The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 33
Back to Result List

Mechanische Stimuli als Triggerfaktoren epithelialer Tumore

  • Der menschliche Körper ist permanent mechanischen Reizen in Form von Dehnung oder Druck ausgesetzt. Diese Stimuli können vielfältige zelluläre Prozesse induzieren. Dehnungsreize erhöhen die Zellproliferation in allen bisher untersuchten Zellspezies, inklusive Endothel- und Epithelzellen. Im Gegensatz dazu scheinen mechanische Druckbelastungen zu zellulärer Differenzierung zu führen. Die Relevanz dieser mechanischen Reize für die Physiologie und Pathophysiologie ist für viele Organe nachgewiesen worden. Jedoch gibt es bislang keine hinreichenden Untersuchungen, die belegen, dass mechanische Reize ebenso eine Rolle bei der Tumorproliferation spielen könnten. Im Fokus dieser Promotionsarbeit steht die Fragestellung, inwieweit die mechanischen Verhältnisse in Tumoren in einem funktionellen Zusammenhang mit der Tumorgenese stehen. Zur Klärung dieser Fragestellung ist ein Xenograft-Tumormodell etabliert worden, das es erlaubt in vivo-Untersuchungen an humanen epithelialen Tumoren durchzuführen. Um Erfahrungen aus vorherigen in vitro-Versuchen nutzen zu können, wurden humane epitheliale A431-Vulvakarzinom- und humane epitheliale A549-Lungenkarzinomzellen für das Tumormodell verwendet. Mit diesem Modell konnte erstmals in vivo gezeigt werden, dass solide humane Tumore einer permanenten mechanischen Dehnung ausgesetzt sind, die direkten Einfluss auf die Proliferation der Tumorzellen hat. Als zentraler Auslöser für die mechanische Dehnung der Tumorzellen konnte der erhöhte tumorinterstitielle Flüssigkeitsdruck (TIFP) identifiziert werden. Der Einfluss der mechanischen Dehnung auf die Proliferation der Tumorzellen wurde anhand der Phosphorylierung der extracellular regulated kinase 1/2 (ERK1/2) bzw. der Ki-67 Expression gezeigt. Durch die Punktion bzw. Drainage von Tumoren konnte der TIFP experimentell abgesenkt werden und in Folge dessen kam es zu einer reduzierten mechanischen Dehnung der Tumorzellen. In allen Versuchen war die Abnahme der mechanischen Dehnung von einer verringerten Phosphorylierung der ERK1/2 bzw. reduzierten Expression des Proliferationsmarkers Ki-67 begleitet. Der TIFP induziert aber nicht nur mechanische Dehnungsreize, sondern er stellt darüber hinaus eine physikalische Barriere für den effizienten Transport von Therapeutika in den Tumor dar. Der gegenüber dem umliegenden Gewebe erhöhte TIFP behindert den interstitiellen Transport und die Aufnahme von Molekülen aus dem Gefäßsystem in die Tumorzellen. Die Etablierung einer neuen experimentellen Technik zur Senkung des TIFP, durch i.v. Injektion von konzentriertem humanem Serumalbumin, führte zu einer signifikanten Verbesserung der Aufnahme und einer Verlängerung der Verweildauer von Makromolekülen/Therapeutika innerhalb von Tumoren. Des Weiteren konnten immunhistochemische Färbungen gegen lymphspezifische Marker in Gewebeproben von A431 und A549 Tumoren keinen direkten Zusammenhang zwischen Lympharchitektur und TIFP zeigen. Dies bedeutet, dass in den untersuchten Tumoren die Ausbildung des hohen TIFP eher auf eine erhöhte Rigidität der extrazellulären Matrix bzw. die hohe Permeabilität des tumorversorgenden vaskulären Gefäßsystems zurückzuführen ist. Parallel zu den in vivo-Untersuchungen durchgeführte in vitro-Versuche konnten Proteine identifizieren, die an der druckinduzierten p38 Signaltransduktionskaskade beteiligt sind. Diese Ergebnisse untermauern die bisherigen in vitro-Daten bzgl. der differentiellen Reaktionen von Zellen auf mechanische Druckreize. Abschließend lässt sich sagen, dass die Ergebnisse der in vivo-Versuche die Bedeutung und die klinische Relevanz des biophysikalischen Parameters TIFP hervorgehoben haben. Die Zukunft der Krebstherapie liegt nicht alleine in der Entwicklung neuer hochspezifischer Wirkstoffe, sondern auch in der Lösung des Transports der Wirkstoffe an den Zielort. Die vorgestellten Ergebnisse dieser Promotionsarbeit weisen eine beträchtliche klinische Relevanz auf, denn sie zeigen, dass die experimentelle Absenkung des TIFP zu einer verbesserten Aufnahme von Therapeutika beiträgt. Gleichzeitig wird die Proliferationsrate von Tumorzellen durch die reduzierte mechanische Dehnung signifikant verringert. Dieser Doppeleffekt könnte zu einer effizienteren Krebstherapie führen in Folge derer es zu einer verlängerten Überlebensrate sowie einer Verbesserung der Lebensqualität von Krebspatienten kommen könnte.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias HofmannGND
URN:urn:nbn:de:hebis:30-51170
Referee:Jürgen Bereiter-HahnORCiDGND, August BerndORCiDGND
Advisor:Jürgen Bereiter-Hahn
Document Type:Doctoral Thesis
Language:German
Year of Completion:2007
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/11/06
Release Date:2007/11/09
Page Number:195
HeBIS-PPN:191771228
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht