• search hit 4 of 3
Back to Result List

Synthesis of site-specific artificial ribonucleases

  • Seit gezeigt wurde, dass die genetischen Informationen in Form von DNA gespeichert wird, ist das Geheimnis der DNA-Struktur gelöst, der Mechanismus der Gen-Expression und die Rolle der RNA verstanden worden. Das Interesse für die Chemie und die Biologie der Nukleinsäuren ist somit kontinuierlich gewachsen. Besonders interessant ist die RNA, die eine Rolle als ein Vermittler der genetischen Informationen (mRNA) spielt, aber auch als Bote von Aminosäuren (tRNA). Sie ist im Ribosom (rRNA) anwesend, arbeitet als Templat in Telomerasen für DNA-Synthese und hat außerdem wichtige Funktionen in der RNA-Spaltung, z.B. bei Ribozymen wie RNAse P inne. Betreffend bestimmter Spaltstellen in RNA hat auch das Phänomen der siRNA beträchtliche Aufmerksamkeit in diesem Prozess erregt. Der sogenannte RISC-Komplex wird programmiert, einzelsträngige RNA mit hoher Sequenz-Spezifität zu schneiden. Die für die RNA-Interferenz verantwortliche zelluläre Maschinerie ist auch an der Bilbung von MikroRNAs beteiligt. RNA-Interferenz ist heute eines der nützlichsten Werkzeuge in functional genomics geworden. Die große Hoffnung ist, dass es auch vielleicht in der Therapie angewandt werden könnte. Das Thema meiner Doktorarbeit trägt den Titel „Synthesis of Site-Specific Artificial Ribonucleases“. Es beschäftigt sich mit der Entwicklung künstlicher bindungsspezifischer Ribonucleasen. Diese künstlichen Katalysatoren sind im Wesentlichen aus drei Gründen bedeutsam: Zum einen liegt eine mögliche Anwendung in der Affinity-Cleavage (Affinitätsspaltung), eine Technik, die Bindungsstellen von RNA-Liganden durch das kovalente Anbringen eines Reagenzes lokalisiert, das zwischen den Nukleinsäuren schneidet. Zum anderen entsteht die Möglichkeit, neue Werkzeuge für eine gezielte Manipulation großer RNA-Moleküle zu schaffen. Die Vorteile des Ansatzes sind, dass man damit beliebige Zielsequenzen anwählen kann. Das Problem dieser Strategie ist die Notwendigkeit, hohe Genauigkeit im Spaltungssschritt zu erreichen, wie zum Beispiel mit natürlichen Ribozymen. Wichtige Ergebnisse wurden auch während meiner Arbeit erhalten, mit einem Fall von genauer Spaltung zwischen zwei Basen. Der dritte Grund ist die potentielle Anwendung als katalytische antisense-Oligonucleotide in der Chemotherapie. Gegenwärtig existieren zwei Ansätze, unspezifische künstliche RNasen relativ kleiner Größe zu schaffen. Der erste basiert auf Metallkomplexen und führt im Allgemeinen zu höheren Raten. Die Idee ist, ein Metall als elektrophiles Zentrum zur Unterstützung der Transesterfikation zu nutzen. Unter diesen Katalysatoren enthalten die effizientesten Lanthanid-Ionen, Cu2+ und Zn2+. Der zweite Ansatz zielt darauf ab, metallfreie künstliche Ribonucleasen zu entwickeln. Die Vorteile dieser Strategie sind, den Katalysator von der Stabilität der Metallkomplexe, die in vivo problematisch sein könnten, unabhängig zu machen. In diesem Ansatz wird die natürliche Katalyse durch Enzyme simuliert. Zweckmäßige Gruppen mit beschränkter katalytischer Aktivität z.B. als Nucleophile, Säuren oder Basen, werden in einer Weise zusammengesetzt, um Kooperation zu ermöglichen. Potente Katalysatoren können so ohne die Notwendigkeit von Metallen als Cofaktoren erzeugt werden. ...
Metadaten
Author:Claudio Gnaccarini
URN:urn:nbn:de:hebis:30-44864
Referee:Michael GöbelORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2009/10/14
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/04/17
Release Date:2009/10/14
HeBIS-PPN:216673143
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht