The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 17
Back to Result List

Invasive assessment of hemodynamic, metabolic and ionic consequences during blood flow restriction training

  • Purpose: Medically recommended training often faces the dilemma that necessary mechanical intensities for muscle adaptations exceed patients' physical capacity. In this regard, blood flow restriction (BFR) training is becoming increasingly popular because it enables gains in muscle mass and strength despite using low-mechanical loads combined with external venous occlusion. Since the underlying mechanisms are still unknown, we applied invasive measurements during exercise with and without BFR to promote physiological understanding and safety of this popular training technique. Methods: In a randomized cross-over design, ten healthy men (28.1 ± 6.5 years) underwent two trials of unilateral biceps curls either with (BFR) and without BFR (CON). For analysis of changes in intravascular pressures, blood gases, oximetry and electrolytes, an arterial and a venous catheter were placed at the exercising arm before exercise. Arterial and venous blood gases and intravascular pressures were analyzed before, during and 5 min after exercise. Results: Intravascular pressures in the arterial and venous system were more increased during exercise with BFR compared to CON (p < 0.001). Furthermore, arterial and venous blood gas analyses revealed a BFR-induced metabolic acidosis (p < 0.05) with increased lactate production (p < 0.05) and associated elevations in [K+], [Ca2+] and [Na+] (p < 0.001). Conclusion: The present study describes for the first time the local physiological changes during BFR training. While BFR causes greater hypertension in the arterial and venous system of the exercising extremity, observed electrolyte shifts corroborate a local metabolic acidosis with concurrent rises in [K+] and [Na+]. Although BFR could be a promising new training concept for medical application, its execution is associated with comprehensive physiological challenges.

Download full text files

Export metadata

Metadaten
Author:Alexander Franz, Felix Berndt, Joachim Raabe, Jan-Frieder HarmsenORCiDGND, Christoph Zilkens, Michael BehringerORCiDGND
URN:urn:nbn:de:hebis:30:3-575439
DOI:https://doi.org/10.3389/fphys.2020.617668
ISSN:1664-042X
Parent Title (English):Frontiers in Physiology
Publisher:Frontiers Media
Place of publication:Lausanne
Document Type:Article
Language:English
Date of Publication (online):2020/12/16
Date of first Publication:2020/12/16
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2020/12/30
Tag:acidosis; hyperkalemia; kaatsu training; physical training; rehabilitation; resistance training; venous occlusion
Volume:11
Issue:art. 617668
Page Number:12
First Page:1
Last Page:12
HeBIS-PPN:47752155X
Institutes:Psychologie und Sportwissenschaften / Sportwissenschaften
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
7 Künste und Unterhaltung / 79 Sport, Spiele, Unterhaltung / 790 Freizeitgestaltung, darstellende Künste, Sport
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0