• search hit 9 of 31
Back to Result List

Stellar evolution, nucleosynthesis and s-process in low metallicity AGB stars

  • Asymptotic giant branch (AGB) stars are initially low and intermediate mass stars undergoing recurrent hydrogen and helium shell burning. During the advanced stage of stellar evolution AGB stars follow after the helium core burning ceased and are located in the AGB of the Hertzsprung-Russell Diagram. One characteristic is their ability of element synthesis, especially carbon and nitrogen, which they eject in large amounts into the interstellar medium. But AGB stars also feature a slow-neutron capture process called s-process which forms approximately 50 % of all elements between Fe and Bi. The initial mass function emphasizes the importance of the synthesized ejecta of AGB stars since they are much more abundant than massive stars. Therefore, the abundance evolution of many elements in the universe is drastically affected by AGB stars. In order to understand chemical evolution in the universe their behavior must be known since their first appearance. In previous times less heavy elements were produced and available. Hence AGB stars with lower heavy element content, which means lower metallicity, must be investigated. They appear to behave substantially differently than stars of higher metallicity. Another issue is that AGB stars have mass-dependent characteristics from which follows a division into low-mass, massive and super AGB stars. Super AGB stars have the most open issues due to their large masses and initial mass boundaries that separate them from massive stars. Due to large spectroscopic surveys in the last years, many low metallicity stars have been analyzed. These findings make it necessary to complement those studies through stellar modeling. This work makes a step in this direction. The AGB star masses under investigation are 1M⊙, 1.65M⊙, 2M⊙, 3M⊙, 4M⊙, 5M⊙, 6M⊙ and 7M⊙ which include low-mass, massive and super AGB stars. Metallicities of Z = 6 x 10 exp-3 and Z = 1 x 10 exp-4 (for comparison, solar Z ~ 0.02) were chosen. These results are an extension of already available data, covering solar and half-solar metallicity, but without super AGB stars. Therefore physics input includes mainly well-established approaches rather than new theories. New physical approaches are included due to the low metallicity which makes the results a unique set of models. Additionally, extensive s-process network calculations lead to production factors of all included elements and isotopes. The s-process signatures of those stars were analyzed. The stellar evolution simulations presented in this work have been utilized for rate and especially sensitivity studies. One approach done was to analyze s-process branchings at 95Zr and 85Kr for stars at 3M⊙ with Z = 1 x 10 exp-2 and Z = 1 x 10 exp-3 respectively.

Download full text files

  • ritter_13_master.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian Ritter
URN:urn:nbn:de:hebis:30:3-337202
URL:http://exp-astro.physik.uni-frankfurt.de/docs/ritter_13_master.pdf
Referee:René ReifarthORCiD, Falk Herwig
Document Type:Master's Thesis
Language:English
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/07/01
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:344367282
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG