• search hit 15 of 275
Back to Result List

Tracking Stat5 dependent reporter gene expression during development in a novel transgenic mouse model / von Nadja Lydia Bednorz

  • Ziel der vorliegenden Promotionsarbeit war die Herstellung und Charakterisierung einer neuen Stat5 Reportermaus zur Analyse der transkriptionellen Aktivität von STAT5 in verschiedenen Entwicklungsstadien, Zelltypen und Organen auf Einzelzellebene in vivo. Die Zusammenfassung dieser Promotionsarbeit gibt im Folgenden einen Überblick über den JAK/STAT Signalweg und seine einzelnen Komponenten. Das Hauptaugenmerk liegt hierbei auf STAT5, da es eine wichtige Rolle in der zellulären Entwicklung, Differenzierung und Proliferation spielt. Anschließend werden die Klonierung des Stat5 Reportergenkonstruktes und die Herstellung der Reportermaus durch DNA-Mikroinjektion besprochen und die Ergebnisse sowie Schlussfolgerungen der funktionellen in vivo Analyse dieses neuen Reportermausmodells dargestellt. Signal transducer and activator of transcription (STAT) Proteine gehören zu einer Familie von Transkriptionsfaktoren, die latent im Zytoplasma vorkommen. Diese Proteinfamilie besteht aus sieben Mitgliedern: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b und STAT6. Alle STAT Proteine weisen eine konservierte Struktur auf, bestehend aus einer N-terminalen Domäne (NTD), einer Coiled-Coil-Domäne (CCD), einer DNA-Bindedomäne (DBD), einer Linkerdomäne (LD), einer src-homology 2- Domäne (SH2) und einer Transaktivierungsdomäne (TAD). Eine Vielzahl löslicher, extrazellulärer Signalmoleküle wie zum Beispiel Hormone, Zytokine und Wachstumsfaktoren binden an ihre spezifischen Oberflächenrezeptoren und Aktivieren so die JAK/STAT Signalkaskade. Dabei führt die Ligandenbindung an den entsprechenden Rezeptor zunächst zur Dimerisierung des Rezeptors und anschließend zur Transphosphorylierung von Janus Kinasen (JAKs). Aktivierte JAKs phosphorylieren dann den Rezeptor an spezifischen Tyrosinresten. An diese können STAT Proteine über ihre SH2 Domäne binden. Die gebundenen STAT Proteine werden anschließend durch JAKs an einem Tyrosinrest (und Serinrest) in der TAD phosphoryliert und dimerisieren im Zytoplasma. Dimerisierte STAT Proteine translozieren anschließend in den Nukleus und binden an spezifische DNA-Sequenzen, die sogenannten GAS (gamma-IFN-aktivierende Seite) Elemente in der Promotorregion ihrer Zielgene. GAS Elemente sind kurze palindromische DNA Regionen mit einer TTTCCNGGAAA Konsensussequenz. Nach Bindung der aktivierten, phosphorylierten STAT Proteine an die GAS Elemente werden weitere Kofaktoren, wie zum Beispiel das CREB Bindeprotein p300/CBP rekrutiert, die gemeinsam als Transkriptionsfaktoren wirken und die Transkription ihrer Zielgene anschalten. Die Identifizierung von STAT5 erfolgte im Rahmen von Promotorstudien am β-Casein Milchgen in der murinen Brustepithelzelllinie HC11 (Schmitt-Ney et al., 1991). Kurz darauf wurde STAT5 auch im Brustgewebe von laktierenden Mäusen, Ratten und Kühen gefunden. Bevor eine Sequenzhomologie zu Proteinen der STAT Genfamilie festgestellt wurde, wurde STAT5 zunächst MGF – „mammary gland factor“ genannt (Schmitt-Ney et al., 1992b; Wakao et al., 1992). Es sind zwei Stat5 Gene bekannt, Stat5a und Stat5b, die eine Sequenzhomologie von 96 % aufweisen und ihren größten Unterschied in der TAD Domäne zeigen. Da keine STAT-ähnlichen Proteine in Hefezellen identifiziert wurden, ist der JAK/STAT Signalweg nur für multizelluläre Organismen von Bedeutung, vermutlich weil diese auf komplexe Zell-Zell Kommunikationen angewiesen sind, um im Zellverband auf Signale in der Umgebung reagieren zu können. STAT5 im Speziellen reguliert neben der Entwicklung des Brustgewebes während der Schwangerschaft, die Produktion von Blutzellen in der fötalen Leber sowie die Zellproliferation während der adulten Hämatopoese. Im Embryo ist die fötale Leber der Ort der Hämatopoese, bevor hämatopoetische Stammzellen im Knochenmark kolonialisieren und sich die Leber zu einem metabolischen Organ entwickelt. In der Maus gelangen ab dem Embryonaltag E12 hämatopoetische Stammzellen aus der Aorta, den Gonaden und dem Mesonephros (Urniere), der sogenannten AGM Region, sowie aus der Plazenta durch den Blutstrom in die fötale Leber. Die Zellen proliferieren hier und migrieren etwa zwei Tage vor der Geburt (E18) ins Knochenmark, wo die Hämatopoese nach der Geburt erfolgt. Durch die Übermittlung einer Vielzahl von Zytokinsignalen reguliert STAT5 die Differenzierung der pluripotenten Zellen in reife Blutzellen und sorgt zusätzlich für die Generierung von Zellen, die anschließend in der Lage sind, das Knochenmark zu repopulieren. Ein STAT5 Verlust führt aufgrund einer auftretenden Anämie zu einer pränatalen Letalität. Während der adulten Hämatopoese fördert STAT5 hingegen die Zellproliferation und den Zellzyklus sowie die Apoptose in hämatopoetischen Stammzellen. Im Brustgewebe ist STAT5 sowohl in der Mammogenese als auch in der Laktogenese involviert. Die Aktivierung von STAT5 erfolgt hierbei durch eine Vielzahl von Faktoren, wie zum Beispiel Prolaktin und Erythropoietin. Der Phosphorylierungsstatus von STAT5 im virgin Stadium ist hierbei gering, steigt aber während der Schwangerschaft und Laktation stetig an und führt zur Aktivierung von einer Reihe von Zielgenen wie Milchproteinen, aber auch Zellzyklusregulatoren wie CyclinD1 und negativen Regulatoren des JAK/STAT Signalweges, wie zum Beispiel SOCS3. Nach der Laktation nimmt die Phosphorylierung von STAT5 hingegen ab und aufgrund von Apoptose kommt es zu einer Rückbildung des alveolaren Gewebes. Die Regulation der Apoptose erfolgt durch eine erhöhte STAT3 Phosphorylierung. Eine Deregulierung des JAK/STAT Signalweges wird in einer Vielzahl von Tumoren beobachtet. Hier liegt STAT5 typischerweise konstitutiv aktiv vor, führt dadurch zu einer verstärkten Zellproliferation und Angiogenese und verhindert gleichzeitig die Apoptose der mutierten Zellen und eine Immunantwort, was zusammen die Tumorentstehung begünstigt. Konstitutiv aktives STAT5 spielt vor allem bei der Entstehung von soliden Tumoren wie Brustkrebs sowie verschiedenen Leukämieformen wie zum Beispiel akute und chronische myelogene Leukämien eine wichtige Rolle. Neben diesen bereits bekannten STAT5 Funktionen ist die Funktion von aktivem, phosphoryliertem STAT5 im Kontext der Mausentwicklung und in adultem Gewebe noch unklar. Um die Rolle von STAT5 während der Entwicklung näher zu charakterisieren, wurden bereits verschiedene Mausmodelle generiert. Seit dem ersten Gentransfer in Mäuse im Jahre 1980 bieten transgene Tiere eine Möglichkeit, detaillierte Einblicke in zelluläre Prozesse im Rahmen der Entwicklung, des Stoffwechsels und der Entstehung von (Krebs-) Erkrankungen zu erlangen. Transgene Mäuse wurden somit zu einem wichtigen Modellsystem, das in der Lage ist, die Mechanismen, die hinter diesen Prozessen stehen, näher zu beleuchten. STAT5a und STAT5b knock out Mäuse sind überlebensfähig, zeigen jedoch phänotypische Unterschiede. Da eine Signalweiterleitung nach Prolaktininduktion in Brustgewebszellen von STAT5a knock out Mäusen nicht erfolgt, sind diese nicht in der Lage während der Schwangerschaft zu Proliferieren und zu Differenzieren. Die Deletion von STAT5a und STAT5b hingegen ist pränatal letal und die Embryos zeigen schwere Anämien aufgrund einer erhöhten Apoptoserate der erythroiden Zellen in der fötalen Leber. Zusätzlich zu den knock-out und gain-of-function Mäusen wurde die Generierung von Reportermäusen immer wichtiger, um spezifische Signalwege im Kontext des gesamten Organismus zu untersuchen. Das Ziel dieser Promotionsarbeit war somit die Herstellung und funktionelle Analyse einer neuen Stat5 Reportermaus. Hierfür wurde zunächst ein neues Stat5 Reporterkonstrukt kloniert. Dieses Reporterkonstrukt sollte eine Vielzahl spezifischer Eigenschaften aufweisen, um speziell durch phosphoryliertes STAT5 aktiviert zu werden: (i) ein LacZ Reportergen, (ii) Stat5 Responsive-Elemente und (iii) einen minimalen Promoter. Das LacZ Reportergen wurde hierbei gewählt, um die transktiptionelle Aktivität von STAT5 in Gewebeschnitten direkt durch Blaufärbung der Zellen zeigen zu können. Bei dem gewählten Promoter handelt es sich um einen Minimalpromoter, für die Bindung genereller Transkriptionsfaktoren. Eine Aktivierung des LacZ Reportergens erfolgt jedoch nur nach vorheriger Bindung eines Transaktivators. Damit STAT5 diese Funktion übernimmt wurden zusätzliche Responsive-Elemente aus dem β-Casein Gen in das Konstrukt eingefügt. Nach erfolgreicher Klonierung von insgesamt sieben verschiedenen Stat5 Reporterkonstrukten, wurde ihre spezifische Induzierbarkeit nach STAT5 Phosphorylierung mittels transienter Transfektionsstudien in vitro analysiert und bestätigt. Das p(Stat5RE)4-CMVmin-LacZ Konstrukt wurde anschließend zwischen humane matrix attachment regions (MAR) kloniert, die als sogenannte Insulatoren fungieren. Diese sollen in der transgenen Maus verhindern, dass entfernt bindende Faktoren die Expression der Reportergenkassette positiv (enhancer) oder negativ (silencer) beeinflussen. Zusätzlich zu den sieben hier generierten Stat5 Reporterkonstrukten, wurde das p(Stat5RE)4-CMVmin-LacZ Reportergenkonstrukt im Rahmen einer Diplomarbeit in einen lentiviralen Gentransfervektor kloniert. Dieser erlaubt die stabile Transduktion von Krebszellen und Primärzellen, so dass eine ineffiziente Transfektion dieser Zellen umgangen werden kann (Gäbel, 2009). Zur Herstellung der transgenen Stat5 Reportermaus wurde das linearisierte und aufgereinigte Stat5 Reporterkonstrukt mittels DNA-Mikroinjektion in den Pronukleus von 470 Eizellen von FVB und C57BL/6 Mäusen injiziert. Die Eizellen wurden anschließend in Ammenmäuse transplantiert. Von den 470 Eizellen kamen 57 Mäuse auf die Welt. Die Integration des Transgens wurde anschließend mittels PCR und Southern Blot analysiert und die Integration des kompletten Transgens konnte in zwei der 57 Mäuse festgestellt werden. Bei beiden transgen-positiven Mäusen handelte es sich um C57BL/6 Mäuse, die anschließend mit Wildtyp C57BL/6 Mäusen verpaart wurden. Nachkommen der F2 Generation wurden dann auf die spezifische Induzierbarkeit des Stat5 Reportergenkonstruktes durch phosphoryliertes STAT5 in vivo untersucht. Da der Phosphorylierungsstatus von STAT5 im Brustgewebe bereits eingehend untersucht wurde und bekannt ist, erfolgte zunächst die Analyse der Reportergenaktivität im murinen Brustgewebe. Hierfür wurde das Brustgewebe isoliert, fixiert und über Nacht gefärbt. Anschließend wurden Paraffinschnitte hergestellt und im Detail analysiert. Im Vergleich zu Wildtyp-Kontrollmäusen konnte die Aktivierung des Reportergens im Brustgewebe in verschiedenen Entwicklungsstadien, vor allem während der späten Schwangerschaft und der Laktation, durch Blaufärbung einzelner Zellen, gezeigt werden. Eine Korrelation der Blaufärbung mit der Phosphorylierung von STAT5 in diesen Zellen wurde anhand von immunhistologischen Färbungen von Paraffinschnitten mit Antikörpern gegen Stat5 und P-Stat5 gezeigt. Zusätzlich zu der hormonell induzierten STAT5 Phosphorylierung bedingt durch eine Schwangerschaft, wurde die Aktivierung des Reportergens durch das Verabreichen von LPS gezeigt. Eine Behandlung der Stat5 Reportermäuse mit LPS führt zu einer Phosphorylierung von STAT5 in Zellen des hämatopoetischen Systems, speziell Granulozyten und Makrophagen, und sollte anschließend das LacZ Reportergen in diesen Zellen aktivieren. Dies konnte durch die Färbung von Blut- und Knochenmarkzellen mit spezifischen Oberflächenmarkern, sowie einer Färbung mit FDG (Fluoresceindi-β-D-galactopyranoside) mittels FACS Analysen bestätigt werden. Das nicht-fluoreszierende FDG wird hierbei von der exprimierten β-Galaktosidase zunächst zu Fluoreszein-monogalactosid (FMG) und anschließend zum hoch fluoreszierenden Fluoreszein hydrolysiert, was eine messbare Erhöhung der Fluoreszenz nach sich zieht. Zusammenfassend konnte das Stat5-Reportergen sowohl durch endogene Signale als auch durch extern zugeführte Signale induziert werden. Anschließend erfolgte die Analyse der Reportergenaktivierung in anderen Organen der Stat5 Reportermaus. Hierbei konnte die Aktivierung des LacZ Reportergens sowohl in der Leber (Hepatozyten), Milz (Pulpa) und Niere (Mark und Rinde) als auch im Thymus (Lymphozyten und antigen präsentierende Zellen) und im Uterus (endometrisches Epithel) bestätigt werden. Diese Ergebnisse korrelieren mit zuvor durchgeführten Western Blot Analysen, die eine Phosphorylierung von STAT5 in eben diesen Organen gezeigt haben. Zusätzlich wurde phosphoryliertes STAT5 auf Proteinebene im Herz und im Gehirn gefunden, jedoch nicht in Gewebsschnitten der β-Galactosidase gefärbten Organe. Dies deutet darauf hin, dass das Reportergen trotz der Anwesenheit von phosphoryliertem STAT5, nicht immer eingeschaltet wird und somit weitere Faktoren für die transkriptionelle Aktivität von STAT5 notwendig sind. Western Blot Analysen sind somit alleine nicht ausreichend, um eine Aussage über die transkriptionelle Aktivität von phosphoryliertem STAT5 zu treffen, so dass die im Rahmen dieser Arbeit generierte Stat5 Reportermaus einen wichtigen Beitrag zum Verständnis von aktivem STAT5 bietet. Das generierte Stat5 Reportermausmodel wurde dann im Rahmen dieser Arbeit genutzt, um die Beteiligung von aktivem STAT5 in der Entwicklung von ΔTrkA induzierter akuter myeloischer Leukämie näher zu untersuchen. Hierfür wurden lineage negative Knochenmarkszellen aus den Stat5 Reportermäusen isoliert. Dabei werden sogenannte „Lin“ Antigene (z.B. CD3, CD4, CD8, Gr-1, Ter-119) genutzt, um reife murine Blutzellen zu identifizieren. Zellen, die diese Oberflächenmarker nicht oder nur in sehr geringen Mengen exprimieren, werden als lineage negativ bezeichnet. Ein Mix monoklonaler Antikörper gegen lineage Antigene kann somit zur Isolation lineage negativer Knochenmarkszellen genutzt werden. Diese negative Selektion führt letztendlich zur Anreicherung hämatopoetischer Stammzellen oder früher Progenitorzellen, die diese Marker (noch) nicht exprimieren. Diese Progenitorzellen wurden dann retroviral mit einem ΔTrkA Konstrukt transduziert und anschließend in bestrahlte Rag-1-/- Mäuse transplantiert und repopulierten in diesen das Knochenmark. Durch die ΔTrkA Transduktion wurde in den Rag-1-/- Mäusen myeloische Leukämie induziert. Jedoch konnte im Rahmen dieser Arbeit keine Aktivierung des Stat5 Reportergenkonstruktes beobachtet werden. Dies deutet darauf hin, dass STAT5 in ΔTrkA induzierten Leukämien keine Rolle spielt und bestätigt die Annahmen von Meyer et al. Durch die hier vorgestellten Ergebnisse bestätigt sich sowohl die Generierung eines neuen Stat5 Reportermausmodels als auch ihre spezifische Induzierbarkeit sowohl durch endogene hormonelle Prozesse (Schwangerschaft) als auch durch externe Manipulation (LPS Behandlung). Diese neue Stat5 Reportermaus wird in Zukunft als wichtiges und effizientes Modell fungieren, um die Rolle von transkriptionel aktivem STAT5 näher zu beleuchten. Hierbei wird sich der Fokus nicht nur auf die Rolle einzelner Zellen bei der normalen Entwicklung von Organen während verschiedener Entwicklungsstadien beschränken, sondern sich mehr und mehr in Richtung Tumorinitiierung und Tumorentwicklung bewegen. Anhand des hier generierten Stat5 Reportermausmodels können in Zukunft weitere Brustkrebs- und Leukämie-Tumormodelle herangezogen werden, um die Rolle und Funktion von STAT5 in der Tumorentwicklung in vivo detailliert analysieren zu können. Auf diesen Ergebnissen aufbauend wird dann die Möglichkeit bestehen, dieses neue Stat5 Reportermausmodell als Plattform zu nutzen, um zahlreiche neue Krebsmedikamente zu entwickeln und zu evaluieren.
  • Signal transducer and activator of transcription 5 (Stat5) is one of the seven members of the Stat gene family. STAT proteins are latent cytoplasmic transcription factors which become activated by phosphorylation upon cytokine, hormone, and growth factor interactions with their appropriate receptors, translocate to the nucleus, and induce the transcription of target genes. They play crucial roles in principal cell fate decisions, by regulating processes of cell differentiation, development, proliferation, apoptosis and inflammation in different organs. A deregulation of these processes is frequently observed. STAT3 and STAT5 are often found constitutively active, leading to the deregulation of cell proliferation, survival, immune evasion, and angiogenesis, processes ultimately driving tumor formation. Despite these interesting leads, the role of phosphorylated, active STAT5 in the context of mouse development still has to be defined more comprehensively. The aim of this work was the generation of a Stat5 reporter mouse model. For this purpose a variety of transgenic constructs in which a LacZ reporter gene, linked to a minimal promoter sequence and a variable number of Stat5 response elements, were derived. The functionality and specificity of the constructs was verified in vitro. The highest inducibility was observed with the p(Stat5RE)4-CMVmin-LacZ construct. To prevent silencing of the transgene in vivo, the reporter cassette was cloned between human matrix attachment regions (MAR), which act as insulator sequences. In addition, the Stat5 reporter construct was integrated into a lentiviral gene transfer vector. This construct allows the transduction of primary cells and can be used to complement studies aimed at investigating the cellular activation status of STAT5 in vivo. To generate a transgenic Stat5 reporter mouse, the p(Stat5RE)4-CMVmin-LacZ-INSU reporter construct was injected into the pro-nucleus of fertilized eggs, which were implanted into foster mice. The integration of the transgene was verified by analyzing the newborn pubs using PCR and Southern blot techniques. Two transgenic mouse lines were generated. The specific induction of the LacZ reporter gene by phosphorylated STAT5 was verified in the Stat5 reporter mice. Control experiments showed that it was possible to track STAT5 activation in the mammary gland at distinct developmental stages and in granulocytes and macrophages, cells of the hematopoietic system, by staining the cells for β-galactosidase activity. The Stat5 reporter mouse model described was used as a new tool to visualize the activation pattern of STAT5 in mouse organs at the single cell level. Sections of the different tissues containing cells which express activated STAT5, stained positive for ß-galactosidase activity. In addition to the well described STAT5 activity in the mammary gland and in cells of the hematopoietic system, active STAT5 was also detected in cells of the liver, kidney, and the spleen. A variety of cellular processes is regulated by STAT5. The new Stat5 reporter mouse model generated in this work will serve as an important tool, required for an easier and efficient system for the detection of activated STAT5 expression during different developmental stages and during tumor initiation and progression. A better understanding of STAT5 activation patterns will allow the further characterization of its function in vivo and could become useful in the discovery and evaluation of new cancer agents.

Download full text files

  • Nadja_Bednorz_Dissertation_2009.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nadja Bednorz
URN:urn:nbn:de:hebis:30-107014
Referee:Bernd GronerGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/06/08
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/12/17
Release Date:2011/06/08
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:42528915X
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG