The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 9
Back to Result List

Synthesis, molecular properties estimations, and dual dopamine D2 and D3 receptor activities of benzothiazole-based ligands

  • Neurleptic drugs, e.g., aripiprazole, targeting the dopamine D2S and D3 receptors (D2SR and D3R) in the central nervous system are widely used in the treatment of several psychotic and neurodegenerative diseases. Therefore, a new series of benzothiazole-based ligands (3-20) was synthesized by applying the bioisosteric approach derived from the selective D3Rs ligand BP-897 (1) and its structurally related benz[d]imidazole derivative (2). Herein, introduction of the benzothiazole moiety was well tolerated by D2SR and D3R binding sites leading to antagonist affinities in the low nanomolar concentration range at both receptor subtypes. However, all novel compounds showed lower antagonist affinity to D3R when compared to that of 1. Further exploration of different substitution patterns at the benzothiazole heterocycle and the basic 4-phenylpiperazine resulted in the discovery of high dually acting D2SR and D3R ligands. Moreover, the methoxy substitution at 2-position of 4-phenylpiperazine resulted in significantly (22-fold) increased D2SR binding affinity as compared to the parent ligand 1, and improved physicochemical and drug-likeness properties of ligands 3-11. However, the latter structural modifications failed to improve the drug-able properties in ligands having un-substituted 4-phenylpiperazine analogs (12-20). Accordingly, compound 9 showed in addition to high dual affinity at the D2SR and D3R [Ki (hD2SR) = 2.8 ± 0.8 nM; Ki (hD3R) = 3.0 ± 1.6 nM], promising clogS, clogP, LE (hD2SR, hD3R), LipE (hD2SR, hD3R), and drug-likeness score values of −4.7, 4.2, (0.4, 0.4), (4.4, 4.3), and 0.7, respectively. Also, the deaminated analog 10 [Ki (hD2SR) = 3.2 ± 0.4 nM; Ki (hD3R) = 8.5 ± 2.2 nM] revealed clogS, clogP, LE (hD2SR, hD3R), LipE (hD2SR, hD3R) and drug-likeness score values of −4.7, 4.2, (0.4, 0.4), (3.9, 3.5), and 0.4, respectively. The results observed for the newly developed benzothiazole-based ligands 3-20 provide clues for the diversity in structure activity relationships (SARs) at the D2SR and D3R subtypes.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Moritz Schübler, Bassem Sadek, Tim Kottke, Lilia Weizel, Holger StarkORCiDGND
URN:urn:nbn:de:hebis:30:3-515202
DOI:https://doi.org/10.3389/fchem.2017.0006
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/28955709
Parent Title (English):Frontiers in chemistry 5.2017, article 64, doi: 10.3389/fchem.2017.0006
Publisher:Frontiers Research Foundation
Place of publication:Lausanne
Document Type:Article
Language:English
Year of Completion:2017
Date of first Publication:2017/09/12
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/10/24
Tag:benzothiazoles; dopamine D2S/D3 receptor; drug-likeness; in vitro activities; privileged structures
Volume:5
Issue:article 64
Note:
Copyright © 2017 Schübler, Sadek, Kottke, Weizel and Stark. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) http://creativecommons.org/licenses/by/4.0/ . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
HeBIS-PPN:455334927
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0