The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 9
Back to Result List

Inclusive charmonium production above 4 GeV at the BESIII experiment

  • In the last two decades, new unpredicted charmonium-like states with extraordinary characteristics have been observed experimentally. These states also known as the XYZ states, e.g., the Y(4260) or the X(3872), are mostly interpreted as QCD allowed exotic hadrons. One of the leading hadron physics experiments in the world, the Beijing Electron Spectrometer III (BESIII) at the Beijing Electron-Positron Collider II (BEPCII) is aiming towards revealing the internal structure of these states. It has brought numerous breakthrough discoveries including the discovery of the charged Zc(3900). In order to understand the nature of the Y(4260) state and its decay patterns, an inclusive analysis is performed for different recoil systems (π+π−,K+K− and K±π∓) using the BESIII data samples for center of mass energies above 4 GeV collected between 2013 and 2019. The aim of this analysis is twofold: on one hand, we search for new unobserved charmonium-like decay channels using the missing mass technique and on the other hand, it provides an accurate inclusive cross section measurement for e+e−→X π+π−, with the X being the J/ψ, hc and ψ(2S), respectively. Two resonant structures, the Y(4220) and the Y(4390), are observed in the inclusive energy dependent Born cross section of e+e−→hc π+π−, which is consistent with the BESIII exclusive measurements. Moreover, the energy dependent cross section of e+e−→J/ψ π+π− is investigated, in which two resonances have consistently been observed with the previous BESIII exclusive studies, namely, the Y(4220) and the Y(4320). In the (K±π±) recoil system, possible Y(4260) open charm decay channels are investigated. Two enhancements are observed in the inclusive energy dependent cross section of e+e−→DD above 4.13GeV, which could possibly be the ψ(4160)and the ψ(4415).

Download full text files

Export metadata

Author:Simon Nakhoul
Place of publication:Frankfurt am Main
Referee:Klaus Peters, Wolfgang Gradl
Document Type:Doctoral Thesis
Date of Publication (online):2021/02/11
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/01/27
Release Date:2021/02/11
Page Number:107
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht