The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 37
Back to Result List

Feldkorrekturregelung für dynamische Prozesse in normalleitenden Magneten

  • Bei der Ionenstrahltherapie bestimmt die Energie der Ionen die Eindringtiefe in das Gewebe und damit die Lage des Braggpeaks, in dem der größte Teil der Ionisationsenergie deponiert wird. Um die gewünschte Dosis möglichst genau im Tumor zu lokalisieren, müssen in den aufeinanderfolgenden Extraktionen die gewünschten unterschiedlichen Energien möglichst genau sein. In der Beschleunigungsphase werden die Magnetfelder der Magnete im Synchrotron bis zum vorgegebenen Exktraktionswert hochgefahren. Dieser bestimmt zusammen mit der Synchrotronfrequenz die Strahlenergie. Während und insbesondere am Ende dieser Phase, Rampe genannt, sollte das Magnetfeld daher sehr genau dem berechneten Sollwert folgen, um Strahlverluste zu minimieren und die geforderte Strahlqualität zu erreichen. In der zeitlichen Steuerung der Magnetströme müssen magnetische Effekte, die hauptsächlich im Eisen der Magnete auftreten, wie Wirbelströme und die Hysterese berücksichtigt werden, da sie das Feld verfälschen und damit den Strahl in unerwünschter Weise beeinflussen. Die während der Rampe entstehenden Wirbelströme stören das Magnetfeld, so dass bisher vor der Extraktion des Strahls eine Wartezeit eingeführt wurde, bis die Wirbelströme abgeklungen waren. Bei beliebig wählbaren Abfolgen der vordefinierten Zyklen kommt es durch die Hysterese des Eisens zu unterschiedlichen Remanenzfeldern, die das Magnetfeld verändern. Um dem vorzubeugen, durchliefen die Magnete eine vordefinierte Hystereseschleife. Ist die geforderte Energie des Strahls erreicht, wird das Magnetfeld konstant gehalten und die Teilchen aus dem Synchrotron extrahiert. Der Rest der Hystereseschleife wurde am Ende des Zyklus durchlaufen. Die im Rahmen dieser Dissertation entwickelte dynamische Magnetfeldregelung misst das integrale Magnetfeld sehr genau und korrigiert die Feldfehler. Das integrale Magnetfeld folgt damit jederzeit seiner Vorgabe, unabhängig von den dynamischen Störeffekten. Die Wirbelströme und die Hysterese sind zwar immer noch vorhanden, die dadurch verursachten Feldfehler können aber durch eine Rückkopplung auf den Strom des Magneten korrigiert werden. Es werden verschiedene Verfahren zur Messung der Magnetfelder untersucht. Am besten eignet sich für die dynamische Magnetfeldregelung die Kombination aus einer Hallsonden- und einer Induktionsspulenmessung. Die Messung muss das integrale Magnetfeld des Magneten BL, also das gesamte Feld entlang des Strahlwegs, bestimmen. Die Induktionsspule, oder Pickupspule, liegt deshalb entlang des Strahlrohrs im Magneten und liefert eine Spannung in Abhängigkeit von der Änderung des magnetischen Flusses. Durch die Integration dieser Spannung erhält man das integrale Feld des Magneten. Die Messung wird mit einer Hallsondenmessung zu Beginn des Beschleunigerzyklus auf einen absoluten Messwert geeicht. Der Hauptteil dieser Arbeit beschäftigt sich mit der Entwicklung des sogenannten HIT Integrators, der die Integration der Pickupspulenspannung übernimmt. Bisher verfügbare Integratoren konnten die notwendigen Anforderungen an Genauigkeit, Echtzeitfähigkeit, automatische Kalibrierung, ständige Messbereitschaft, Temperaturunabhängigkeit und hohe Verfügbarkeit nicht erfüllen. Der neu entwickelte HIT Integrator wurde diesen Anforderungen entsprechend entwickelt. Der Integrator mit dem neuartigen Konzept der gleichzeitigen Messung und Kalibrierung in Echtzeit ist als Patent angemeldet worden. Neben der Entwicklung und Verwirklichung des Gesamtkonzepts war die numerische Integration des stark verrauschten Pickupspulensignals und die sofortige Umsetzung des integralen Werts in ein Steuersignal für die Dipolmagnetstromgeräte eine besondere technische Herausforderung. Die elektronischen Schaltungen für die dynamische Magnetfeldregelung sind in der Baugruppe des HIT Integrators zusammengefasst. Die Ansteuerung der Hallsonde mit einer temperaturkompensierten Stromquelle, der Signalaufbereitung und Analog-Digital-Wandlung, sowie der Integrator und der Regler bilden eine technische Einheit. Der HIT Integrator ist speziell für den Einsatz im bestehenden Beschleunigerkontrollsystem und den Magnetnetzgeräten entwickelt worden. Die Regler der Magnetnetzgeräte wurden so verändert, dass sie einen Zusatzsollwert verarbeiten können, der auf den berechneten Sollwert der Datenversorgung addiert wird. Die Magnetfeldregelung wurde in den Therapiebeschleuniger integriert, dazu wurde die Datenversorgung und das Kontrollsystem angepasst. Die Magnetfeldregelung stellt ein neues Gerät im Beschleuniger dar, das in die Netzgeräte der Synchrotronmagnete eingebaut worden ist. Die Datenversorgung dieser Geräte beinhaltet u.a. eine neue Methode der Kalibrierung. Es konnte durch Messungen gezeigt werden, dass die Magnetfeldregelung mit hoher Genauigkeit funktioniert. Es wird eine Genauigkeit von besser als 10^{-4} des maximalen Feldes von 1.5 T erreicht, also weniger als 150uT, der dreifachen Stärke des Erdmagnetfelds. Vor allem die Bestrahlungszeit mit Protonen und die Bestrahlung bei niedrigen Energien profitiert von der Magnetfeldregelung, da hier das Extraktionsniveau der Magnete relativ gering ist und das Durchlaufen der vordefinierten Hystereseschleife prozentual mehr Zeit im Zyklus in Anspruch nimmt. Durch den Wegfall dieser Phase wird daher pro Zyklus mehr Zeit eingespart. Die Messungen zeigen, dass im Beschleunigerzyklus trotz der fehlenden Wartezeiten, die bis zu 24% betragen, eine gleichbleibend gute Strahlqualität erreicht wird. Dies wurde mit Vergleichsmessungen gezeigt, bei denen der Strahl mit und ohne Feldregelung vermessen wurde. Untersucht wurde eine große Stichprobenmenge aus dem Parameterraum, gegeben durch zwei Ionensorten mit jeweils 255 Strahlenergien, 10 verschiedenen Teilchenraten und 4 Strahlbreiten. Außerdem wurde die Energie des Strahls nachgemessen. Für die Einführung in den Therapiebetrieb musste eine Impactanalyse gemacht werden, die mögliche Auswirkungen des neuen Verfahrens behandelt. Das Risiko für Patienten, Mitarbeiter und Dritte darf durch die Magnetfeldregelung nicht erhöht werden. Daraus entstand auch die Forderung nach einem redundanten System, das Fehler erkennt und die Bestrahlung abbricht. Die mittlere Leistungsaufnahme des Beschleunigers des Heidelberger Ionenstrahltherapiezentrums liegt bei etwa 1 MW, bei einem Jahresenergieverbrauch von 8 GWh mit Kosten von etwa 1 Million Euro. Dies entspricht einer deutschen Kleinstadt mit 10000 Einwohnern. Die Verkürzung der Zykluszeiten wirkt sich direkt auf die Bestrahlungszeit und auf die Energiekosten aus. Würde man die Anlage durch die Zeiteinsparungen kürzer betreiben, würde man etwa 2 GWh pro Jahr sparen, was die Stromkosten um etwa 250000 Euro reduziert. Zusätzlich zu den eingesparten Kosten wird auch die Bestrahlungszeit kürzer und damit auch die Zeit, die der Patient bei der Behandlung fixiert wird. Die Behandlung für die Patienten wird angenehmer. Man kann aber auch durch die eingesparte Bestrahlungszeit pro Patient entsprechend mehr Patienten behandeln. Das heißt man kann an Stelle von 700 Patienten im Jahr 910 Patienten mit einem Tumor behandeln. Dieser für die Patienten willkommene Effekt bedeutet auf der anderen Seite für HIT aber auch Mehreinnahmen von 4.2 Millionen Euro im Jahr. Das Konzept der Magnetfeldregelung kann auch an anderen Beschleunigeranlagen zum Einsatz kommen. Dazu müssen die Magnete mit den Sonden bestückt werden und die Magnetnetzgeräte einen Eingang für einen Zusatzsollwert bekommen. Das Beschleunigerkontrollsystem kann erweitert werden, damit es einen Sollwert mit allen notwendigen Kalibrierungen berechnen kann. Der HIT Integrator wird dann als eigenständiges Gerät in das Kontrollsystem eingebunden.

Download full text files

  • Feldmeier_Dynamische_Magnetfeldregelung_web.pdf
    deu

Export metadata

Metadaten
Author:Eike Feldmeier
URN:urn:nbn:de:hebis:30:3-327984
ISBN:978-3-95645-071-6
Publisher:Monsenstein und Vannerdat
Place of publication:Münster
Referee:Thomas Haberer, Alwin SchemppGND, Holger PodlechORCiDGND
Advisor:Thomas Haberer
Document Type:Book
Language:German
Date of Publication (online):2016/10/26
Date of first Publication:2013/12/02
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/10/30
Release Date:2016/10/26
Tag:Hallsensor; Integrator; Magnetfeldregelung; Pickupspule; Synchrotron
GND Keyword:Ionenbeschleuniger; Synchrotron; Magnetfeld; Regelungssystem
Page Number:230
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung,
HeBIS-PPN:396752888
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG