The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 12
Back to Result List

Assemblierung, Annotation und vergleichende Genomik komplexer Invertebratengenome am Beispiel von "Radix" (Mollusca, Gastropoda)

  • Die Analyse von DNA-Sequenzen steht spätestens seit der Feststellung ihrer tragenden Rolle in der Vererbung organismischer Eigenschaften im Fokus biologischer Fragestellungen. Seit Kurzem wird mit modernsten Methoden die Untersuchung von kompletten Genomen ermöglicht. Dies eröffnet den Zugang zu genomweiten Informationen gegenüber begrenzt aussagekräftigen markerbasierten Analysen. Eine Genomsequenz ist die ultimative Quelle an organismischer Information. Allerdings sind diese Informationen oft aufgrund technischer und biologischer Gründe komplex und werfen meist mehr Fragen auf, als sie beantworten. Die Rekonstruktion einer bislang unbekannten Genomsequenz aus kurzen Sequenzen stellt eine technische Herausforderung dar, die mit grundlegenden, aber in der Realität nicht zwingend zutreffenden Annahmen verbunden ist. Außerdem können biologische Faktoren, wie Repeatgehalt oder Heterozygotie, die Fehlerrate einer Assemblierung stark beeinflussen. Die Beurteilung der Qualität einer de novo Assemblierung ist herausfordernd, aber zugleich äußerst notwendig. Anschließend ist eine strukturelle und funktionale Annotation von Genen, kodierenden Bereichen und repeats nötig, um umfangreiche biologische Fragestellungen beantworten zu können. Ein qualitativ hochwertiges und annotiertes assembly ermöglicht genomweite Analysen von Individuen und Populationen. Diese Arbeit beinhaltet die Assemblierung und Annotation des Genoms der Süßwasserschnecke Radix auricularia und eine Studie vergleichender Genomik von fünf Individuen aus verschiedenen molekularen Gruppen (MOTUs). Mollusken beherbergen nach den Insekten die größte Artenvielfalt innerhalb der Tierstämme und besiedeln verschiedenste, teils extreme, Habitate. Trotz der großen Bedeutung für die Biodiversitätsforschung sind verhältnismäßig wenige genomische Daten öffentlich verfügbar. Zudem sind Arten der Gattung Radix auch aufgrund ihrer großen geografischen Verbreitung in diversen biologischen Disziplinen als Modellorganismen etabliert. Eine annotierte Genomsequenz ermöglicht über bereits untersuchte Felder hinaus die Forschung an grundlegenden biologischen Fragestellungen, wie z.B. die Funktionsweise von Hybridisierung und Artbildung. Durch Assemblierung und scaffolding von sechs whole genome shotgun Bibliotheken verschiedener insert sizes und einem transkriptbasiertem scaffolding konnte trotz des hohen Repeatgehalts ein vergleichsweise kontinuierliches assembly erhalten werden. Die erhebliche Differenz zwischen der Gesamtlänge der Assemblierung und der geschätzten Genomgröße konnte zum Großteil auf kollabierte repeats zurückgeführt werden. Die strukturelle Annotation basierend auf Transkriptomen, Proteinen einer Datenbank und artspezifisch trainierten Genvorhersagemodellen resultierte in 17.338 proteinkodierenden Genen, die etwa 12,5% der geschätzten Genomgröße abdecken. Der Annotation wird u.a. aufgrund beinhaltender Kernrthologen, konservierter Proteindomänenarrangements und der Übereinstimmung mit de novo sequenzierten Peptiden eine hohe Qualität zugesprochen. Das mapping der Sequenzen von fünf Radix MOTUs gegen die R. auricularia Assemblierung zeigte stark verringerte coverage außerhalb kodierender Bereiche der nicht-Referenz MOTUs aufgrund hoher Nukleotiddiversität. Für 16.039 Gene konnten Topologien berechnet werden und ein Test auf positive Selektion ausgeführt werden. Insgesamt konnte über alle MOTUs hinweg in 678 verschiedenen Genen positive Selektion detektiert werden, wobei jede MOTU ein nahezu einzigartiges Set positiv selektierter Gene beinhaltet. Von allen 16.039 untersuchten Genen konnten 56,4% funktional annotiert werden. Diese niedrige Rate wird vermutlich durch Mangel an genomischer Information in Mollusken verursacht. Anschließende Analysen auf Anreicherungen von Funktionen sind deshalb nur bedingt repräsentativ. Neben den biologischen Ergebnissen wurden Methoden und Optimierungen genomischer Analysen von Nichtmodellorganismen entwickelt. Dazu zählen eigens angefertigte Skripte, um beispielsweise Transkriptomalignments zu filtern, Trainings eines Genvorhersagemodells automatisiert und parallelisiert auszuführen und Orthogruppen bestimmter Arten aus einer Orthologievorhersage zu extrahieren. Zusätzlich wurden Abläufe entwickelt, um möglichst viele vorhandene Daten in die Assemblierung und Annotation zu integrieren. Etwa wurde ein zusätzliches scaffolding mit eigens assemblierten Transkripten mehrerer MOTUs sequenziell und phylogenetisch begründet ausgeführt. Insgesamt wird eine umfassende und qualitativ hochwertige Genomsequenz eines Süßwassermollusken präsentiert, welche eine Grundlage für zukünftige Forschungsprojekte z.B. im Bereich der Biodiversität, Populationsgenomik und molekularen Ökologie bietet. Die Ergebnisse dieser Arbeit stellen einen Wissenszuwachs in der Genomik von Mollusken dar, welche bisher trotz ihrer Artenvielfalt deutlich unterrepräsentiert bezüglich assemblierter und annotierter Genome auffallen.
Metadaten
Author:Tilman SchellORCiDGND
URN:urn:nbn:de:hebis:30:3-501968
Place of publication:Frankfurt am Main
Referee:Markus PfenningerORCiDGND, Ingo EbersbergerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2019/02/05
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/08/04
Release Date:2019/05/09
Page Number:XV, 118
HeBIS-PPN:448459450
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht