The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 32
Back to Result List

Comparison of the cytochrome c oxidase inherent catalase side-reaction from Paracoccus denitrificans in the wild type and recombinant form

  • The four subunit (SU) aa3 cytochrome c oxidase (CcO) from Paracoccus denitrificans is one of the terminal enzymes of the respiratory chain. It uses electrons from cytochrome c to reduce molecular oxygen to water. Its binuclear active center, residing in SU I, contains hemeÊa3 and CuB, the latter being liganded by three histidine residues. Apart from its oxygen reductase activity, the protein possesses a peroxidase and a catalase activity. To compare variants and the wild type (WT) protein in a more stringent way, a recombinant (rec.) WT CcO was constructed, carrying the gene for SUÊI on a low copy number plasmid. This rec. WT showed, as expected, no difference in oxygen reductase activity compared to the American Type Culture Collection (ATCC) WT CcO but surprisingly its catalase activity was increased by a factor of 20. The potential overproduction of SUÊI due to plasmid coding and the resulting deficiency in metal inserting chaperones might impair the correct insertion of hemeÊa3 and CuB because of a deficiency in metal inserting chaperones. This in turn might lead to differences in side chain orientation and to changes in the water network. However, slight changes might cause an increased accessibility of the active center for hydrogen peroxide, resulting in an increased catalase activity. The availability of chaperones and therefore the proposed structural reasons for the difference was improved by cloning the genes for the two metal inserting chaperones CtaG and Surf1c on the same plasmid together with SUÊI. This new rec. WT CcO showed in fact a reduced catalase activity. Another WT with a deletion in the chromosomal second, non expressing gene of SU I was analysed to prove plasmid coding as the reason for the difference of the ATCC WT and the rec. WT. This strain showed an increased kcat of the catalase activity as well, additionally pointing to a regulatory effect of the non expressed gene for SU I in the chromosome. To fathom the structural difference of the increased catalase activity, differential scanning calorimetry was used, but no significant difference in thermal stability between the ATCC WT CcO and the rec. WT CcO was detected. However, upon aging, the thermal stability of the rec. WT CcO declined faster than that of the ATCC WT CcO pointing to a decreased structural stability of the rec. WT CcO. To characterize the catalase reaction, several known inhibitors were used to probe the contribution of the different metal cofactors in the catalase reaction. In addition variants in aromatic amino acids near the active center were constructed to conclude on a possible reaction mechanism of the catalase activity of CcO. These variants in combination with the wild type forms were analysed for radical signals by EPR-spectroscopy. A radical relevant for the catalase reaction of CcO was found in the F-intermediate of all variants and all wild type forms. This narrow 12 G radical signal was assigned to a porphyrine radical probably involved in the catalase reaction of CcO. Moreover, gas chromatography-mass spectrometry measurements were used to analyse isotopically labelled oxygen produced in the catalase reaction. As a result of these experiments, a reaction cycle of the catalase activity of CcO is postulated and the structural difference between the ATCC and rec. WT CcO is outlined. The catalase activity appears to be a true catalase activity and not a "pseudocatalase" activity.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Florian HilbersGND
URN:urn:nbn:de:hebis:30:3-279183
Referee:Bernd LudwigGND, Hartmut MichelORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/10/13
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/12/20
Release Date:2015/10/13
Page Number:209
HeBIS-PPN:365333964
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht