels Fusion mit speziellen Peptiden oder Proteinen zu erhöhen. Des Weiteren wurde eine zur Verwendung von ChR2 analoge Methode zur Hemmung von Neuronen durch Licht entwickelt. Hierfür wurde die lichtgetriebene Cl--Pumpe Halorhodopsin aus Natronomonas pharaonis (NpHR) zelltypspezifisch in C. elegans exprimiert. Durch Photoaktivierung von NpHR mit gelbem Licht war es möglich, Muskelzellen und cholinerge Neurone zu hyperpolarisieren und somit in ihrer Aktivität zu hemmen. Dies führte in frei beweglichen Tieren zu einer augenblicklichen Paralyse verbunden mit einer drastischen Reduktion der Schwimmfrequenz und einer Erhöhung der Körperlänge. Die Aktionsspektren von ChR2 und NpHR sind unterschiedlich genug, um eine unabhängige Photoaktivierung der beiden Proteine mit blauem und gelbem Licht zu ermöglichen. Dadurch konnte die Aktivität von Muskelzellen und cholinergen Neuronen nach Koexpression der beiden Proteine bidirektional kontrolliert werden. Es wurden somit Methoden entwickelt, die in vivo eine zeitlich äußerst präzise Manipulation des Membranpotentials definierter Neurone mit Licht verschiedener Wellenlängen ermöglichen. Die Beobachtung der dadurch induzierten Verhaltensänderungen erlaubt es, zuverlässige Aussagen über die Bedeutung einer Nervenzelle für die Ausprägung eines Verhaltens zu treffen und wird die Erforschung der Nervensysteme von C. elegans und anderen Modellorganismen deutlich vereinfachen. Schließlich wurden in dieser Arbeit optogenetische Methoden zur Untersuchung der synaptischen Übertragung an neuromuskulären Synapsen (neuromuscular junctions, NMJs) von C. elegans entwickelt. Hierfür wurde ChR2 in GABAergen oder cholinergen Neuronen exprimiert, um eine lichtgesteuerte Freisetzung des inhibitorischen Neurotransmitters GABA bzw. des exzitatorischen Neurotransmitters Acetylcholin (ACh) an NMJs zu erreichen. Die Methode wurde OptIoN getauft, ein Akronym für „Optogenetic Investigation of Neurotransmission“, also „optogenetische Untersuchung der Neurotransmission“. Die GABA-Freisetzung hatte ähnlich wie die NpHR-vermittelte Photoinhibition von Muskelzellen eine Reduktion der Schwimmfrequenz und Erhöhung der Körperlänge zur Folge. Die Ausschüttung von ACh verursachte hingegen starke Muskelkontraktionen verbunden mit einer Reduktion der Körperlänge. Die Änderungen der Körperlänge waren bei Mutanten mit verschiedenen Neurotransmissionsdefekten signifikant unterschiedlich im Vergleich zum Wildtyp. Außerdem kam es während längerer Beleuchtungsphasen in Mutanten mit defektem Recycling der synaptischen Vesikel (SV) zu einer verstärkten Abnahme der lichtinduzierten Effekte. OptIoN ermöglicht es dadurch erstmals, die Mechanismen des SV-Recyclings in C. elegans Verhaltensexperimenten zu untersuchen. In elektrophysiologischen Messungen ließen sich durch kurze Lichtpulse wiederholt und mit hoher Frequenz Neurotransmitter-spezifische postsynaptische Ströme evozieren. Diese Ströme waren in Mutanten mit gestörter SVExozytose reduziert und gingen bei wiederholter Stimulation in Mutanten mit defektem SVRecycling schneller zurück. Die Verwendung von OptIoN erleichtert die elektrophysiologische Untersuchung neuronaler Defekte und stellt erstmals eine Möglichkeit dar, Vorgänge der neuronalen Plastizität in dem genetischen Modellsystem C. elegans zu untersuchen. Das Potential von OptIoN zeigte sich unter anderem auch in der Identifizierung eines neuen, über metabotrope GABA-Rezeptoruntereinheiten vermittelten Mechanismus zur heterosynaptischen Hemmung cholinerger Neurone.

Download full text files

  • Martin_Brauner_Dissertation.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Brauner
URN:urn:nbn:de:hebis:30-102522
Referee:Alexander GottschalkORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/05/17
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/03/05
Release Date:2011/05/17
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:425239365
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG