• search hit 1 of 36
Back to Result List

Molecular basis of gephyrin clustering at inhibitory synapses : the role of gephyrin sub-domain oligomerizations

  • Die Verarbeitung von Informationen im zentralen Nervensystem beruht auf dem Zusammenspiel von erregender und hemmender Neurotransmission. Die Übertragung von Signalen zwischen Neuronen erfolgt chemisch über die Ausschüttung von Neurotransmittern an spezialisierten Kontaktstellen, den Synapsen. Glyzin und gamma-Aminobuttersäure (GABA) sind die bedeutendsten inhibitorischen Neurotransmitter im zentralen Nervensystem von Säugern, welche Rezeptoren vom Glyzin- (GlyR) und GABAA-Typ (GABAAR) aktivieren. Diese ligandengesteuerten Ionenkanäle sind in postsynaptischen Membranen angereichert und mit intrazellulären Proteinen assoziiert. Die Rekrutierung der Rezeptoren in postsynaptischen Domänen ist ein an das zytoplasmatisch lokalisierte Protein Gephyrin gekoppelter Prozess. So bindet Gephyrin spezifisch an die intrazelluläre Domäne der beta-Untereinheit des GlyR (GlyR beta) und bildet für die Verankerung des Rezeptors ein gerüstartiges Netzwerk unterhalb der synaptischen Membran. Die gezielte Inaktivierung des Gephyrin-Gens führt in Mäusen zu einem postnatal letalen Phänotyp und zu dem Verlust der synaptischen Anreicherung des GlyR und bestimmter GABAA-Rezeptoren auf zellulärer Ebene. Gephyrin ist ein 93 kDa großes Protein, das nicht nur im zentralen Nervensystem (ZNS), sondern auch in anderen Organen wie Leber und Niere exprimiert wird, in denen es an der Synthese des Molybdän-Kofaktors von Oxido-Reduktasen beteiligt ist. Das Gephyrin-Protein wird durch 30 Exons codiert, von denen zehn als sogenannte Kassetten alternativ gespleißt werden können. Die bestuntersuchte Spleißvariante besitzt 736 Aminosäuren und ist in eine N- und eine C-terminale Domäne (Aminosäuren 1-181 bzw. 318-736) sowie eine zentrale Linker-Domäne unterteilt. Die N- und die C-terminalen Bereiche von Gephyrin sind den Proteinen MogA und MoeA aus E. coli homolog und werden daher auch als G-Domäne (N-terminal) bzw. E-Domäne (C-terminal) bezeichnet. In kristallographischen Untersuchungen wurde gezeigt, dass die G- und E-Domänen zur Tri- bzw. Dimerisierung befähigt sind. Diese speziellen Oligomerisierungseigenschaften der beiden Gephyrindomänen bilden wahrscheinlich die Grundlage für die Entstehung von Gephyrin-Clustern sowie eines hexagonalen Gephyrin-Gerüstes. Dieses Gerüst stellt den Verknüpfungspunkt zwischen Rezeptoren und dem Zytoskelett dar und ermöglicht somit die effiziente Clusterbildung und die zielgerichtete Anordnung einer großen Anzahl inhibitorischer Rezeptoren. In der vorliegenden Arbeit sollten die Rolle dieser beiden Domänen bei der Bildung membranassoziierter Gephyrinaggregate und die molekularen Mechanismen der Clusterbildung des Gephyrinmoleküls untersucht werden. Zu diesem Zweck wurden durch zielgerichtete Mutagenese unterschiedliche Gephyrin-Mutanten hergestellt, um die Fähigkeit der Oligomerisierung der G- und E-Domäne gezielt zu modifizieren. Dadurch sollte die Bedeutung der Oligomerisierung hinsichtlich der Aggregat- bzw. Clusterbildung untersucht werden. Außerdem sollten die Wechselwirkungen zwischen Gephyrin und anderen Proteinen und deren Einfluss auf die synaptische Lokalisation analysiert werden. Für diese Untersuchungen wurden auf der Basis von Röntgenstruktur-Daten spezifische Aminosäurereste an den bei der Oligomerisierung beteiligten Kontaktstellen ausgetauscht. In der G-Domäne wurden zu diesem Zweck vier separate Aminosäuren des Trimer-Interface durch Arginin ersetzt (GephRRRR). Analog hierzu wurden in der EDomäne einzelne Aminosäuren durch Arginin bzw. Glutamat substituiert (GephRER), um dadurch eine Dimersierung zu verhindern. Für die Kassette C5’ wird angenommen, dass deren Vorhandensein die Interaktion zwischen Gephyrin und GlyR beeinträchtigt, wodurch GlyR aus GABAergenen Synapsen ausgeschlossen wird. Daher wurde der Einfluss dieser Gephyrin-Spleißvariante (GephC5’), die zu einer Peptidinsertion innerhalb der G-Domäne führt, und einer Gephyrin-Mutante (Gephmut), die den Verlust der Wechselwirkung mit dem GlyR bedingt, auf die Aggregatbildung von Gephyrinoligomeren untersucht. Bei dem Konstrukt Gephmut wurden, basierend auf Daten von Röntgenstrukturuntersuchungen, neun Aminosäuren (713-721) am Cterminalen Ende der E-Domäne durch den homologen Bereich des bakteriellen MoeA Proteins aus E. coli ersetzt. Zunächst wurden die einzelnen isolierten Domänen mittels Gelfiltration hinsichtlich ihres Oligomerisierungsverhaltens untersucht. Die Mutationen wurden hierzu in verkürzte Proteine eingeführt, bei denen nur die G- bzw. die E-Domäne exprimiert wurden. Diese Konstrukte wurden daher als GRRRR, GC5’ bzw. ERER und Emut bezeichnet. Bei diesen zeigte sich, dass die G-Domäne des Gephyrin-Wildtyps zu trimeren Proteinkomplexen oligomerisiert. Im Gegensatz hierzu war die Mutante GRRRR nicht in der Lage, Trimere zu bilden. Das Einfügen der C5’-Kassette führte ebenfalls zu einer Störung der Trimerisierung. Gelfiltrationsexperimente mit der E-Domäne ergaben, dass die mutierte Domäne ERER, im Gegensatz zum Wildtyp-Konstrukt, keine Dimere ausbildet. Bisherige Studien haben jedoch gezeigt, dass das Emut Polypeptid zur Dimerisierung befähigt ist. Das Oligomerisierungsverhalten des kompletten Gephyrin-Proteins wurde mittels blauer nativer Gelelektrophorese (BN-PAGE) analysiert. Für die hier beschriebenen Untersuchungen mit BN-PAGE wurde rekombinantes Gephyrin in Xenopus laevis Oozyten heterolog exprimiert. Die Analyse ergab, dass Wildtyp Gephyrin nativ als Hexamer vorliegt, welches durch ansteigende Konzentrationen des Detergenzes Natriumdodecylsulfat (SDS) in Trimere, Dimere und Monomere zerfällt. Sowohl GephRRRR und GephC5’ liegen nativ fast ausschließlich als Dimere vor, während GephRER nur trimere Aggregate formt. Die entsprechende Doppelmutante mit Mutationen in Gund E-Domäne war wie erwartet nur noch als Monomer existent. Die als Kontrolle eingesetzte Glyzinrezeptor-Bindungsmutante Gephmut bildete, ebenso wie der Wildtyp, Hexamere aus. Daraus folgt, dass die Oligomere der G- bzw E-Domäne Zwischenprodukte der Hexamerbildung darstellen. Die Analyse der Oligomerisierungseigenschaften der Mutanten wurde nachfolgend in humanen embryonalen Nierenzellen (HEK 293T) untersucht. Nach heterologer Expression von Wildtyp Gephyrin in HEK 293T-Zellen formen sich große, charakteristische Gephyrinaggregate. Die Oligomerisierungs-Mutanten GephRRRR, GephRER und GephC5’ aggregierten jedoch nicht, sondern waren diffus im Zytoplasma verteilt. Die wiederum als Kontrolle eingesetzte Bindungsmutante Gephmut hingegen wies eine normale Aggregation auf. Diese Ergebnisse bestätigen die grundlegende Rolle der Oligomerisierung von G- und E- Domänen für die Aggregatbildung von Gephyrin. Mittels GST-Pulldown und Kolokalisationsanalysen in HEK Zellen wurde die Wechselwirkung der Gephyrinmutanten mit der GlyR beta, dem Motorkomplexprotein Dynein light chain-1 (Dlc-1) und dem Guanin-Nukleotid-Austauschfaktor Collybistin (Cb) untersucht. Beide Ansätze weisen darauf hin, dass die Trimerisierung der G-Domäne an der Interaktion von Gephyrin mit Dlc-1 und die Dimerisierung der E-Domäne bei der Bindung an GlyR beta und Cb beteiligt ist. Die Mutante Gephmut zeigte in beiden Fällen einen totalen Verlust der Bindungsfähigkeit sowohl an das GlyR beta Bindungsmotiv als auch an Cb. Der Einbau der C5’ Kassette in Gephyrin scheint jedoch nicht dessen Bindung an den GlyR zu beeinflussen. Für die Analyse der Clusterbildung und des zielgerichteten Transports in Neuronen wurden Wildtyp und mutiertes Gephyrin in hippocampalen und spinalen Primärkulturen der Ratte exprimiert. Zur Überprüfung einer synaptischen Lokalisation wurde Gephyrin gemeinsam mit dem vesikulären inhibitorischen Aminosäure-Transporter (VIAAT), einem präsynaptischen Marker-Protein, detektiert. In beiden Kulturen wies Gephyrin eine punktartige Verteilung in den Neuriten auf und wurde gezielt an Synapsen angereichert. Im Kontrast dazu zeigten alle Oligomerisierungsmutanten, GephRRRR, GephC5’ und GephRER keine Ausbildung von Clustern sondern eine diffuse Verteilung im Zellkörper und in Dendriten. Das Konstrukt Gephmut wies jedoch Clusterbildung und eine punktförmige Verteilung auf. Diese Daten belegen, dass die Oligomerisierung der G- wie auch der E-Domänen für die Clusterbildung und synaptische Lokalisation von Gephyrin unerlässlich ist. Die Wechselwirkung mit dem GlyR und/oder Collybistin ist ebenfalls für die Anreicherung in der Synapse erforderlich, nicht jedoch für die Bildung der Gephyrin-Cluster. Die dargestellten Ergebnisse belegen die Rolle der spezifischen Oligomerisierungseigenschaften der G- und E-Domäne für die Ausbildung des hexagonalen Gephyringerüstes und dessen grundlegende Bedeutung für die spezifische Anreicherung von Gephyrin an inhibitorischen Synapsen in Neuronen.

Download full text files

  • Taslim_thesis.pdf
    eng

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Taslimarif Saiyed
URN:urn:nbn:de:hebis:30-45910
Place of publication:Frankfurt am Main
Referee:Ernst BambergGND, Ernst BambergGND
Advisor:Heinrich Betz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2007/07/09
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/02/21
Release Date:2007/07/09
Page Number:98
First Page:1
Last Page:94
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:322795893
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG